Is there an association between waist circumference and type 2 diabetes or impaired fasting glucose in US adolescents?

Meghann M. Moore, RD, CD
Masters Thesis
Maternal & Child Health Track
School of Public Health & Community Medicine
University of Washington
June 6, 2007

- Rising incidence of type 2 diabetes
- 85 96% overweight/obese
- Up to 45% diabetes = type 2
- Total body fat influence
- Abdominal (visceral) body fat influence
- 1/3 of children will develop type 2 diabetes

- Type 2 Diabetes
 - "Adult-onset diabetes"
 - Insulin resistance
 - Reduced insulin sensitivity
 - Elevated fasting glucose levels

- Impaired Fasting Glucose (IFG)
 - "Pre-diabetes"
 - Type 2 diabetes predictor
 - Associated with insulin resistance
 - Fasting glucose levels:
 - ≥100 mg/dl and <126 mg/dl</p>

- Waist circumference
 - Predicts abdominal fat distribution
 - Associated with insulin resistance
 - Associated with cardiovascular disease
 - Better than body mass index (BMI)

Study Purpose

■ To determine if an association exists between waist circumference and *type 2 diabetes* among US adolescents 12-19 years

 To determine if an association exists between waist circumference and impaired fasting glucose among US adolescents 12-19 years

Data Source

- 2001-2002 and 2003-2004 National Health and Nutrition Examination Survey (NHANES)
- Interview, physical exam, lab tests

Subjects

- Initial sample
 - 4,653 adolescents 12-19 years
- Exclusions
 - Pregnant adolescents
 - "Other-Hispanic" & "Multi-racial/Other" races
 - Subjects without complete data
- Final sample
 - 923 adolescents 12-19 years

Subjects-Demographics

Characteristics	Total No. Subjects (N=923)	IFG Cases: 139 (15.06) (%)	IFG Controls: 784 (84.94) (%)
Gender			
Male	463	102 (73.38)	361 (46.05)
Female	460	37 (26.62)	423 (53.95)
Race-ethnicity			
Mexican-American	303	64 (46.04)	239 (30.48)
Non-Hisp. White	302	40 (28.78)	262 (33.42)
Non-Hisp. Black	318	35 (25.18)	283 (36.10)
Age, years			
12-14	359	55 (39.57)	304 (38.78)
15-19	564	84 (60.43)	480 (61.22)

Subjects-Demographics

Characteristics	Total No. Subjects (N=923)	IFG Cases: (%)	IFG Controls: (%)
BMI percentile			
Normal (<85 th)	605	77 (55.40)	528 (67.35)
At-risk for overweight (85 th -95 th)	146	23 (16.55)	123 (15.69)
Overweight (≥95 th)	172	39 (28.06)	133 (16.96)
Waist Circumference			
<75 th percentile	714	625 (79.72)	89 (64.03)
>= 75 th and < 90 th percentile	126	94 (11.99)	32 (23.02)
>=90 th percentile	83	65 (8.29)	18 (12.95)

Methods & Statistical Analysis

- Case-control design
- Logistic regression
- Multiple linear regression
- Crude and adjusted parameter/odds ratios
- 95% confidence intervals (CI)
- Results statistically significant at p<0.05</p>

Methods-Variables

- Independent variable
 - Waist circumference
 - Continuous
 - Categorical (75th-90th percentile, >90th percentile)
- Dependent (outcome) variable
 - Impaired fasting glucose
 - Continuous
 - Categorical

Results

Odds ratios for waist circumference percentile and IFG

Waist Circumference	Crude OR (95% CI)	Adjusted OR* (95% CI)
<75 th percentile	Reference	Reference
≥75 th and < 90 th percentile	2.025 (1.267, 3.238) P<0.0032	1.353 (0.413, 4.433) P<0.6180
≥90 th percentile	1.041 (0.368, 2.949) P<0.9390	0.874 (0.087, 8.769) P<0.9092

^{*}Adjusted for age, gender, race-ethnicity, poverty index, BMI category, skinfolds; CI = confidence interval

Results

Parameter estimates for waist circumference (categorical variable) and fasting glucose value*

Variables	ß Coefficient	Standard Error	P-Value	95% CI
Intercept	96.837	0.867	<0.0001	94.989, 98.685
WC ≥75 th and < 90 th percentile	0.255	1.686	0.8819	-3.338, 3.848
WC ≥90 th percentile	1.531	3.090	0.6274	-5.055, 8.117
Non-Hispanic Black	-3.964	1.022	0.0015	-6.143, -1.786
Age	-1.850	0.533	0.0034	-2.987, -0.713

^{*}Waist circumference dummy variables, sex, age, race/ethnicity, poverty, BMI category, and skinfolds in model; CI = confidence interval

Results

Parameter estimates for waist circumference (continuous variable) and fasting glucose value*

Variables	ß Coefficient	Standard Error	P- Value	95% CI
Intercept	94.265	4.308	<.0001	85.083, 103.448
Waist circumference	0.039	0.073	0.6001	-0.116, 0.194
Gender	-3.906	0.783	0.0002	-5.575, -2.237
Non-Hisp. Black	-3.925	0.923	0.0007	-5.893, -1.956
Mexican American	1.182	0.613	0.0730	-0.125, 2.489
Age	-2.007	0.699	0.0116	-3.495, -0.519

^{*}Waist circumference as continuous variable, gender, race/ethnicity, age, poverty, BMI category, and skinfolds in model; CI = confidence interval

Results Summary

- Logistic regression analysis: no data on the association between WC and IFG were statistically significant
- Multiple linear regression analysis: only race, age and gender were independently associated with fasting plasma glucose levels

Discussion

- WC may not be predictor of IFG
- Consistent findings
 - Black youth
 - Boys

Limitations

- Internal WC percentile cut-offs
- Racial/ethnic WC differential
- Cross-sectional data
- Genetics

Conclusion

- Type 2 diabetes a public health concern
- Prevention essential
 - IFG identification and monitoring
 - Simple methods
 - Cost effective
- Goal: improve adolescent population health outcomes

Acknowledgements

- ■Thesis Committee:
 - Jane Rees, PhD, MS, RD
 - Jonathan Gorstein, PhD
- Statistical Guru and Savior:
 - Nathaniel D. Mercaldo

Supported in part by Project #T76 MC 00011 from the Maternal and Child Health Bureau (Title V, Social Security Act), Health Resources and Services Administration, US Department of Health and Human Services

Thank You!

Questions?