Robotic, Laparoscopic, or Open Hysterectomy - Surgical Outcomes by Approach in Endometrial Cancer

Tiffany Beck, MD
Thesis Presentation
June 9, 2015
Background

• Endometrial Cancer is the most common GYN malignancy

• Minimally invasive surgery (laparoscopy) compared to traditional laparotomy
 o Equivalent evaluation & treatment of cancer
 o Fewer complications
 o Lower cost
 o Faster recovery

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Background

• Robotic Assisted (RA) Surgery in Gynecology
 - Increasingly available across the US
 - Conflicting evidence regarding benefits

• Studies of RA surgery in Gynecologic Cancer are limited
 • Appropriate comparison group

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Among women with endometrial cancer managed surgically from 2008-2011

- **Aim 1:** Describe trends of surgical approach over time
- **Aim 2:** Determine if length of stay differs by surgical approach
- **Aim 3:** Determine if hospital readmissions differ by surgical approach

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Methods

• Population-based retrospective cohort study

• Study Population
 o Female patients ≥18 years old
 o Endometrial cancer treated surgically
 o Washington State from 2008-2011

• Data Source
 o Comprehensive Hospital Abstract Reporting System (CHARS)
 o Patients identified through ICD9 codes for diagnosis and procedure
 • RA surgery ICD9 code 2008

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Methods

• **Exposure of Surgical Approach**
 - Laparotomy (Standard of Care, referent group)
 - Laparoscopy
 - RA surgery

• **Primary Outcomes**
 - Surgical trends over time
 - Length of Stay (LOS)
 - Readmission Rate (30, 60, 90 days)
 - Linked records for up to 4 total admission

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Analysis

- Descriptive Statistics by Surgical Group
 - Baseline demographics
 - Preoperative comorbidities

- Multivariable Analysis
 - Trends for surgical approach over time - linear regression

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Analysis

• Multivariable Analysis
 o Differences in hospital LOS - linear regression to estimate change in mean number of days with 95% confidence intervals (CI)
 o Difference in frequency of readmissions - logistic regression to estimate odds ratios (95% CI)

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Analysis

• Important Covariates
 o Charlson Comorbidity Index
 o Surgical complexity – Lymph Node Dissection (LND)

• Additionally evaluated covariates
 • Age
 • Obesity
 • Diabetes
 • Year of surgery
 • Tobacco

• All analysis adjusted for year of surgery, CCI, and LND

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Results

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Results

<table>
<thead>
<tr>
<th></th>
<th>Robotic n=1,003 (%)</th>
<th>Laparoscopic n=284 (%)</th>
<th>Laparotomy n=971 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><45</td>
<td>61 (6.1)</td>
<td>17 (6.0)</td>
<td>49 (5.1)</td>
</tr>
<tr>
<td>45-55</td>
<td>202 (20.1)</td>
<td>71 (25.0)</td>
<td>217 (22.4)</td>
</tr>
<tr>
<td>56-65</td>
<td>365 (36.4)</td>
<td>96 (33.8)</td>
<td>351 (36.2)</td>
</tr>
<tr>
<td>>65</td>
<td>375 (37.4)</td>
<td>100 (35.2)</td>
<td>354 (36.5)</td>
</tr>
<tr>
<td>Obese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>322 (32.1)</td>
<td>100 (35.2)</td>
<td>280 (28.8)</td>
</tr>
<tr>
<td>BMI 25-29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 (1.9)</td>
<td>2 (4.8)</td>
<td>2 (1.2)</td>
</tr>
<tr>
<td>BMI 30-34.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19 (8.8)</td>
<td>4 (9.5)</td>
<td>7 (4.3)</td>
</tr>
<tr>
<td>BMI 35 – 39.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37 (17.1)</td>
<td>8 (19.0)</td>
<td>15 (9.2)</td>
</tr>
<tr>
<td>BMI ≥40‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>156 (72.2)</td>
<td>28 (66.7)</td>
<td>139 (85.3)</td>
</tr>
<tr>
<td>CCI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>917 (91.4)</td>
<td>263 (92.6)</td>
<td>851 (87.6)</td>
</tr>
<tr>
<td>≥2</td>
<td>86 (8.6)</td>
<td>21 (7.4)</td>
<td>120 (12.4)</td>
</tr>
</tbody>
</table>

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011.
Surgical Trends

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Length of Stay

- **Mean LOS**
 - 2.7 days shorter for RA surgery compared to laparotomy (95% CI: 2.5-2.9 days)
 - 2.5 days shorter for LS compared to laparotomy (95% CI: 2.2-2.8 days)
Readmissions

<table>
<thead>
<tr>
<th>Timing</th>
<th>RA Surgery (N=1003)</th>
<th>LS (N=284)</th>
<th>Laparotomy (N=971)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>OR (95% CI)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Any</td>
<td>81 (8.1)</td>
<td>0.5 (0.3, 0.6)</td>
<td>28 (9.9)</td>
</tr>
<tr>
<td>Timing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-30</td>
<td>45 (4.5)</td>
<td>0.4 (0.3, 0.6)</td>
<td>17 (6.0)</td>
</tr>
<tr>
<td>31-60</td>
<td>17 (1.7)</td>
<td>0.4 (0.2, 0.8)</td>
<td>5 (1.8)</td>
</tr>
<tr>
<td>61-90</td>
<td>19 (1.9)</td>
<td>1.0 (0.5, 2.1)</td>
<td>6 (2.1)</td>
</tr>
</tbody>
</table>

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Limitations

• CHARS is based on billing codes
 o Limited or no ascertainment of some covariates
 • Obesity
 • Race
 • Reproductive history
 • Cancer histology or stage
 o Change in the codes over study period
 • Specificity & use of obesity codes
 o Introduction vs regular use of the robotic code procedure code

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Discussion

• Increase utilization of RA surgery in Washington State since introduction of the technology

• Both RA surgery and LS resulted in shorter LOS compared to Laparotomy

• Only RA surgery group had a lower risk of readmissions compared to Laparotomy

• Differences in readmissions were primarily in the 0-30 day range
 o Waning effect of surgical approach after this time frame

This study was supported by the Maternal and Child Health Bureau, grant #T76MC00011
Acknowledgments

• Melissa Schiff, MD, MPH (Chair)

• Renata Urban, MD

• MCH cohort support and feedback

• Special thanks to Mr. Bill O’Brien for data management and database construction

• This study was supported by the US Department of Health and Human Services, Health Resources and Services Administration’s Maternal and Child Health Bureau (Title V, Social Security Act), grant #T76MC00011.
Questions?