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Abstract

In this paper, we develop a self-consistent approach using effective medium approximation to calculate the macroscopic magne-

toelectric (ME) coefficients of polycrystalline multiferroic composites, emphasizing the effects of shape, volume fraction, and orien-

tation distribution of particles of both phases. This approach is especially suitable for composites with volume fractions of each

phase close to 50%, in which there may not be a matrix phase present and thus mean field Mori–Tanaka model is not applicable.

It is observed from the numerical calculations that the aligned particles result in highest ME coefficients and coupling factors, while

randomly oriented particles lead to essentially zero ME coupling, even though the ME coefficient is an even rank tensorial property.

In addition, it is observed that lamellar particles are optimal for ME coefficient a11, while fibrous particles are optimal for a33. We

also postulate that the large discrepancy between theoretical calculations and experimental measurements for ME coefficients of

multiferroic composites previously reported is partly due to the orientation distribution of particles that has rarely been considered.

When our calculations took the orientation distribution of particles of both phases into account, good agreement with experimental

data is observed.

� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The magnetoelectric (ME) effect was first predicted

by Landau and Lifshitz in 1957 [1,2], and was later

confirmed in an antiferromagnetic single crystal Cr2O3

[3–5]. Subsequently, observations of ME effect in more

crystals have been reported, including BiFeO3 [6] and

YMnO3 [7]. Use of these so-called multiferroic materi-

als, which possess two or more types of orders simulta-
neously, is envisioned in a wide range of applications,

including electrically controlled microwave phase shift-

ers or ferromagnetic resonance devices, magnetically

controlled electro-optic or piezoelectric devices, broad-
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band magnetic field sensors, and ME memory devices.
For the materials to be technologically viable, however,

large ME coupling must be demonstrated, and thus

there is great effort devoted to developing multiferroic

composites that possess higher ME coupling than single

phase materials.

Since the first multiferroic composite consisting of a

piezoelectric phase BaTiO3 and a ferromagnetic phase

CoFe2O4 was reported in the 1970s [8,9], a variety of
multiferroic composites have been fabricated, with pie-

zoelectric phases including BaTiO3, PZT, and PVDF,

and ferromagnetic phases including CoFe2O4 and

TbDyFe [10–18]. Recently, a self-assembled multiferroic

nanocomposite has also been reported [19], with hexago-

nal arrays of CoFe2O4 nanopillars embedded in a

BaTiO3 matrix. Despite this progress, the experimentally
ll rights reserved.
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observedME coefficients in most of those composites are

usually much smaller than the theoretical predictions.

This suggests that there is a great deal of room for

improvement in materials processing, but it also calls

for more reliable theoretical models that approximate

the composite microstructures better. We intend to ad-
dress modeling issues related to multiferroic composites

in this paper.

A variety of models have been proposed in the last 10

years to predict the effective magnetoelectroelastic mod-

uli of multiferroic composites. For example, Nan [20]

used the Green�s function method combined with per-

turbation theory to study a fibrous composites consist-

ing of CoFe2O4 and BaTiO3. For such fibrous
composites, exact connections among the effective mag-

netoelectroelastic moduli were derived by Benveniste

[21]. Multilayered laminate was studied by Avellaneda

and Harshe [22], and Mori–Tanaka model has been gen-

eralized to multiferroic composites by Li and Dunn [23],

among others. Very recently, the authors generalized

this Mori–Tanaka model to study the effects of orienta-

tion distribution of second phase particles in a matrix
based multiferroic composites, which shows good agree-

ment between theoretical predications and experimental

measurements [24]. This demonstrates the importance of

orientation distribution of particles, which has not been

accounted for in previous modeling efforts. Yet such ori-

entation distribution is inevitable in composites because

it is usually very difficult to align all the particles during

composite processing.
Our recent study also reveals another weakness of

previous models. Virtually all the theoretical models

suggest that the ME coefficient reaches its maximum

when the volume fraction of each phase is approxi-

mately 50%, where the interaction between the ferroelec-

tric phase and ferromagnetic phase is maximized. On the

other hand, all the models assume that the composite is

matrix based, while at around 50% volume fraction, it is
often difficult to decide which phase is matrix and which

is the second phase. In other words, the composites of-

ten demonstrate a granular polycrystalline type of

microstructure and simply do not possess a distinct ma-

trix phase. We intend to address this deficiency in this

paper and study the effect of polycrystalline microstruc-

ture on the ME coefficients of multiferroic composites.

In particular, we will generalize a self-consistent model
to polycrystalline multiferroic composites to study the

effects of shape, orientation distribution, and volume

fraction of both phases, with the objective of identifying

the optimal shapes and textures for the ME coupling.

The paper is organized as following. The basic equa-

tions and notations regarding the magnetoelectroelastic-

ity are given in Section 2, and a micromechanical model

for the polycrystalline multiferroic composites will be
derived in Section 3. Numerical results and discussions

will then be presented in Section 4.
2. Governing equations of magnetoelectroelasticity

We consider the linear magnetoelectroelastic effect,

where the static magnetic, electric, and elastic fields

are coupled through the following constitutive

equations:

rij ¼ Cijklekl þ eijlð�ElÞ þ qijlð�HlÞ;
Di ¼ eiklekl � jilð�ElÞ � ailð�HlÞ;
Bi ¼ qiklekl � ailð�ElÞ � lilð�HlÞ.

ð1Þ

Here, rij and eij are the elastic stress and strain; Di and Ei

are the electric displacement and field; Bi and Hi are the

magnetic intensity and field. Cijkl, jil, and lil are the elas-
tic stiffness, the dielectric, and magnetic permeability

tensors. These tensors directly connect like fields, e.g.,

stresses to strains. Elastic field is coupled to the electric

and magnetic fields through the piezoelectric coefficient

eijl and piezomagnetic coefficient qijl, respectively, while

electric and magnetic fields are coupled through the
ME coefficient ail. In addition, we can define the ME

coupling factors k11 and k33,

k211 ¼
a211

j11l11

; k233 ¼
a233

j33l33

. ð2Þ

In the constitutive equations, we use �Ei and �Hi rather

than Ei and Hi, as they will enable the construction of a

symmetric matrix of constitutive moduli.

The constitutive equations are complemented by gra-

dient equations and equilibrium equations, where the

strain, electric, and magnetic fields are derived from vec-

tor or scalar potential,

eij ¼ 1
2
ðui;j þ uj;iÞ;

Ei ¼ �/;i;

Hi ¼ �w;i;

ð3Þ

and the stress, electric displacement, and magnetic inten-
sity are divergence free in the absence of body force and

free charge,

rij;i ¼ 0;

Di;i ¼ 0;

Bi;i ¼ 0.

ð4Þ

In those equations, ui is elastic displacement, / and w
are electric and magnetic potential, respectively, and

subscript comma is used to denote partial differentiation

with respect to xi.

For conciseness, we generalize a notation introduced
by Barnett and Lothe [25] for piezoelectricity, where

both upper and lower case subscripts are used. Upper

case subscript ranges from 1 to 5 and lower case sub-

script ranges from 1 to 3. Repeated subscripts are

summed. As a result, the constitutive, gradient, and

equilibrium equations can be rewritten as
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RiJ ¼ LiJKlZKl;

ZKl ¼ UK;l;

RiJ ;i ¼ 0;

ð5Þ

with the field variables given by

RiJ ¼
rij;

Di;

Bi;

8><
>: ZJi ¼

eij;

�Ei;

�Hi;

8><
>: UJ ¼

uj; J ¼ 1; 2; 3;

/; J ¼ 4;

w; J ¼ 5

8><
>:

and constitutive moduli given by

LiJKl ¼

Cijkl; J ;K ¼ 1; 2; 3;

eijl; K ¼ 4; J ¼ 1; 2; 3;

qijl; K ¼ 5; J ¼ 1; 2; 3;

eikl; J ¼ 4; K ¼ 1; 2; 3;

�jil; J ¼ 4; K ¼ 4;

�ail; J ¼ 4; K ¼ 5;

qikl; J ¼ 5; K ¼ 1; 2; 3;

�ail; J ¼ 5; K ¼ 4;

�lil; J ¼ 5; K ¼ 5.

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð6Þ
T�1 ¼
cosw cos h cos/� sinw sin/ sinw cos h cos/þ cosw sin/ � sin h cos/

� cosw cos h sin/� sinw cos/ � sin/ cos h sin/þ cosw cos/ sin h sin/

cosw sin h sinw sin h cos h

2
64

3
75.
When the standard matrix notation for tensors is

adopted [26], the constitutive equation can be written

as

R ¼ LZ; ð7Þ

with

R ¼
r

D

B

2
64

3
75; Z ¼

e

�E

�H

2
64

3
75; L ¼

C e q

et �j �a

qt �at �l

2
64

3
75;

ð8Þ

where superscript t is used to denote the matrix

transpose.
3. Polycrystalline multiferroic composites

3.1. Orientation distribution function and orientational

averaging

We now consider a multiferroic composite consist-
ing of several phases, where the particles of each

phase have identical shape, but may have certain ori-

entation distributions. As such, two different kinds of

coordinate systems have to be established, one is
global fixed on the composite, and the other is local

fixed on particles of different orientations. The orien-

tations of different particles can then be described by

three Euler angles (h,w,/) [27]. Due to the anisotropy

of material properties, particles of different orienta-

tions will have different constitutive moduli in the glo-
bal coordinate system, and as a result, the constitutive

equation for a particle of phase r at orientation

(h,w,/) is given by

Rrðh;w;/Þ ¼ Lrðh;w;/ÞZrðh;w;/Þ ð9Þ

in the global coordinate system, where Lr(h,w,/) can be

obtained from their principal values in local coordinate
using transformation rules for second, third, and fourth

rank tensors,

aijðh;w;/Þ ¼ T ikT jlakl;

eijkðh;w;/Þ ¼ T ilT jmT knelmn;

Cijklðh;w;/Þ ¼ T imT jnT koT lpCmnop;

ð10Þ

with
We are interested in determining the macroscopic prop-

erties of the multiferroic composites in terms of their

microstructures, which requires the evaluation of an

averaging field in the composite. Due to the polycrystal-

line microstructure we are considering, the averaging

has to be carried out in two steps. First, for each phase

r, we have to carry out orientational averaging, which

averages a physical quantity over particles of phase r

at all orientations. We then average the orientationally

averaged quantity over all phases. For example, in order

to average a physical variable H in the composite, we

first average Hr(h,w,/) over all orientations,

hHrðh;w;/Þi ¼
Z 2p

0

Z 2p

0

Z p

0

Hrðh;w;/ÞW rðh;w;/Þ

� sin h dh dw d/; ð11Þ

where Æ Æ æ is used to denote orientational averaging, and

Wr(h,w,/) is the orientation distribution function

(ODF) for phase r, which gives the probability of locat-

ing a particle of phase r at orientation (h,w,/). After the

orientational averaging for each phase is carried out, the

volume averaging over all phases will be performed,

resulting in

�H ¼
XN
r¼1

frhHrðh;w;/Þi; ð12Þ
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where overhead bar is used to denote the averaging

quantity in the composite, fr is the volume fraction of

phase r, and N is the number of phase in the composite.

In this work, we adopt a Gaussian distribution func-

tion for ODF,

W rðh;w;/Þ ¼
1

lr

ffiffiffiffiffiffi
2p

p e
� h2

2l2r ; ð13Þ

which can be used to approximate a wide range of tex-

tures by varying lr. For example, the random orienta-

tion distribution of particles, where Wr(h,w,/) = 1,
can be obtained by letting lr ! 1, while the aligned dis-

tribution of particles, where Wr(h,w,/) = d(h), can be

obtained by letting lr ! 0. Thus lr can be adjusted for

different ODFs and will be called the texture coefficient

here. In addition, the orientational averaging is difficult

to evaluate analytically in general, and we adopt Gauss-

ian quadrature method for numerical integration, in

which the integration is approximated by the sum of
the value of its integrand at a set of points called abscissa,

multiplied by weighting coefficient wijk,

hHrðh;w;/Þi

¼
XI

i¼1

XJ

j¼1

XK
k¼1

sin hiHrðhi;wj;/kÞW rðhi;wj;/kÞwijk.

ð14Þ
Similar techniques have been applied to study the effec-

tive pyroelectric coefficients of ferroelectric ceramics and
electrostrictive coefficients of polymeric composites

[28,29].

3.2. The effective magnetoelectroelastic moduli and self-

consistent approach

With such an averaging technique in mind, we pro-

pose that the behavior of the multiferroic composites
with macroscopic homogeneity is governed by the effec-

tive constitutive equation

�R ¼ L� �Z; ð15Þ
where L* is the effective magnetoelectroelastic moduli of
the composite. Due to the linearity, we have

Zrðh;w;/Þ ¼ Arðh;w;/Þ�Z; ð16Þ
where Ar(h,w,/) is the concentration factor of particle
of phase r at orientation (h,w,/), satisfying

�A ¼ I; ð17Þ
where I is a 12 · 12 unit matrix. As a result, we have

L� ¼
XN
r¼1

frhLrðh;w;/ÞArðh;w;/Þi; ð18Þ

from which the effective moduli can be determined for a

N-phase composite, if the concentration factor is

known. For a two-phase composite, it is simplified as
L� ¼ f1hL1ðh;w;/ÞA1ðh;w;/Þiþf2hL2ðh;w;/ÞA2ðh;w;/Þi.
ð19Þ

In order to determine the effective magnetoelectroelastic

moduli of multiferroic composite, approximation must

be made regarding the distribution of magnetoelectro-

elastic field in the composite. We turn to a microme-

chanical model for this purpose. For elastic or

piezoelectric polycrystalline materials, the self-consistent

approach is very successful in predicting the effective

elastic, piezoelectric, and dielectric moduli of polycrys-
tals [30,31]. However, such a model has only been devel-

oped for single phase polycrystalline materials. We

intend to address this by extending the effective medium

approximation in the self-consistent approach to multi-

phase polycrystalline multiferroic composites. In partic-

ular, we assume that the average field in a particle of

phase r at orientation (h,w,/) is equivalent to a single

particle embedded in an effective medium with yet un-
known magnetoelectroelastic moduli L*, subjected to

yet unknown average field Z0. Such an inclusion prob-

lem in magnetoelectroelastic media has been solved by

Li and Dunn [32], with

Zrðh;w;/Þ ¼ Adilðh;w;/ÞZ0; ð20Þ
where the dilute concentration factor is given by

Adil
r ðh;w;/Þ ¼ fIþ Srðh;w;/ÞL��1½Lrðh;w;/Þ � L��g�1

;

ð21Þ
where Sr is the magnetoelectroelastic Eshelby tensor for

phase r [32,33], which is a function of the yet unknown

magnetoelectroelastic moduli of the effective media, and

the shape and orientation of phase r, and superscript �1

is used to denote the matrix inverse. It is well known

that when the particle shape is ellipsoidal, the field within

the single particle is uniform, which can be evaluated

using Eshelby tensor. For fibrous or penny shape parti-
cles, the closed form expressions for magnetoelectroelas-

tic Eshelby tensor were derived by Li and Dunn [32].

For more general shapes, a numerical algorithm for

the evaluation of Eshelby tensor was given by Li [34].

Since the average field is �Z, the unknown field Z0 can

be determined as

Z0 ¼
XN
i¼1

fihAdil
i ðh;w;/Þi

" #�1

�Z; ð22Þ

resulting in the following concentration factor for parti-

cle of phase r at orientation (h,w,/),

Arðh;w;/Þ ¼ Adil
r ðh;w;/Þ

XN
i¼1

fihAdil
i ðh;w;/Þi

" #�1

. ð23Þ

Combining Eqs. (23) and (19), we then have an equation

for the effective moduli of the composite. However, it is

noted that the Eshelby tensor Sr that is required for the

evaluation of Ar depends on the yet unknown effective
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moduli L*, and thus in general Eq. (19) has to be solved

numerically by iteration. We also emphasize that this

effective medium approximation does not assume the

existence of a matrix, and thus is ideal for multi-phase

polycrystalline composites.

It is also worthwhile to comment on Eq. (20), where
an unknown field Z0 rather than the average field �Z is

used. This corresponds to the normalization given in

Eq. (22), which is necessary to ensure that the field aver-

aging over particles at all orientations equals the average

field �Z in the composite.
4. Numerical results and discussions

We have implemented the self-consistent model in a

FORTRAN code, which has been validated by com-

paring with previously published results under several

special conditions. The code was applied to calculate

the effective magnetoelectroelastic moduli of a multif-

erroic composite consisting of piezoelectric PZT-5H

and piezomagnetic CoFe2O4 with different volume
fractions, texture coefficients, and shapes of both

phases. In particular, we assume the particles to be

spheroidal, with a ¼ A1

A3
¼ A2

A3
, where Ai are the dimen-
Table 1

Constitutive moduli of PZT-5H and CoFe2O4 [35,36]

C11 (GPa) C12 (GPa)

PZT-5H 126 55

CoFe2O4 286 173

e15 (C/m
2) e31 (C/m

2)

PZT-5H 17.0 �6.5

CoFe2O4 0 0

q15 (m/A) q31 (m/A)

PZT-5H 0 0

CoFe2O4 550 580.3
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Fig. 1. The effective magnetoelectric coefficients as a function of volume fract

and (b) a33.
sions of the spheroids. The constitutive moduli of

both phases are listed in Table 1, which were obtained

from Huang and Kuo [35,36], with the exception that

the magnetic permeability l11 of CoFe2O4 is taken to

be the same as l33.
We first consider that particles of both phases are

spherical with three different texture coefficients:

l = 0.01 where particles are approximately aligned,

l = 10 where particles are nearly randomly oriented,

and l = 1 where particles are neither aligned nor ran-

domly oriented. The ME coefficients a11 and a33 as a

function of volume fraction of PZT-5H are shown in

Fig. 1, and the ME coupling factors k11 and k33 are

shown in Fig. 2. It is observed that the highest ME coef-
ficients and coupling factors occur around volume frac-

tion of 50%, as we mentioned earlier. At this volume

fraction, Mori–Tanaka mean field approach might not

be applicable, since there may not be a matrix phase.

In such a case, the self-consistent effective medium ap-

proach is ideal. In addition, for aligned particles, a11 is

negative while a33 is positive, with the magnitude of

a11 much larger. This is because the piezoelectric coeffi-
cients e31 and e33 of PZT-5H have opposite signs and the

piezomagnetic coefficients q31 and q33 of CoFe2O4 have

the same sign, and thus lead to offset in interaction when
C13 (GPa) C33 (GPa) C44 (GPa)

53 117 35.3

170 269.5 45.3

e33 (C/m
2) j11 (C

2/N m2) j33 (C
2/N m2)

23.3 15.1 · 10�9 13.0 · 10�9

0 0.08 · 10�9 0.093 · 10�9

q33 (m/A) l11 (N s2/C2) l33 (N s2/C2)

0 5 · 10�6 5 · 10�6

699.7 157 · 10�6 157 · 10�6
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ion of spherical PZT-5H particles at different texture coefficients: (a) a11
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Fig. 3. The effective magnetoelectric coefficients as a function of texture coefficient of spherical particles at different volume fractions: (a) a11 and

(b) a33.
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Fig. 2. The effective magnetoelectric coupling factors as a function of volume fraction of spherical PZT-5H particles at different texture coefficients:

(a) k11 and (b) k33.
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electric field E3 or magnetic field H3 is applied to com-
posite. When particles are not aligned, a11 and a33 are

more or less averaged, resulting in negative a33 as shown

in Fig. 1(b).

We also notice that the aligned particles produce

highest ME coefficients and coupling factors, while com-

posites with randomly oriented particles show virtually

no ME coupling. To demonstrate this, we calculated

the ME coefficients as a function of texture coefficient
l at three different volume fraction close to 50%, shown

in Fig. 3. Clearly, both a11 and a33 are highest when the

particles are aligned, and are essentially zero when they

are randomly oriented. We point out that although a is

an even rank tensor, it is still zero when the composite is

central symmetric, since it is induced by the interactions

between piezoelectric and piezomagnetic effects; both

are odd rank tensorial properties and thus require the
lack of central symmetry. We also notice that there is

a well for a33 near l = 1, which is consistent with the

peak in e33 and well in e31 in single phase piezoelectric

ceramics [31].

From these calculations, it is clear that the orienta-

tion distributions of particles play a very important role
in the ME coefficients of the composite. This may ex-
plain the large discrepancy between experimental mea-

surement and previous theoretical calculations for
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Fig. 5. The effective magnetoelectric coefficients as a function of volume fraction of aligned PZT-5H particles at different shapes: (a) a11 and (b) a33.
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Fig. 6. The effective magnetoelectric coupling factors as a function of volume fraction of aligned PZT-5H particles having different aspect ratios:

(a) k11 and (b) k33.

S. Srinivas, J.Y. Li / Acta Materialia 53 (2005) 4135–4142 4141
particulate composites, where particles were assumed to

be aligned in the calculations, which is not very realistic.

To demonstrate this, we calculated the ME voltage coef-

ficient [10] aE33 ¼ �a33
j33

as a function of volume fraction of
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CoFe2O4 for a particulate composite consisting of

CoFe2O4 and BaTiO3; the texture coefficient l is set to

be 1.3. Good agreement with experimental data has

been observed as shown in Fig. 4.
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of aligned PZT-5H particles at different volume fractions: (a) a11 and
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We then focus on composites with aligned particles

since they produce the highest ME coefficients and

coupling factors. The ME coefficients and coupling

factors as a function of volume fraction of PZT-5H

are shown in Figs. 5 and 6 for composites with

aligned particles of three different aspect ratios,
a = 0.001 that is lamellar, a = 1 that is spherical, and

a = 100 that is fibrous. Again, both ME coefficients

and coupling factors are highest around a volume

fraction of 50%. In addition, lamellar particles lead

to highest a11 since they maximize the interactions

along the x1 and x2 directions, while fibrous particles

lead to highest a33 since they maximize interactions

along the x3 directions. To demonstrate the effect of
particle shapes, we calculate the ME coefficients as

function of particle aspect ratio a for composites with

aligned particles, shown in Fig. 7, and it is observed

that a11 decreases with the increment of aspect ratio

of particles, while a33 increases with it.

In summary, we developed a self-consistent approach

for multiferroic composites that is particularly suitable

for polycrystalline type of microstructure where there
is no matrix phase existing. The effects of shape, orienta-

tion distribution, and volume fraction of both phases

are considered, and good agreement with experimental

data is observed.
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