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Effective Medium Theory of Magnetization Reversal
in Magnetically Interacting Particles

Heliang Qu and JiangYu Li

Abstract—We report an effective medium theory of magnetiza-
tion reversal and hysteresis in magnetically interacting particles,
where the intergranular magnetostatic interaction is accounted
for by an effective medium approximation. We introduce two
dimensionless parameters, A and hg, that completely charac-
terize the hysteresis in a ferromagnetic polycrystal when the
grain size is much larger than the exchange length so that the
exchange coupling can be ignored. The competition between the
anisotropy energy and the intergranular magnetostatic energy
is measured by A\, while the competition between the anisotropy
energy and Zeeman’s energy is measured by ho. The hysteresis
loop, magnetostatic energy density, and anisotropy energy density
calculated by using this theory agrees well with micromagnetic
simulations. The calculations also reveal that the subnucleation
field switching due to the magnetic field fluctuation is important
when the magnet is not very hard, and that has been accounted
for by a probability-based switching model.

Index Terms—Effective medium approximation, hysteresis, in-
tergranular magnetostatic interaction, magnetization reversal.

1. INTRODUCTION

TONER and Wohlfarth’s celebrated model [1] has been
S widely used for more than 50 years to analyze the mag-
netization reversal in polycrystalline permanent magnets. The
underlying assumption of the Stoner—Wohlfarth model is that
each grain in the polycrystal reverses its magnetization through
rotation without interacting with each other, and as a result, the
remanent magnetization is simply given by the volume average
of magnetization over the polycrystal

M, = My({cos9) (H

where M is saturation magnetization and 6 is the angle between
the remanent magnetization of the polycrystal and the easy axis
of the grain. While the model provides an accurate estimate of
the remanence of most permanent magnets, it also highlights the
importance of intergranular magnetic interactions in the design
and optimization of new magnetic materials. Permanent mag-
nets with large remanence and coercivity are desirable for en-
ergy storage due to their high energy product [2], and in order to
enhance the energy product of polycrystalline magnets, the in-
tergranular magnetic interactions must be strengthened, so that
higher remanence than Stoner—Wohlfarth’s prediction can be
accomplished.
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One of the breakthroughs was made about ten years ago
when an exchange coupling mechanism was proposed to en-
hance the energy product of permanent magnets [3]. The idea
is to mix the magnetic hard and soft phases at nanoscale so
that they can be coupled through the intergranular exchange
interaction, leading to dramatically enhanced remanence and
energy product. This again highlights the importance of inter-
granular magnetic interactions, and calls for new models that
can take those interactions into account. While micromagnetic
simulations are able to explain the remanence enhancement in
exchange-spring magnets [4], they are often computationally
extensive and time-consuming. There are also earlier efforts to
modify the Stoner—Wohlfarth model by Atherton and Beattie
using a mean field correction [5], where a magnetic field pro-
portional to the average magnetization is introduced on top of
the applied field to account for the magnetic interactions among
grains, although they have not sought to determine the propor-
tional parameter introduced for the correction in the modified
model. We hope to address these issues here by developing an
effective medium theory to analyze the magnetization reversal
in magnetically interacting particles. Our preliminary results
on remanence enhancement in polycrystalline magnets have
been reported in [6], and in this paper magnetization reversal
and hysteresis loops will be analyzed. We will focus on the
magnetization reversal through coherent rotation only, and thus
will not consider motions and pinnings of domain walls [7].

II. ENERGETICS AND EFFECTIVE MEDIUM THEORY

We consider an assemblage of single-phase single-domain
magnetic particles, with particle size smaller than the single
domain limit so that no domain wall movement is involved,
yet large enough compared to the exchange length so that the
short-range exchange coupling can be ignored. As a result, the
potential energy of the assemblage is given by

1
F= / <K1 sin?alf] —J - Hy — 57 H,,) dx (2
Q

where the first term is the uniaxial anisotropy energy at the
lowest order, with « being the angle between the local magnetic
polarization J and the easy axis of the particles; the second term
is Zeeman’s energy, where H is the applied magnetic field; and
the third term is the magnetostatic energy, where Hj is the de-
magnetizing field induced by the distribution of J in €2, the re-
gion occupied by the assemblage. Here, [f] is a function of 6
which we seek to characterize at different Hy, while 6 is used
to label different grains at different orientations. The configura-
tion in a typical grain at orientation f is schematically shown in
Fig. 1.
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Fig. 1. The configuration for a grain at orientation 6.

We consider the long-range magnetostatic energy first. In mi-
cromagnetic simulation, calculating the magnetostatic energy
often takes most of the CPU time due to its nonlocality. We in-
tend to address this problem using an effective medium approx-
imation which is believed to be accurate and computationally
efficient. To this end, we decompose the magnetic polarization
and magnetostatic field into two parts, and rewrite the magneto-
static energy as

Fy—— ;/(J+J’) (H, + HY) dx 3)

Q
where the overhead bar is used to represent the volume averaged
quantities, and the primed ones are variations from the averages.

Clearly, the cross products vanish because the volume integra-
tions of primed field variables are zero. Notice that we have

\J| = Jn = fJs 4)

where Jj, is the magnitude of the macroscopic magnetic po-
larization along the applied field direction, .J is the saturation
magnetic polarization, and f is a dimensionless parameter intro-
duced to represent the macroscopic magnetization in the poly-
crystal. In addition

_ 1 -
H; =——NguJ 5)
Ho

is the magnetic field induced by a uniform magnetic polarization
J in Q, where N, is the demagnetizing factor depending on the
shape of (2. For in-plane magnetization in an ellipsoidal €2 with
dimensions a1, as > as, H, is small.

The magnetic field induced by the magnetostatic interaction
among particles,H’,, can be determined by solving Maxwell’s
equation

V- (noHy +3) =0 (6)

IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 3, MARCH 2005

for given distribution of J’ using Green’s function method [8]
! 1 ! / / / /
g(x) = —M—V/V g(x,x") - J'(x")dx (7
0
Q

where g(x, x’) is the magnetic Green’s function, and V' denotes
the gradient with respect to x’. To carry out the analysis further,
we recall that the grain size of the polycrystal is smaller than the
single domain limit, and thus the magnetic polarization in indi-
vidual grain is uniform. In addition, we assume that grains with
identical orientation will have identical magnetic polarization,
an effective medium approximation, so that

J(x) = xk(x)J; ®)
k=1
where n is the number of different orientations and
1, xe,
Xi(x) = {0, otherwise ©

is the characteristic function of a region {2; containing all grains
having orientation , in which magnetic polarization J/, is uni-
form. Multiplying (7) by x;(z) leads to

where x;r(X,%x') = xi(X)xr(x) is the two-point correlation
function of grain distribution in the polycrystal, which gives the
probability of locating grain orientation ¢ at x and grain orien-
tation k at x’ simultaneously. When the two-point correlation
function is ellipsoidal [9], we have

XiH = ——vak

0)N,J} = —u— ch&kN J

k=1
1
= — — N, (11)
Ho
with
N, = / V (V'g(x,x")) dx’ (12)

lyl<1

where y; = (z; — x})/a; while a; is the dimension of principal
axis of the ellipsoid, and ¢; = (;(x)) is the volume fraction of
grain 4 or the probability of locating grain 4 at x. In fact, N is
a second rank tensor that can be regarded as the demagnetizing
factor of grains depending on their shape. Integrating (11) over
the polycrystal €2, we obtain

H’:——NJ’ ——N J-7J
¢ Mo 2] ( )

13)

which is the intergranular magnetostatic field we try to charac-
terize. For spherical distribution, N, = (1/3)I, which leads to

Fi= 2 (J2 -

" Ji + 3N J7)

(14)
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where V' is the volume of €2, and N, is the in-plane demagne-
tizing factor. Even though Nq is small for thin-plate magnets,
it cannot be ignored for nonhard magnetic materials. The treat-
ment for more general grain shape is straightforward. Notice
that the first term of the magnetostatic energy is a constant and
thus is irrelevant in the following energy minimization and will
be ignored. It is emphasized that we have derived the interac-
tion field analytically using the effective medium approxima-
tion, while in Atherton and Bettie [5] this interaction field is
introduced phenomenologically.

The total anisotropy energy of the system can be determined
as

F, = VK, (sin* a[f]) (15)
and Zeeman’s energy can be evaluated as
F.=-VHy-J=-VHyJ,f. (16)

By combining all these energy contributions we obtain the fol-
lowing energy density of the assemblage:

J2

F = K (sin® a[f]) — HoJ, f — ﬁﬁu —3Nqg) (17)
0

which can be rewritten as
F =Ky {(sin® (¢[0] — )) — hof — Af*(1 — 3Ng)}
=K ((sin® (¢[0] — 0)) — hof — X* f?)

where ¢ is the angle between the magnetization and the applied
field direction (see Fig. 1)

(18)

a=¢—10 (19)
and we have introduced two dimensionless parameters
J? HylJs
= = ho= (20)
6K1 o K1

with A characterizing the competition between anisotropy en-
ergy and intergranular magnetostatic energy, while h( character-
izing the competition between anisotropy energy and Zeeman’s
energy. We have also used

A* = A(1 = 3Ng) 1)

to correct the influence of demagnetization due to the shape of
the specimen. Notice that the hard phase has a small A while the
soft phase has a large A. For example, in an exchange-spring
magnet consisting of Fe;4Nd2B and « — Fe, A is approximately
0.1 and 10 for the hard and soft phase, calculated using data from
[10]. As a result, in hard phase, the intergranular magnetostatic
interactions can be ignored, and our theory should recover to
the classical Stoner—Wohlfarth model. When a softer phase is
involved, however, this interaction can no longer be neglected.

III. MAGNETIZATION REVERSAL AND HYSTERESIS
A. Equilibrium and Stability

Now we seek to determine ¢[f] at every applied magnetic
field Hy or hg, so that the magnetic hysteresis loop can be de-
rived. To be specific, we assume that the easy axes of grains
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are constrained within z; — x2 plane for simplicity in the fol-
lowing analysis, although the theory can be applied to three-di-
mensional texture without difficulty. With such assumption, the
orientational averaging in the polycrystal can be carried out as

K

(sin® a[f]) = /Sin2 alf|w(8)do

0

(22)
and

f= / cos ¢[f]w(f)df (23)
0

where w(f) is the orientation distribution function (ODF) that
describes the probability of locating a grain at a particular ori-
entation, which can be an arbitrary function of 6 [11], [12].

We propose that under any applied magnetic field, the mag-
netization distribution in the polycrystal, ¢[6], will minimize the
potential energy of the system, such that

§F

35 =" (24)

resulting in

/[2 sin accos a + hg sin ¢ + 2X* f sin ¢|w(0)6¢(6)df = 0
0

(25)
which leads to the following equation of ¢ at every 6

sin 2(¢p — 0) + (2X* f + hg) sin ¢ = 0. (26)

It is clear that (26) and (23) are coupled together: the effective
magnetization f depends on the magnetization distribution ¢,
whose determination in turn requires the knowledge of f. As a
result, they need to be solved numerically by iteration in general
with the material property A, specimen geometry Ngq, and the
applied field hg given. It is worthwhile to point out that (26)
typically has two or four solutions depending on A* and hg, and
one or two of them would be unstable. When there are two stable
solutions, the one that is actually adopted at an applied magnetic
field depends on the history of the applied field, which leads
to possible metastable state and hysteresis. When a grain is in
metastable state, the energy at the third unstable solution gives
the energy barrier to the equilibrium state of absolute energy
minimum.

In order to determine the stability of a solution, we resort to
the second variation of energy functional F' with respect to ¢,
which leads to

R

592 8¢ 8¢ b¢ b¢
27
where we have used the following notations: &7
= / sin? (4[6] — 6) w(6)do (28)
0
o L
g= 55 /sm 0w (8)db (29)

0
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and

52f 6 r
FJ; 9% _ —f=- / cos ¢[fw(6)db.

5p (30)
0

Expanding (27), we have

82F T . . ho
W:2K1 cos2a + A*gsing + A fcosqﬁ-l-?cosqﬁ
0

w(0)5%p(0)do (31)
As a result, the stability of the solution at each # can be deter-
mined by

v=cos2(¢p—0)+ A*gsinp + </\*f+ %) cos¢ (32)

with v > 0 indicating a stable solution and v < 0 indicating an
unstable solution and possible reversal of magnetization.

B. Hysteresis and Energy Density

Equations (26), (23), and (32) allow us to determine the
macroscopic magnetization at every applied magnetic field,
and as a result, the magnetic hysteresis loop can be derived. In
particular, let us assume that at a positive h( the magnetization
distribution is ¢[f], one of the stable solutions at §. Then let hg
be reduced and reversed to opposite direction. Sooner or later,
the current ¢ at a particular § will become unstable due to the
increasing negativeness of hg, which will reach the nucleation
field and result in magnetization reversal. When the magne-
tization at all # is reversed, the macroscopic magnetization
reversal of the polycrystal is completed. Thus, we have a model
that will allow us to calculate the magnetization reversal and
hysteresis loop from physical mechanism without using any
fitting parameters. One of the key observations here is that the
magnetic hysteresis of a material is completely characterized by
two dimensionless parameters A (or A*) and hg. In other words,
magnets with different K and .J; but identical A* and w(f)
will have identical hysteresis loops plotted on dimensionless
scales as f versus hg, although they will be different if plotted
as Jy versus Hy. This will be demonstrated in our following
discussions. We also want to point out that the current theory
uses energy minimization to derive the hysteresis loop, and
thus is limited to quasi-static loading condition and further
modification is necessary before it can be applied to study the
dynamic process of magnetization reversal.

We have implemented our model in a C code, where Gaussian
quadrature method is adopted for numerical integration in (23)
with given ¢ and bisecting method is used to solve (26) for
given f [13]. At any given applied field, the solution from
the previous step is taken as an initial guess, and the itera-
tion continues until the convergence criterion is satisfied. To
validate the model, we compared our calculation with the
simulation results obtained using micromagnetic code Object
Oriented MicroMagnetic Framework (OOMMF) developed
at the National Institute of Standards and Technology [14].
The simulations were conducted on ellipsoidal samples with
dimensions ¢; = a2 = 300 nm and a3 = 10 nm, which were
divided into cubic cells of 10 nm long. For this geometry, the
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Fig. 2. Dimensionless magnetic hysteresis loop f versus hq calculated from
effective medium theory and micromagnetic simulation: (a) A = 0.08; (b) A =
0.8.

0

demagnetizing factor Ng = 0.0502. Two-dimensional random
distribution of easy axes was assumed among all the cells,
with magnetization within each cell assumed to be uniform,
although more general orientation distribution can be treated
in our model. To derive the major hysteresis loop, the samples
were saturated by applying a sufficient large magnetic field
along the z; direction with the initial distribution of mag-
netization assumed to be random. The magnetic field is then
reduced gradually step by step, reversed, and then saturated
in the opposite direction. To derive the minor hysteresis loop,
we reverse the applied magnetic field before saturation. In
all the simulations, the exchange constant was assumed to be
zero to allow the comparison with our model, and the damping
coefficient was taken to be 0.5. All the calculations were carried
on a Pentium I'V-based desktop computer. In all the following
figures, simulated results refer to results from OOMMEF simula-
tion, while calculated results refer to results from our effective
medium model.

We first present the calculated hysteresis loops of hard mag-
nets (A = 0.08) and intermediate magnets (A = 0.8) compared
with micromagnetic simulations, as shown in Fig. 2. For each
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Fig. 3. Minor loops of Fe;4Nd>B obtained using the effective medium

calculation and OOMMEF simulation.

), three different combinations of K; and J, are used in micro-
magnetic simulations, with K differing by a factor of 1, 4, and
9 and J; differing by a factor of 1, 2, and 3, respectively. Despite
the large difference in K and .J,, the three hysteresis loops ob-
tained from micromagnetic simulations for both A collapse into
a single loop if plotted on dimensionless scales as f versus hg,
as we predicted from our theory. In addition to the calculation of
major hysteresis loop, the proposed model is also capable of cal-
culating the virgin curve and minor hysteresis loop, as shown in
Fig. 3 for Fe;4NdsB plotted on a dimensional scale; the agree-
ment between effective medium calculation and micromagnetic
simulation for the virgin curve and minor loop is excellent. As a
matter of fact, we are able to calculate the magnetization curve
under an arbitrary loading history.

We also notice that for the hard magnet, our calculation is
nearly identical to the micromagnetic simulation, while for the
intermediate one, the agreement is good, but the model overesti-
mates both remanence and coercive field. We believe this is due
to the magnetization reversal under subnucleation field [15] be-
cause of the fluctuation of magnetic field within the polycrystal.
In other words, the less impressive comparison between our
model and micromagnetic simulation is because we have not yet
accounted for the magnetization distribution accurately due to
the switching under subnucleation field, not because our effec-
tive medium approximation for the intergranular magnetostatic
interactions is inaccurate. In fact, if the magnetization distribu-
tion is known, our effective medium calculation is able to calcu-
late the magnetostatic energy accurately, as we will show. Since
we have not taken into account subnucleation field switching,
we overestimated the remanence, resulting in an overestimated
coercive field.

In order to support our claim, we plotted the magnetostatic
energy density as a function of the applied magnetic field hg
for a hard magnet (A = 0.08) and an intermediate magnet
(A = 0.5), as shown in Fig. 4, calculated from both our ef-
fective medium theory and micromagnetic simulations. In both
cases, the magnetostatic energy is small near saturation, where
the magnetization distribution is uniform and the intergranular
magnetostatic energy is zero, and the demagnetization of the
specimen is the only source of the magnetostatic energy. Near
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Fig.4. Magnetostatic energy density as a function of the applied magnetic field
ho calculated from effective medium theory and micromagnetic simulation:
(@A = 0.08;(b) A = 0.5.

the coercive field, the intergranular magnetostatic interaction in-
creases due to the nonuniform magnetization distribution, re-
sulting in higher magnetostatic energy. The effective medium
theory agrees very well with micromagnetic simulation for hard
magnet, while for the intermediate magnet, the agreement is less
impressive, especially when the applied magnetic field is close
to the coercive field. In hard magnets, the energy barrier for
magnetization reversal is high and subnucleation field switching
is rare, and we are able to characterize the magnetization dis-
tribution accurately under any applied magnetic field because
of that. As a result, the magnetostatic energy calculated from
the effective medium theory agrees with micromagnetic simu-
lation very well, suggesting that it is indeed a good and effi-
cient approximation. In intermediate magnets, however, the en-
ergy barrier is smaller, and the probability of subnucleation field
switching is higher, and as a result, the magnetostatic energy
calculated from the effective medium theory does not agree as
well with the micromagnetic simulation. This is not because of
the failure of the effective medium approximation, but because
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Fig. 5. Anisotropy energy density as a function of the applied magnetic field
hy calculated from effective medium theory and micromagnetic simulation: (a)
A =0.08;(b) A = 0.5.

we are unable to characterize the magnetization distribution ac-
curately without addressing the subnucleation field switching,
especially when the applied field is close to the coercive field.
This again suggests that our effective medium approximation
for the intergranular magnetostatic interaction is accurate, and
magnetic field fluctuation must be considered to take into ac-
count of the subnucleation field switching, so that magnetiza-
tion distribution in nonhard magnets can be accurately charac-
terized; we will address that in the next section.

Our argument can also be inferred from the anisotropy energy
density plotted as a function of the applied field h( for a hard
magnet (A = 0.08) and an intermediate magnet (A = 0.5), as
shown in Fig. 5, calculated from both effective medium theory
and micromagnetic simulations. In both magnets, the anisotropy
energy near saturation is high because of a uniform magnetiza-
tion distribution regardless of the easy-axis directions, and it is
small when the applied field is close to coercive field, where the
magnetization is closer to the easy axis in individual grains. For
hard magnets, the calculations from the effective medium theory
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agree with micromagnetic simulation very well, suggesting not
only that the magnetization distribution in the material at any
applied magnetic field is accurately characterized, but also that
our numerical integration is accurate. For the intermediate mag-
nets, the agreement is again less impressive near the coercive
field, suggesting that our characterization of magnetization dis-
tribution is not very accurate, because we have not considered
the subnucleation field switching yet.

IV. SUBNUCLEATION FIELD SWITCHING

While the proposed model represents improvement over
Stoner—Wohlfarth model by considering the intergranular
magnetostatic interactions using an effective medium ap-
proximation, it does not differentiate different grains having
identical orientation, which may lead to the deviation of model
prediction from actual physical process. In reality, field vari-
ation among grains having identical orientation is inevitable,
and some grains will switch at an applied field that is smaller
than nucleation field. This is especially important when the
magnets are not very hard and the energy barrier between
metostable state and equilibrium state is relatively small, so
that a small variation of magnetic field will provide sufficient
energy for some of grains to overcome the energy barrier,
resulting switching at subnucleation field. We will account for
subnucleation field switching in this section.

With the energy barrier for a grain at orientation 6, A(f),
determined from our previous analysis (see Fig. 6), we propose
that the probability of a grain to overcome the energy barrier
and switch at a subnucleation field is

A9)

p(h) = e =%

where a is a constant to be determined. Recall that A is a func-
tion of .J2, and thus is proportional to the magnetic energy in
a grain, which provides driving force for the magnetization re-
versal. Clearly, when the energy barrier is high, such as in hard
magnets, the subnucleation field switching rarely occurs; while
when the energy barrier is small, such as in soft magnets, the
subnucleation field switching will lead to reduced coercivity. At
nucleation field where the energy barrier is zero, all the grains at

(33)
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orientation § will be switched. With this correction, the average
magnetic polarization is determined as

™

™
f= / [1 — p(8)] cos ¢>1(9)w(€)d9+/p(€) cos ¢o(0)w(0)db
0 0
(34)
replacing (23), where ¢; and ¢ are the two stable solutions.
The essence of this correction for subnucleation field
switching is that now we differentiate grains at identical
orientations into two different groups having different magneti-
zation, thus represents another improvement over the standard
effective medium approximation where all grains having same
orientation is regarded as identical. As we show in Fig. 7, this
correction result in better agreement between effective medium
calculation and micromagnetic simulation for intermediate
magnet A = 0.8, where ¢ = 0.85 is used; the same fitting
parameter also works well for hard (A = 0.08) and other
intermediate magnets (A = 0.5, 1).

V. CONCLUSION

We have developed an effective medium theory to calculate
the magnetization reversal and hysteresis loop in ferromagnetic
polycrystal, where the intergranular magnetostatic interaction
is considered. Our calculations using this theory agree with mi-
cromagnetic simulations well, and also reveal the importance of
subnucleation field switching when the magnet is not very hard.
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