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Abstract

A theory is developed to analyze the internal ®elds in heterogeneous piezoelectric solids. It is used to
derive expressions for mean values and variations of the internal ®elds due to external loading and
eigen®elds. The general theory is applicable to both polycrystalline ceramics as well as matrix-based
composites. After the general development, the theory is applied to multiphase matrix-based
piezoelectric composites, and explicit relations are obtained for two-phase composites. Exact connections
are established between the e�ective thermal properties and the e�ective electroelastic moduli, and these
agree with previous results of Benveniste [3] and Dunn [15] obtained by two di�erent approaches. The
stored enthalpy of the heterogeneous solid is also expressed as an explicit function of the e�ective
thermoelectroelastic properties. Finally, to demonstrate the applicability of the theory, numerical results
for average ®elds and ®eld variations are presented for a two-phase composite consisting of continuous
piezoelectric ®bers embedded in a polymer matrix. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Applications of piezoelectric solids have increased dramatically in recent years, fueled largely

by their many uses in active materials and structures systems. Their attractiveness stems from

their inherent ability to convert electrical energy to mechanical energy and vice-versa. They are

a natural choice for ultraprecise displacement transducers and actuators and their role in

functional material systems is rapidly increasing.
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An inherent property of most piezoelectric materials is that of heterogeneity; heterogeneity
that exists at multiple length scales. Piezoelectric crystals often contain complicated domain
con®gurations which are regions of di�erent electrical polarization. The permissible
con®gurations are dictated by the symmetry of the crystal. This results in a variation of the
elastic, piezoelectric, and dielectric constants throughout the crystal; their values at a certain
location depend on the orientation of the domain at that location. When a piezoelectric
polycrystal is fabricated by standard ceramic processing techniques, the situation is even more
complicated. Now, not only does each grain itself have a domain structure, but the
arrangement of the grains in the polycrystal also leads to heterogeneity. Furthermore, upon
processing the elastic, electric, and thermal anisotropy of the grains can lead to complicated
internal electroelastic ®elds. These can include appreciable internal microstructural stresses. In
order to relieve these stresses, domain reorientation and microcracking can occur and these in
turn can substantially in¯uence the overall response of the polycrystal. Furthermore, porosity
often exists due to sintering and this also a�ects the overall behavior of the ceramic. The
in¯uence can be either good or bad [23]. At an even larger length scale, polycrystalline ceramic
®bers are often embedded in a polymer matrix to form a piezoelectric composite. At this scale,
it is really the e�ective properties of the ceramic ®bers that in¯uence the overall response of the
composite. The distribution of the internal electroelastic ®elds in the composite microstructure
of course determines the overall response. In this case, both internal electrical and mechanical
®elds couple. They result from external thermal, electrical, and mechanical loads.
Theoretical studies of heterogeneous piezoelectric solids have been primarily aimed at the

determination of e�ective properties [3±8, 12±23, 25, 34, 38±40]. Regarding the analysis of
internal ®elds, Benveniste [3, 4, 6] and Benveniste and Dvorak [8] established the existence of
uniform ®elds in a class of piezoelectric composites and used it to derive internal consistency
relations between e�ective moduli. Dunn [18] analyzed thermally-induced ®elds in electroelastic
composites to obtain average ®elds and the e�ective behavior. A simple model where grains
were modeled as spherical particles was proposed by Kroupa et al. [31] to describe the
anisotropic distribution of internal stresses in poled PZT ceramics. Arlt [1] studied stress relief
in ferroelectric ceramics based on a regular domain structure. In general, all previous works are
based on the assumption of a speci®c microstructural geometry, and they are limited to the
estimation of average ®elds in the phases. No attempts have been made to estimate the ®eld
¯uctuations.
Signi®cant e�orts have been undertaken to study internal ®elds in heterogeneous elastic

solids, particularly when the materials are isotropic. These include the information entropy
method [30], e�ective medium approaches [9, 10], the use of special correlation
functions [29, 35], and the multiparticle e�ective ®eld method [11]. Kreher [27, 28] also
established exact relations between internal elastic ®elds and the e�ective properties of
heterogeneous solids. Each of these approaches deals with statistical information including
average ®elds as well as variations of the elastic ®elds.
In all of the cases of heterogeneous piezoelectric media described above, the microstructure

is probably most reasonably modeled as a random ®eld, and in general it is three-dimensional.
As a result, a deterministic treatment of the random internal electroelastic ®elds is of limited
utility. In light of this, in this paper we lay the framework for a theory to model internal ®elds
in heterogeneous piezoelectric media. We are motivated largely by the successes of Kreher and
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colleagues with regard to modeling elastic microstructural stresses. With the appropriate
interpretation, the results obtained here can be applied to any of the length scales discussed
above, and so it is quite general in that sense. In this work we do not apply the formalism to
all of these problems. Instead, to demonstrate, we apply it to the case of a two-phase
composite consisting of piezoelectric ®bers in a polymer matrix.

2. Basic equations and notation

We consider the piezoelectric, and thus inherently anisotropic, analog of the uncoupled
theory of thermoelasticity. The electric and elastic ®elds are fully coupled, but temperature
enters the problem only as a parameter through the constitutive equations. The ®eld variables
and material moduli are represented either by conventional indicial notation or by bold
characters. The constitutive equations for stationary linear response of a thermoelectroelastic
solid can be expressed as:

eij � Sijklskl � gkijDk � eTij ;

�ÿEi� � gijksjk ÿ bijDj � �ÿET
i �;

sij � Cijmn�emn ÿ eTmn� � enij��ÿEn� ÿ �ÿET
n ��;

Di � eimn�emn ÿ eTmn� ÿ kin��ÿEn� ÿ �ÿET
n ��: �1�

In Eq. (1), smn and emn are the elastic stress and strain, respectively; Dm and Em are the
electric displacement and ®eld, respectively. Cijmn, enij, and kin are the elastic sti�ness tensor
(measured in a constant electric ®eld), the piezoelectric tensor, and the dielectric tensor
(measured at a constant strain), respectively. Sijmn, gnij, and bin are the elastic compliance,
piezoelectric, and dielectric tensors obtained from inverting the C ijmn, enij, and kin equations. In
the constitutive equations, (ÿEi) is used instead of Ei as it allows the construction of a
symmetric linear response matrix which will prove to be advantageous. In Eq. (1) the
eigenstrains eTij may be due to thermal expansion or other inelastic phenomena that results in
shape or volume changes. The eigen®elds ET

i may be caused by the pyroelectric e�ect, or may
result from spontaneous polarization developed during crystallographic phase transformations.
We can represent the eigenstrain and eigen®eld as:

eTij �
�T
T0

Dij�T 0�dT 0 � etrij ;

�ÿET
i � �

�T
T0

gi�T 0� dT 0 � �ÿE tr
i �: �2�

Here D ij are the thermal expansion coe�cients, g i are the pyroelectric coe�cients, T0 and T are
the reference and actual temperatures, respectively, and etrij and E tr

ij are eigenstrains and
eigen®elds that are caused by other mechanisms, such as phase transformations. In this work,
we assume that the temperature distribution is uniform over the solid while Dij, g i, e

tr
ij , and E tr

i
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may, in general, vary as a result of the heterogeneous microstructure. We can and will regard
eTij and E T

i as material properties, irrespective of their particular origins.

The strain and electric ®eld are derivable from the elastic displacement and electric potential
as:

eij � 1

2
�ui;j � uj;i�;

�ÿEi� � fi: �3�
In addition, the equations of elastic equilibrium and Gauss' law of electrostatics (in the
absence of body forces and free charge) are:

sij;j � 0;

Di;i � 0: �4�
In the solution of piezoelectric boundary value problems, it is convenient to treat the elastic
and electric variables on equal footing. To this end, the notation introduced by Barnett and
Lothe [27] is employed. It is similar to conventional indicial notation with the exception that
both lowercase and uppercase subscripts are used as indices. Lowercase subscripts take on the
range 1, 2, 3, while uppercase subscripts take on the range 1, 2, 3, 4 and repeated uppercase
subscripts are summed over 1 4 4. With this notation, we have the following representation
for the ®eld quantities:

UM � um
f
; ZMn � emn

f;n� ÿEn
; SnM

snm M � 1; 2; 3
Dn; M � 4:

���
�5�

The electroelastic moduli are expressed as:

EiJMn �
Cijmn J;M � 1; 2; 3;
enij J � 1; 2; 3;M � 4;
eimn J � 4;M � 1; 2; 3;
ÿkin J;M � 4:

8>><>>: �6�

The inverse of EiJMn is de®ned as FAbiJ. With this shorthand notation, we can rewrite Eqs. (1),
(3) and (4) as:

SiJ � EiJMn�ZMn ÿ ZT
Mn� or ZAb � FAbiJSiJ � ZT

Ab; �7�

ZMn � UM;n; �8�

SiJ;i � 0: �9�
For the heterogeneous materials considered here, we de®ne the e�ective thermoelectroelastic
constitutive equation in a statistical sense under the assumption of macroscopic
homogeneity:

hSiJi � E*iJMn�hZMni ÿ Z*Mn� �10�
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or

hZAbi � F *AbiJhSiJi � Z*Ab �11�
where h.i=1/VfV(.) dV denotes a volume average. In Eqs. (10) and (11) E*iJMn and F *AbiJ
are the e�ective electroelastic moduli and Z *

Mn are the e�ective eigen®elds. Again, recall that
Z*Mn are considered a material property.

3. General results

In this section we lay the framework for the analysis of heterogeneous piezoelectric solids by
developing general results independent of a speci®c microstructural geometry. These results can
then be applied to speci®c microstructural geometries. Examples include polycrystals and
matrix-based composites, the latter being the subject of the following section.

3.1. Generalized Hill conditions

Consider applied traction and electric displacement boundary conditions on the surface of
the heterogeneous solid, S, consistent with a uniform stress and electric displacement S 0

iJ:

SiJ�x� � S0
iJ; x 2 S: �12�

Making use of the averaging theorems for heterogeneous piezoelectric solids [21], we have:

hSiJi � S0
iJ: �13�

A similar result exists for applied displacement±potential boundary conditions. We assume
statistical homogeneity so that h.i does not depend on the position, and compute the scalar
quantity:

hSiJZJii � 1

V

�
V

SiJ�x�ZJi�x� dx

� 1

V

�
V

SiJ�x�UJ;t�x� dx

� 1

V

�
S

SiJ�x�ni�x�UJ�x� dx

� 1

V

�
S

hSiJini�x�UJ�x� dx

� hSiJi 1
V

�
S

ni�x�UJ�x�dx

� hSiJi 1
V

�
V

ZJi�x�dx
� hSiJihZJii: �14�
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Eq. (14) is a generalization of the Hill condition for heterogeneous elastic solids [26, 27]. The
only assumptions made in the derivation are that the solid is statistically homogeneous and
that Eqs. (8) and (9) are applicable. As long as the ®elds satisfy the equilibrium equations and
gradient equations, the Hill condition is satis®ed. It is not required that SiJ and ZJi are
connected by speci®c constitutive equations. Note that the generalized Hill condition can also
be proved in the case of applied displacement and electric potential boundary conditions. The
generalized Hill condition of Eq. (14) serves as the foundation of much of the analysis that
follows.

3.2. Residual ®elds and ®elds due to external loads

It is advantageous to split the elastic and electric ®elds in heterogeneous piezoelectric solids
into two parts, one due to external loading and the other consisting of residual ®elds:

SiJ � SI
iJ � SII

iJ; ZJi � ZI
Ji � ZII

Ji: �15�
The ®elds denoted by I are created solely by the external loadings, i.e. applied tractions and
electric displacements that are compatible with a homogeneous ®eld S 0

iJ. The ®elds denoted by
II are created by the eigen®eld ZT

Mn in the absence of external loading. In view of these
de®nitions, the averaging theorems imply:

hSI
iJi � S0

iJ; hSII
iJi � 0: �16�

Consequently, Eq. (7) can be decomposed into two equations:

SI
iJ � EiJMnZ

I
Mn; �17a�

ZI
Ab � FAbiJSI

iJ; �17b�

SII
iJ � EiJMn�ZII

Mn ÿ ZT
Mn�; �18a�

ZII
Ab � FAbiJSII

iJ � ZT
Ab: �18b�

Generalizing Kreher's [27] terminology, we call ®eld I the loading ®eld and ®eld II the residual
®eld. Because both ®elds satisfy the equilibrium and gradient equations, the generalized Hill
condition applies to both the loading and residual ®elds.
Taking into account the boundary conditions and the e�ective constitutive equations, we can

show:

hSI
iJi � S0

iJ �19a�
hZI

Abi � F*AbiJS0
iJ; �19b�

hSII
iJi � 0 �20a�

hZII
Abi � Z*Ab: �20b�
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Substituting Eqs. (19) and (20) into the Hill condition (14), we obtain four scalar equations:

hSI
iJZ

I
Jii � S0

iJF*JicDS0
cD; �21�

hSII
iJZ

I
Jii � 0; �22�

hSI
iJZ

II
Jii � S0

iJZ*Ji; �23�

hSII
iJZ

II
Jii � 0: �24�

From Eqs. (22) and (23), we obtain:

S0
iJZ*Ji � hSI

iJZ
II
Jii

� h�ZII
Ji ÿ ZT

Ji�EiJMnZ
I
Mni � hZT

JiEiJMnZ
I
Mni

� hZT
JiS

I
iJi: �25�

Eqs. (21)±(25) establish the connection between the e�ective moduli and a statistical description
of the microstructure for heterogeneous piezoelectric solids. They play a crucial role in the
subsequent analysis.

3.3. Stored enthalpy density

The stored enthalpy density in the heterogeneous solid also plays an important role in this
work. We denote the average value of the stored enthalpy per unit volume by H. It can be
expressed as:

H � 1

2
hSiJ�ZJi ÿ ZT

Ji�i

� 1

2
hSI

iJZ
I
Jii � hSII

iJZ
I
Jii �

1

2
hSII

iJ�ZII
Ji ÿ ZT

Ji�i
� HI �HII �26�

where

HI � 1

2
hSI

iJZ
I
Jii �

1

2
S0
iJF*JicLS0

cD; �27�

HII � 1

2
hSII

iJ�ZII
Ji ÿ ZT

Ji�i � ÿ
1

2
hSII

iJZ
T
Jii �

1

2
hSII

iJFJimNSII
mNi: �28�

The last right-hand side of Eq. (28) results when we apply the constitutive Eq. (18b). Note that
the stored enthalpy HII depends only on the moduli FJimN (x) and ZT

Mn(x). Therefore, we can
regard HII as an e�ective material constant.
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3.4. First order moments of the electroelastic ®elds

Here our aim is to obtain relations between the e�ective moduli of a heterogeneous
piezoelectric solid and certain averages of the electroelastic ®elds. We proceed by considering a
variation of ZT

Mn(x) while FJimN (x) is held unchanged:

ZT
Mn�x�4 ZT

Mn�x� � dZT
Mn�x�: �29�

This implies the corresponding variations of the internal ®elds:

SiJ�x�4 SiJ�x� � dSiJ�x�; ZMn�x�4 ZMn�x� � dZMn�x�: �30�
From the non-random boundary conditions we have hdSiJ (x)i=0. Taking the variation of
Eq. (25), and utilizing the Hill condition (14), we obtain:

S0
iJdZ*Ji jF � hSI

iJdZ
T
Jii � hdSI

iJZ
T
Jii

� hSI
iJdZ

T
Jii � hdSI

iJZ
II
Jii ÿ hdSI

iJ�ZII
Ji ÿ ZT

Ji�i
� hSI

iJdS
T
Jii � hdSI

iJZ
II
Jii ÿ hdZI

iJS
II
Jii

� hSI
iJdZ

T
Jii: �31�

Here vF denotes that the computation is carried out at constant values of FJimN. In a similar
manner, taking variations of Eq. (28) yields:

ÿ2dHII jF � hSII
iJdZ

T
Jii � hdSII

iJZ
T
Jii

� hSII
iJdZ

T
Jii � hdSII

iJZ
II
Jii ÿ hdSII

iJ�ZII
Ji ÿ ZT

Ji�i
� hSII

iJdZ
T
Jii ÿ hd�ZII

Ji ÿ ZT
Ji�SII

iJi
� hSII

iJdZ
T
Jii � hdZT

JiS
II
iJi: �32�

Eqs. (31) and (32) can be used to compute mean values of the loading and residual ®elds if the
variation of e�ective eigen®eld and the residual enthalpy are known.

3.5. Second order moments of the electroelastic ®elds

Here we proceed by considering a variation of FJimN (x) while ZT
Mn(x) is held unchanged:

FJimN�x�4FJimN�x� � dFJimN�x�: �33�
Taking the variation of (27) yields:

dHI jZT � 1

2
hSI

iJdFJimNSI
mNi � hdSI

iJFJimNSI
mNi

� 1

2
hSI

iJdFJimNSI
mNi � hdSI

iJZ
I
Jii

� 1

2
hSI

iJdFJimNSI
mNi: �34�
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Here vZ T signi®es that the computation is carried out at constant values of Z T
Mn. In a similar

manner, taking the variation of Eq. (28) yields:

dHII jZT � 1

2
hSII

iJdFJimNSII
mNi � hdSII

iJFJimNSII
mNi

� 1

2
hSII

iJdFJimNSII
mNi � hdSII

iJZ
II
Jii ÿ hdSII

iJZ
T
Jii

� ÿ 1

2
hSII

iJdFJimNSII
mNi: �35�

The last right-hand side of Eq. (35) follows from Eq. (28). Eqs. (34) and (35) can be evaluated
to obtain second order moments of loading and residual ®elds, respectively.
The interaction of the loading and residual ®elds can be obtained by taking a variation of

Eq. (22):

hdSI
iJFJimNSII

mNi � hSI
iJdFJimNSII

mNi � hSI
iJFJimNdSII

mNi � 0 �36�

which yields

hSI
iJdFJimNSII

mNi � ÿhdSI
iJFJimNSII

mNi
� ÿhdSI

iJZ
II
Jii � hdSI

iJZ
T
Jii

� S0
iJdZ*Ji jZT : �37�

4. Application to matrix-based piezoelectric composites

The only assumption made in the derivation thus far is that of statistical homogeneity.
Otherwise we have retained complete generality concerning the details of the heterogeneous
microstructure. In order to make further progress we must, at least to some degree, specify the
heterogeneous microstructure. Here we apply the general theory to a matrix-based composite
consisting of n phases, and then further specialize those results to a two-phase composite. We
note that the general results can also be applied to a piezoelectric polycrystal where we regard
grains of di�erent orientations as di�erent phases, but those results will be presented elsewhere.

4.1. Multiphase matrix-based composites

We consider a composite consisting of a matrix (phase 1) containing nÿ1 dispersed phases.
As a result, the material properties FJimN(x) and Z T

Mn(x) take on the values FJimNvr and
Z T

Mnvr(r=1ÿ n) with probabilities cr. Here vr is used to denote the property of a variable in
phase r. We typically call cr the volume fraction and it satis®esXn

r�1
cr � 1:
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The material properties can thus be written as:

FJimN�x� �
Xn
r�1

FJimN jr Yr�x�;

ZT
Mn�x� �

Xn
r�1

ZT
Mn jr Yr�x�: �38�

In Eq. (38) the characteristic function Yr describes the topology of the microstructure, i.e.

Yr�x� � 1 if x 2 r;
0 if x =2 r:

�
�39�

Note the following relation regarding any property A(x) that varies over the microstructure:

hA�x�Yr�x�i � crhA�x� jri: �40�
Now, consider a special variation of the compliance and eigen®eld where the material
properties of phase r change by dFJimNvr and dZT

Mnvr, while the topology and material constants
of the other phases remain unchanged:

dFJimN � dFJimN jr Yr�x�;
dZT

Mn � dZT
Mn jr Yr�x�: �41�

In Eq. (41), r ranges from 1 to n and no sum over r is implied. Applying these variations to
Eqs. (31), (32), (34), (35) and (37), and using (40) yields:

hSI
iJ jridZT

Ji �
1

cr
S0
iJdZ*Ji jF; �42�

hSII
iJ jridZT

Ji � ÿ
1

cr
dHII jF; �43�

hSI
iJS

I
mN jridFJimN jr� 2

cr
dHI jZT; �44�

hSII
iJS

II
mN jridFJimN jr� ÿ 2

cr
dHII jZT; �45�

hSI
iJS

II
mN jridFJimN jr� S0

iJdZ*Ji jZT : �46�
Eqs. (42)±(46) establish the rigorous connections between ®rst and second order moments of
the ®eld variables, and variations of the e�ective properties.

4.2. Two-phase matrix-based composites

Here we specialize the results of the previous section to a composite consisting of a matrix
with a single embedded phase. We require that the material properties of the dispersed phase
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are constant with respect to a ®xed sample coordinate system. Thus orientational variations of
an anisotropic dispersed phase are prohibited. The two phases are characterized by their
volume fractions c1 and c2, compliance tensors FJimNv1 and FJimNv2, and eigen®elds ZT

Mnv1 and
Z T

Mnv2. As a result, in the sample-®xed coordinated system FJimN (x) and Z T
Mn(x) can assume

only two values.
The average ®eld hS cDi in the composite is equal to the volume-weighted average of S cD

over each phase. In addition, it is also equal to the external load S 0
cD. As a result we have

c1hS I
cDv1i+ c2hS I

cDv2i= S 0
cD. Applying an analogous result for hZAbi, and using the

constitutive equations for the phases and the composite yields:

c1FAbcD j1 hSI
cD j1i � c2FAbcD j2 hSI

cD j2i � F*AbcDS0
cD: �47�

Provided that ( FJimNv1ÿFJimNv2)ÿ1 exists, Eq. (47) may be solved to yield

hSI
cD j1i �

1

c1
�FAbcD j1 ÿFAbcD j2�ÿ1�F*AbiJ ÿ FAbiJ j2�S0

iJ;

hSI
cD j2i �

1

c2
�FAbcD j2 ÿFAbcD j1�ÿ1�F*AbiJ ÿ FAbiJ j1�S0

iJ: �48�

In an analogous manner we obtain:

hSII
cD j1i �

1

c1
�FAbcD j1 ÿFAbcD j2�ÿ1�Z*Ab ÿ ZT

Ab�

hSII
cD j2i �

1

c2
�FAbcD j2 ÿFAbcD j1�ÿ1�Z*Ab ÿ ZT

Ab� �49�

where Z T
Ab= c1Z

T
Abv1+ c2Z

T
Abv2.

Upon substituting Eq. (48) into Eq. (25), after some manipulation, we obtain:

Z*Ji � ZT
Ji � �FAbiJ ÿ F*AbiJ��FAbmN j1 ÿFAbmN j2�ÿ1�ZT

Nm j2 ÿZT
Nm j1� �50�

where FAbiJ= c1FAbiJv1+ c2FAbiJv2. Eq. (50) is an exact result that rigorously connects the
e�ective eigen®eld to the e�ective electroelastic moduli. A similar equation for heterogeneous
elastic solids was ®rst obtained by Rosen and Hashin [36]. For heterogeneous piezoelectric
solids, Dunn [15] and Benveniste [3] derived analogous results via two di�erent approaches. We
note that Benveniste obtained even more general results for multiphase media.
Substituting Eq. (49) into Eq. (28), we can express the stored enthalpy as:

HII � 1

2
�ZT

Ji j2 ÿZT
Ji j1��FAbiJ j1 ÿFAbiJ j2�ÿ1�Z*Ab ÿ ZT

Ab�: �51�

It is apparent that H II can be expressed in terms only of the e�ective electroelastic moduli of
the composite and the properties of two phases. As such, it can also be considered an e�ective
material property. Note that in the derivation, no speci®c microstructure was assumed. These
exact relations are thus applicable to two-phase composites with a wide range of
microstructural geometries. Also note that we have not speci®ed how one obtains the e�ective
electroelastic moduli of the composite, but have simply assumed that they can be obtained.
This may be done either experimentally or through detailed micromechanical modeling.
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5. Numerical results for two-phase composites

In this section we demonstrate the applicability of the theory by applying it to a two-phase
composite consisting of continuous PZT-5 piezoelectric ®bers embedded in a polymer matrix.
The electroelastic moduli of the two phases are presented in Table 1. The x3-direction is
aligned with the ®ber axis and the x1±x2 plane is isotropic, both for the transversely isotropic
®bers and the composite as a whole. Calculations were carried out for three di�erent types of
external loading: electrical loading along the x3-direction, hydrostatic pressure loading, and a
uniform temperature change. These correspond to typical loading environments when a
piezoelectric composite is used in a transducer application, for example, as a hydrophone. The
results for the thermal loading are not shown because they are qualitatively similar to those for
a hydrostatic pressure loading. The calculation procedure, which has been implemented into a
FORTRAN computer code, is outlined in Table 2.
The estimation of the e�ective electroelastic moduli of the composite in step 2 deserves more

discussion. In principle, the e�ective electroelastic moduli can be estimated by theory or
measured experimentally. Of course, the estimates of the internal ®elds can only be expected to
be as accurate as the model used to predict the e�ective moduli or the measurements of the
e�ective moduli. In order to demonstrate the application of the theory, we have used three
di�erent micromechanics theories to predict the e�ective moduli: the Mori±Tanaka, the self-

Table 2. Outline of calculation procedure for average ®elds and ®eld ¯uctuations

1. Input electroelastic properties and volume fractions of the ®bers and matrix, and the applied loads.

2. Compute the e�ective electroelastic moduli of the composite using a micromechanics model.
3. Compute the e�ective thermal properties and the stored enthalpy density using (50), (51), and (27).
4. Compute the average ®elds using (48) and (49).

5. Keep all components of the electroelastic moduli of one phase constant except one, EiJKl, which is changed by the
amount2DEiJKl. Repeat steps 2 and 3 and then calculate

DHiJKl � H�EiJKl � DEiJKl� ÿH�EiJKl ÿ DEiJKl�
2

and hSiJSKli � DHiJKl

DEiJKl
(no summation assumed here).

6. Decrease DEiJKl and repeat step 5 until converge is obtained. The second order moments are then computed using
(42)±(46).

7. Compute variations of the internal ®elds from DSiJ �
�����������������������������������������hSiJSiJi ÿ hSiJihSiJi
p

.

Table 1. Electroelastic moduli of the PZT-5 ®bers and the polymer matrix. The units of Cij are GPa, eij are C/m2,
Dij are �10ÿ6/K, and g3 is �105 N/CK

C11 C12 C13 C33 C44 e31 e33 e15 �k11k0 �k33=0 D11 D33 g3

PZT-5 121.0 75.4 75.2 111.0 21.1 ÿ5.4 15.8 12.3 916.0 830.0 ÿ3.2 14.9 ÿ0.332
Polymer 8.03 4.32 4.32 8.03 1.85 0.0 0.0 0.0 4.0 4.0 60.0 60.0 0.0

*�0 =8.85�10ÿ12/C2/Nm2=permittivity of free space.
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consistent, and the di�erential theories. Over the past few years these approaches have become
reasonably well-known in the micromechanics community (see for example Refs [32, 33] for
extensive details and numerous applications). Their inner workings will not be discussed here,
except as is appropriate in the interpretation of the predicted internal ®elds. The interested
reader is referred to Ref. [22] for details regarding the three micromechanics theories as applied
to piezoelectric composites. In addition, the strengths and weaknesses of each of the
approaches is not the focus of this work, and so will not be discussed in detail either, but again
only as is appropriate in the interpretation of the predicted internal ®elds.

To our knowledge, no previous work has been published regarding modeling of internal
®elds in heterogeneous piezoelectric solids. Thus, in order to validate our results, we applied it
to the extreme cases of uncoupled elastostatic and electrostatic behavior of heterogeneous
solids. Speci®cally, we used the self consistent method to calculate the uncoupled elastic and
dielectric constants for a two-phase composite consisting of spherical particles embedded in a
matrix. We used the input data of Bobeth and Diener [9] for both the elastic and electric
properties for the composite constituents. We then computed the average ®elds and the ®eld
¯uctuations in the manner described above. Our numerical results agreed with those of Bobeth
and Diener [9] for both the elastic and electric average internal ®elds and ¯uctuations. We also
used the Mori±Tanaka theory to perform the same calculations and found general agreement
with the self-consistent method for the predicted internal ®elds, but we found the Mori±
Tanaka theory resulted in predictions of no ®eld ¯uctuations. This was also the case with
regard to the coupled ®eld behavior of the piezoelectric composites with continuous ®bers. This
is in agreement with the results of Kreher and Pompe [30] for the elastic ®elds in a composite
with spherical inhomogeneities. Here we adopt the terminology of Mura [32] where, by
inhomogeneity we mean a subdomain in a matrix that has di�erent elastic constants than the
matrix, and by inclusion we mean a subdomain with the same elastic constants as the matrix,
but with an eigenstrain. In light of this, in the calculations of average ®elds and ®eld
¯uctuations that are presented below, we use only the self-consistent scheme because the Mori±
Tanaka method predicts no internal ®eld ¯uctuations (and thus is not suitable for modeling
®eld ¯uctuations). The selection of the self-consistent scheme is in spite of the fact that it has
received considerable criticism for its applicability to the prediction of e�ective moduli of
matrix-based composites. We do not claim that this is the best micromechanics model for this
purpose, but we simply use it to demonstrate the applicability of the rigorous theory of
internal ®elds and ¯uctuations proposed here. For completeness, in the Appendix we brie¯y
review the application of the self-consistent method and also the solution for the key auxiliary
problem: the solution for a single piezoelectric inhomogeneity in an in®nite matrix. The latter
auxiliary problem is solved using Eshelby's equivalent inclusion method [32, 41]. In the solution
of the auxiliary problem, we take advantage of the uniformity of the electroelastic ®elds in the
inhomogeneity which trivializes the required averaging for the micromechanics model.

Figures 1±3 show the average stresses, hs11i and hs33i, and the average electric displacement,
hD3i, along with their variations in each phase of the PZT-5/polymer composite. Regarding the
transverse stresses, our discussion will focus on hs11i, but we remind that hs11i= hs22i due to
the transversely isotropic symmetry of the composite. Several interesting phenomena are
present and these deserve discussion.
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Under hydrostatic loading, stresses in the composite can be thought of as arising from two
sources: the applied axial stress, s033, and the applied in-plane stresses, s011 and s022. For s

0
33, the

axial strain in the ®ber is equal to that in the matrix. Because the ®ber is much sti�er than the
matrix, hs33i in the ®ber is much larger than that in the matrix, which di�ers little from s033 at
low ®ber volume fractions. Thus, at low volume fractions, hs33i in the ®bers is much higher
than s033. The applied s011 and s022 cause tensile stress in the ®bers in the x3 direction due to the
fact that the ®ber and matrix constrain each other in the x3 direction, and the polymer matrix
wants to extend more in the x3 direction because it is more compliant than the matrix.
However, this tensile stress is smaller than the compressive stress in the x3 direction caused by
s033 and so the total axial stress in the ®ber is compressive. A similar argument shows that hs11i
in the ®bers is only slightly larger than the applied s011=s 0

22. The major contributor to hs11i is
the applied s011=s022. The applied compressive stress s033 induces a tensile stress in ®bers in the
x1 direction, but it is a small second order e�ect caused by the di�erence in Poisson ratios
between the ®bers and the matrix.
The discussion of these elastic e�ects sets the stage for the discussion of some interesting

e�ects that arise due to piezoelectricity. Speci®cally, the stresses in the ®bers, especially hs33i,
will cause an electric ®eld hE3i in the ®bers due to the piezoelectric e�ect. Because the stresses
in the ®ber are higher than they would be in a homogeneous piezoelectric under the same far-
®eld hydrostatic load, the electric ®eld in the ®bers will be higher than it would in a

Fig. 1. Average stress hs 11i in a continuous PZT-5 ®ber reinforced polymer composite due to an applied hydrostatic
pressure of 1 MPa, vs. the volume fraction of PZT-5. The solid line is hs11i= hs22i and the broken line is
hs 11i2Ds11.
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homogeneous piezoelectric. Now, the electric ®eld is uniform in the x3 direction, and because it
is irrotational, it also can not vary in the x1 and x2 directions. Thus, the electric ®eld in the x3
direction caused by the hydrostatic load is uniform throughout the composite.
For a speci®ed hydrostatic load, hE3i=0 at a volume fraction of zero because the polymer

matrix is not piezoelectric. It also takes on another value at a volume fraction of unity that
corresponds to the homogeneous piezoelectric. Somewhere in between, hE3i in the ®bers is
higher than that in the corresponding homogeneous piezoelectric because hs 33i in ®bers is
higher than it would be in a homogeneous piezoelectric, and thus reaches a maximum value at
a volume fraction somewhere between zero and unity. This value turns out to be at a volume
fraction of about 0.006.
The hydrostatic load causes tensile strain in the x1 and x2 directions, and compressive strain

in the x3 direction in the ®bers at low volume fractions. This is because hs33i is much larger
than hs11i at low volume fractions, so that the magnitude of he11i caused by the Poisson e�ect
is larger than that caused by hs11i (because hs33i is about four times larger than hs11i in the
®bers at low volume fractions, while Poisson ratio is about 0.3, and hs22i will also cause a
tensile strain he11i). As a result, the hydrostatic strain hehi=2he11i+ he33i in the ®bers is
compressive at low volume fractions. Both the compressive he33i and the tensile he11i decrease
quickly, but monotonically, with an increase in the ®ber volume fraction. However, because
he11i decreases faster than he33i, and they are of opposite sign, there exists a peak in hehi. Now

Fig. 2. Average stress hs33i in a continuous PZT-5 ®ber reinforced polymer composite due to an applied hydrostatic
pressure of 1 MPa, vs. the volume fraction of PZT-5. The solid line is hs33i and the broken line is hs33i2Ds33.
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there exists a peak in hE3i and hehi in the ®ber phase. For hs33i in the ®bers, the components
related to hE3i and hehi are of the same sign. This leads to a peak in hs33i in the ®bers. Because
the polymer matrix does not exhibit piezoelectricity, there is no peak in the stress in the matrix,
but because there is a peak in hE3i, there is a peak in hD3i in the matrix.
Fig. 4 shows the average stress hs33i in the matrix and ®bers caused by an applied electric

displacement D0
3. hs33i in the ®bers is very high at low volume fractions, and drops very fast as

the ®ber volume fraction increases. There is a peak in hs33i in the matrix at a low ®ber volume
fraction. The high stress in the ®ber at low volume fractions arises because the applied
electrical displacement is consumed by the small amount of ®bers, and thus the electric
displacement is large which then leads to lazrge stresses in the ®ber. As the ®ber volume
fraction increases, the applied electric displacement is shared by more and more ®bers and this
causes the stress in the ®bers to decrease. The peak in hs33i in the matrix is due to the fact that
at zero ®ber volume fraction, the stress in the matrix is zero. As the ®ber volume fraction
increases, the composite becomes piezoelectric, and the applied electric displacement causes
stress and strain in the ®bers. This induces stress in the matrix to cancel the stress in the ®bers
to maintain self equilibrium. As the ®ber volume fraction increases, the stress in the ®bers
decreases rapidly, causing the stress in the matrix to also decrease, thus resulting in a peak in
the stress in the matrix.

Fig. 3. Average electric displacement hD3i in a continuous PZT-5 ®ber reinforced polymer composite due to an
applied hydrostatic pressure of 1 MPa, vs. the volume fraction of PZT-5. The solid line is hD3i and the broken line
is hD3i2DD3.
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From Figs. 1±4, it is clear that there are no ®eld variations at zero ®ber volume fraction, as
expected. With the addition of ®bers to the polymer matrix, variations in the ®elds are
observed. This is because increased uncertainty exists in both the geometrical arrangement of
the ®bers in the matrix, and in the details of the interaction between the ®bers. These two
phenomena are re¯ected by the increase in ®eld variations in both phases as the ®ber volume
fraction increases. Interestingly, the ®eld variations tend to reach a maximum at the points
where the average ®elds peak. We also see that, due to the uniform ®brous con®guration of the
composite in the x3 direction, the ®eld variations are higher in the x1 and x2 directions than
those in the x3 direction.

6. Conclusion

A theory, applicable to both polycrystalline ceramics as well as matrix-based composites,
was developed to analyze the internal ®elds in heterogeneous piezoelectric solids. It was used to
derive expressions for mean values and variations of the internal ®elds due to external loading
and eigen®elds. The theory was applied to multiphase matrix-based piezoelectric composites,
and explicit relations were obtained for two-phase composites. Exact connections were
established between the e�ective thermal properties and the e�ective electroelastic moduli for

Fig. 4. Average stress hs33i in a continuous PZT-5 ®ber reinforced polymer composite due to an applied electric
displacement of 0.001 C/m2 in the x3-direction, vs. the volume fraction of PZT-5. The solid line is hs33i and the
broken line is hs33i2Ds33.
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two-phase composites. These agree with previous results of Benveniste [3] and Dunn [15]
obtained by two di�erent approaches. Also, we expressed the stored enthalpy of the
heterogeneous solid as an explicit function of the e�ective thermoelectroelastic properties. To
demonstrate the applicability of the theory, numerical results for average ®elds and ®eld
variations were presented for a two-phase composite consisting of continuous piezoelectric
®bers embedded in a polymer matrix.

Appendix A

A.1. Micromechanics model and auxiliary single inhomogeneity problem

The e�ective electroelastic moduli E*iJMn of a two-phase composite consisting of perfectly-
bonded piezoelectric phases can be expressed as [21, 22]:

E*iJMn � EiJMn j1 �c2�EiJAb j2 ÿEiJAb j1�AAbMn: �A1�
In equation (A1) AAbMn is the concentration tensor that, due to linearity, relates the average
strain and potential gradients in phase 2 to that in the composite (which are equal to those
applied under displacement boundary conditions, Z 0

Ab), i.e.

hZMn j2i � AMnAbZ
0
Ab: �A2�

The estimation of AMnAb is thus the key to predicting the e�ective moduli E*iJMn. It is well-
known that numerous models exist that can be used to estimate the concentration factor at this
point, each with their advantages and disadvantages. For the reasons discussed in Section 5,
we use the self-consistent method. In simplest terms, this amounts to assuming:

AMnAb � �IMnAb � SMnLkE
�ÿ1
LkiJ�EiJAb j2 ÿE�iJAb��ÿ1: �A3�

Here IMnAb is a collection of fourth- and second-rank identity tensors and the superscript ÿ1
denotes an inversion operation. AMnAb is recognized to be the dilute concentration factor which
is obtained from the solution of the auxiliary problem of a single inhomogeneity embedded in
an in®nite matrix with electroelastic moduli equal to the e�ective moduli of the composite
E�LkiJ. In equation (A4), SMnLk are the electroelastic Eshelby tensors and have been de®ned by
Dunn and Taya [21, 22]. SMnLk, and of course AMnAb, are most easily obtained by using the
equivalent inclusion method [32, 41] as applied to piezoelectric inclusions and inhomogeneities.
For ellipsoidal inclusions, are functions of the shape of the inclusion and the electroelastic
moduli of the matrix. Furthermore, in this case the electroelastic ®elds in the inclusion (or
inhomogeneity) are uniform when a uniform far-®eld loading is applied. General expressions
for SMnLk in terms of a surface integral over the unit sphere are given by Dunn and Taya [21]
for ellipsoidal inclusions in generally anisotropic piezoelectric solids. Explicit expressions for
SMnLk for spheroidal inclusions in a transversely isotropic piezoelectric solid are given in
Ref. [24]. For elliptical cylindrical inclusions in a transversely isotropic solid, such as those
considered here, the solution is greatly simpli®ed and the non-zero SMnLk reduce to:
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S1111 � ��3� 2a�C11 � C12�a
2�1� a�2C11

S1122 � ��1� 2a�C12 ÿ C11�a
2�1� a�2C11

S1133 � aC13

�1� a�C11

S2211 � �2� 1a�C12 ÿ aC11

2�1� a�2C11

S2222 � �2� 3a�C11 � aC12

2�1� a�2C11

S2233 � C13

�1� a�C11

S2323 � S2332 � S3223 � S3232 � 1

2�1� a�
S1313 � S1331 � S3113 � S3131 � a

2�1� a�
S1212 � S1221 � S2112 � S2121 � �1� a� a2�C11 ÿ aC12

2�1� a�2C11

S1143 � ae31
�1� a�C11

S2243 � e31
1� aC11

S4141 � a
1� a

S4242 � 1

1� a
: �A4�

In equation (A4), a= a2/a1(a3 41) denotes the aspect ratio of the elliptical inclusion, ai
(i=1±3) are the inclusion semiaxes, and the well-known Voigt two-index notation has been
used for the electroelastic moduli. Note that a circular cylindrical inclusion is obtained when
a=1.
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