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Abstract

We have studied the average magnetoelectroelastic ®eld in a multi-inclusion or inhomogeneity embedded
in an in®nite matrix. The magnetoelectroelastic inclusion and inhomogeneity problems are discussed [1],
and a numerical algorithm to evaluate the magnetoelectroelastic EshelbyÕs tensors for the general material
symmetry and ellipsoidal inclusion shape is developed. The solutions for the magnetoelectroelastic inclu-
sion and inhomogeneity problems are applied to study the multi-inclusion and inhomogeneity problems. It
is shown that the average ®eld in an annulus surrounding an inclusion embedded in an in®nite magneto-
electroelastic medium only depends on the shapes and orientations of two ellipsoids, which generalizes
Tanaka and Mori's observation in elasticity [2]. The average ®eld in a multi-inclusion is then determined
exactly, from which the average ®eld in a multi-inhomogeneity is obtained, using the equivalent-inclusion
concept [3]. The solutions of multi-inclusion and inhomogeneity problems serve as basis for an averaging
scheme to model the e�ective magnetoelectroelastic moduli of heterogeneous materials, which generalizes
Nemat-Nasser and Hori's multi-inclusion model in elasticity [4]. The model is further extended to predict
the e�ective thermal moduli of the heterogeneous magnetoelectroelastic solids, generalizing the recent work
of Li on the thermal expansion coe�cients of elastic composites [5]. The proposed model recovers Mori±
Tanaka and self-consistent approaches as special cases. Finally, some numerical results are given to
demonstrate the applicability of the model. The potential techniques to enhance the magnetoelectric e�ect
in practical composites are also discussed. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn
signi®cant interest in recent years, due to the rapid development in adaptive material systems. It
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shows a remarkably large magnetoelectric coe�cient, the coupling coe�cient between static
electric and magnetic ®elds, which does not exist in either constituent. The magnetoelectric
coupling in the composite is created through the interaction between the piezoelectric phase and
the piezomagnetic phase, a result of the so-called product property. The product property of
composites o�ers great opportunities to engineer new materials that are capable of responding in
a desired way to the internal or environment changes, which may not be achieved otherwise by
traditional techniques. Thus a micromechanics analysis of magnetoelectroelastic solids, which
may be used to study the property±structure relationship of materials, and to guide the design and
optimization of the new materials, will be very helpful.

Since Van Run et al. [6] reported the fabrication of BaTiO3±CoFe2O4 composite with
magnetoelectric coe�cient two orders larger than that of Cr2O3, which had the highest magne-
toelectric coe�cient among single-phase materials known at that time, numerous researchers have
investigated the magnetoelectric coupling in the piezoelectric±piezomagnetic composites both
theoretically and experimentally. Bracke and Van Vliet reported [7] a broad band magnetoelectric
transducer with a ¯at frequency response using composite materials. Harshe et al. [8,9] and
Avellaneda and Harshe [10] studied the 2±2, 3±0, and 0±3 magnetoelectric composites theoreti-
cally on a case-by-case basis. They obtained expressions for the e�ective magnetoelectric coe�-
cients and a ®gure of merit for magnetoelectric coupling. Nan [11] and Huang and Kuo [12]
proposed micromechanics models to estimate the e�ective properties of piezoelectric±piezomag-
netic composite materials. Benveniste obtained exact connections between di�erent components
of the e�ective magnetoelectroelastic moduli of ®brous composite [13], using the uniform ®eld
concept [14]. Li and Dunn developed a micromechanics approach to analyze the average ®elds
and e�ective moduli of heterogeneous media that exhibit full coupling between stationary elastic,
electric, and magnetic ®elds [15], using the solutions they obtained for inclusion and inhomoge-
neity problems in an in®nite magnetoelectroelastic medium [1]. They obtained the closed-form
expressions for the e�ective moduli of ®brous and laminated composites, as well as the exact
connections between the e�ective thermal moduli and the e�ective magnetoelectroelastic moduli
of two-phase composites.

This work is along lines of Li and Dunn's work on magnetoelectroelastic inclusion and in-
homogeneity problems [1], which generalized Eshelby's classical analyses of the stress- and strain-
®elds in elastic solids containing ellipsoidal inclusions and inhomogeneities [3]. Eshelby's solutions
are widely used in micromechanics analysis of heterogeneous materials for at least three reasons:
(1) the general ellipsoidal shape can be used to model a wide range of microstructural geometries;
(2) explict, closed-form expressions exist for the stresses and strains in the ellipsoidal inhomo-
geneity; and (3) the elastic ®elds in the ellipsoidal inhomogeneity are uniform, trivializing the
computation of average ®elds. Numerous examples of and references to such applications can be
found in the texts of Mura [16] and Nemat-Nasser and Hori [17]. Based on the uniformity of
strain ®eld in an ellipsoidal inclusion with uniform eigenstrain, Tanaka and Mori showed that the
average strain ®eld in an annulus (between two similar and coaxial ellipsoidal surfaces) sur-
rounding an inclusion vanishes [2]. From this observation, they proposed a method, which is
credited as the Mori±Tanaka approach later, to analyze the average ®eld in a composite material
[18]. Tanaka and Mori's theorem was applied by Nemat-Nasser and Hori to determine the av-
erage ®eld in a multi-inclusion embedded in an in®nite matrix exactly [17], from which they
proposed the double- and multi-inclusion models to predict the e�ective elastic moduli of
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composite materials [4]. It is shown that the Mori±Tanaka approach and another popular
averaging scheme, self-consistent approach, are special cases of the multi-inclusion model. Li
extended the multi-inclusion model to analyze the thermal ®eld and the e�ective thermal moduli
of elastic composites [5]. He demonstrated that this model is particularly suitable for the analysis
of composites with functionally graded interphase. Motivated by the success of application of
inclusion and inhomogeneity problems in heterogeneous elastic materials, this work intends to
generalize Tanaka and Mori's theorem and Nemat-Nasser and Hori's multi-inclusion model to
analyze the heterogeneous magnetoelectroelastic solids. It is believed that such a study will be
helpful to the micromechanics analysis of heterogeneous magnetoelectroelastic materials. The
progress in inclusion and inhomogeneity problems in solid with coupled-®eld behavior is due to
Deeg [19], Wang [20], Benveniste [21], Dunn and Taya [22], Chen [23,24], Dunn and Wienecke
[25,26], and Li and Dunn [1], among others, who extended Eshelby's analysis to solid with
coupling e�ects.

The paper is organized as follows. The basic equations and notation will be introduced in
Section 2. The multi-inclusion and inhomogeneity problems will be analyzed in Section 3, where
we will review the solution of magnetoelectroelastic inclusion problem, develop a numerical al-
gorithm to evaluate the magnetoelectroelastic EshelbyÕs tensors for general material symmetry
and ellipsoidal inclusion shape, generalize the Tanaka±Mori theorem, and use it to determine the
average ®eld in a multi-inclusion or inhomogeneity embedded in an in®nite magnetoelectroelastic
medium. We will then generalize the multi-inclusion model to predict the e�ective magnetoelec-
troelastic moduli of composites in Section 4, and further extend it to estimate the e�ective thermal
moduli of the heterogeneous materials. Finally, some numerical results will be presented to
demonstrate the applicability of the model.

2. Basic equations and notation

We consider magnetoelectroelastic media that exhibit linear, static, anisotropic coupling
between the magnetic, electric, and elastic ®elds. In this case, the constitutive equations can be
expressed as:

rij � Cijklekl � eijl�ÿEl� � qijl�ÿHl� ÿ kijh;

Di � eiklekl ÿ jil�ÿEl� ÿ ail�ÿHl� ÿ pih;

Bi � qiklekl ÿ ail�ÿEl� ÿ lil�ÿHl� ÿ mih:

�1�

Here rij and eij are the elastic stress and strain; Di and Ei are the electric displacement and ®eld; Bi

and Hi are the magnetic ¯ux and ®eld. Cijkl, jil, and lil are the elastic sti�ness, the dielectric, and
magnetic permeability tensors. They directly connect like ®elds, e.g., stresses to strains. Elastic
®eld is coupled to the electric and magnetic ®elds through the piezoelectric, eijl, and piezomag-
netic, qijl, coe�cients, respectively, while electric and magnetic ®elds are coupled through the
magnetoelectric coe�cient, ail. Finally, the stress, electric displacement, and magnetic ¯ux are
coupled to temperature change h through thermal stress tensor kij, pyroelectric coe�cient pi, and
pyromagnetic coe�cient mi. The symmetry conditions satis®ed by the moduli are give by Nye [27].
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In the analysis that follows, it is convenient to treat the elastic, electric, and magnetic ®elds on
equal footing. To this end, the notation introduced by Barnett and Lothe [28] for piezoelectric
analysis and generalized to incorporate magnetic coupling by Alshits et al. [29] is utilized. This
notation is identical to conventional indicial notation with the exception that lowercase subscripts
take on the range 1! 3, while uppercase subscripts take on the range 1! 5 and repeated
uppercase subscripts are summed over 1! 5. With this notation, the ®eld variables take the
following forms:

RiJ �
rij; J � 1; 2; 3;
Di; J � 4;
Bi; J � 5;

8<: ZMn �
emn; M � 1; 2; 3;
ÿEn; M � 4;
ÿHn; M � 5;

8<: �2�

the magnetoelectroelastic moduli are expressed as:

ÊiJMn �

Cijmn; J ;M � 1; 2; 3;
eijn; M � 4; J � 1; 2; 3;
qijn; M � 5; J � 1; 2; 3;
eimn; J � 4; M � 1; 2; 3;
ÿjin; J � 4; M � 4;
ÿain J � 4; M � 5;
qimn; J � 5; M � 1; 2; 3;
ÿain; J � 5; M � 4;
ÿlin; J � 5; M � 5;

8>>>>>>>>>>>><>>>>>>>>>>>>:
PiJ �

kmn; J � 1; 2; 3;
pi; J � 4;
mi; J � 5;

8<: �3�

and the constitutive equations can be written as:

RiJ � ÊiJMnZMn ÿPiJh � ÊiJMn�ZMn ÿ ZT
Mn�; �4�

where ZT
Mn � Êÿ1

MniJPiJh; the superscript )1 is used to denote inversion. Of course, one can easily
make alternative choices for the independent and dependent variables and formulate the basic
equations using the same formalism. The current representation is proven to be advantageous in
solving inclusion and inhomogeneity problems.

For a heterogeneous material subjected to external loading Z0
Kl at the boundary, and a uniform

temperature change h, the e�ective magnetoelectroelastic moduli Ê�iJKl and thermal moduli P�iJ can
be de®ned under the assumption of statistical homogeneity by

RiJh i � Ê�iJKl ZKlh i ÿP�iJh; �5�

where h�i � 1=V
R

V ���dV denotes an average over a representative volume element (RVE). The
modeling of the e�ective moduli of heterogeneous material in terms of its microstructure and
constituent properties is of both theoretical and practical importance in micromechanics. It de-
pends on the determination of the average ®elds in the materials. In this work we will present an
approximation scheme to predict the e�ective magnetoelectroelastic moduli based on the exact
average ®eld in a multi-inclusion embedded in an in®nite medium.
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3. Multi-inclusion and inhomogeneity problems

We will adopt Mura's terminology here [16]. By inclusion, we mean a subdomain X in an
in®nite matrix D with the same magnetoelectroelastic moduli ÊiJKl as that of the matrix, but
undergoing an eigen®eld ZT

Kl, which, for example, can be associated with spontaneous electric
polarization, magnetic moment, and deformations that occur during a crystallographic phase
transformation. The eigen®eld ZT

Kl is that which would occur if X were unconstrained by D. Actual
constrained magnetoelectroelastic ®eld inside the inclusion is in general a function of material
moduli of the matrix, the shape and orientation of the inclusion, and the distribution of eigen®eld
in the inclusion. By inhomogeneity we mean a subdomain X in an in®nite matrix D with a di�erent
magnetoelectroelastic moduli Ê;

iJKl from that of the matrix, ÊiJKl. It is possible for the inhomo-
geneity to undergo an eigen®eld. In this case, it is referred to as an inhomogeneous inclusion.

3.1. Magnetoelectroelastic inclusion problem

The magnetoelectroelastic inclusion problem will be reviewed here. A numerical algorithm to
evaluate the magnetoelectroelastic EshelbyÕs tensors will also be developed. The ®eld in an in®nite
medium with magnetoelectroelastic moduli ÊiJAb, due to the presence of an inclusion X with
arbitrary shape and eigen®eld ZT

Ab�x�, can be expressed as:

ZMn�x� � ÿ
Z

X
ÊiJAbZT

Ab�x0�GMJ ;in�xÿ x0�dV �x0�; �6�

where the subscript ``,'' is used to denote partial di�erentiation, and GMJ are the in®nite-body
magnetoelectroelastic Green's functions, whose physical interpretation is given in Table 1. Note
that the magnetic monopole is a pure mathematical concept, which will simplify the analysis of
inclusion problem. When the inclusion X is ellipsoidal and the eigen®eld ZT

Ab is uniform, the
magnetoelectroelastic ®elds in the inclusion is also uniform and given by

ZMn � SMnAbZT
Ab �7a�

Table 1

Physical interpretation of magnetoelectroelastic GreenÕs functions

GMJ �xÿ x0� Physical interpretation

Gmj�xÿ x0� The elastic displacement at x in the xm direction due to a unit point force at x0 in the xj direction

Gm4�xÿ x0� The elastic displacement at x in the xm direction due to a unit point charge at x0

Gm5�xÿ x0� The elastic displacement at x in the xm direction due to a unit point magnetic monopole at x0

G4j�xÿ x0� The electric potential at x due to a unit point force at x0 in the xj direction

G44�xÿ x0� The electric potential at x due to a unit point charge at x0

G45�xÿ x0� The electric potential at x due to a unit point magnetic monopole at x0

G5j�xÿ x0� The magnetic potential at x due to a unit point force at x0 in the xj direction

G54�xÿ x0� The magnetic potential at x due to a unit point charge at x0

G55�xÿ x0� The magnetic potential at x due to a unit point magnetic monopole at x0
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with

SMnAb � ÿ
Z

X
ÊiJAbGMJ ;in�xÿ x0�dV �x0�; �8�

where SMnAb are the magnetoelectroelastic EshelbyÕs tensors, which are functions of magneto-
electroelastic moduli of the matrix and shape and orientation of the inclusion [1,3]. It can be
expressed as surface integrals over a unit sphere,

SMnAb � EiJAb

4p

1
2

R 1

ÿ1

R 2p
0
�JmJin�z� � JnJim�z�dhdn3; M � 1; 2; 3;R 1

ÿ1

R 2p
0

J4Jin�z�dhdn3; M � 4;R 1

ÿ1

R 2p
0

J5Jin�z�dhdn3; M � 5;

8>><>>: �9a�

where zi � ni=ai (no summation on i), and n1 and n2 can be expressed in terms of n3 and h by
n1 �

�������������
1ÿ n2

3

q
cosh and n2 �

�������������
1ÿ n2

3

q
sinh. In addition, JMJin � ziznKÿ1

MJ�z�, where Kÿ1
MR is the inverse of

KJR � ziznÊiJRn. The corresponding RiJ in inclusion is then given by

RiJ � ÊiJMn�ZMn ÿ ZT
Mn� � ÊiJMn�SMnAb ÿ IMnAb�ZT

Ab; �7b�

where IMnAb is composed of second and fourth rank unit tensors. From Eqs. (7a) and (7b), it is
clear that the magnetoelectroelastic ®eld in the inclusion is completely determined if the EshelbyÕs
tensors are known. Li and Dunn have obtained the closed-form expressions of magnetoelectro-
elastic EshelbyÕs tensors for the aligned elliptic±cylindrical inclusion and thin-disc inclusion in a
transversely isotropic medium [1]. For more general material symmetry and ellipsoidal inclusion
shape, the EshelbyÕs tensor can be evaluated numerically using Gauss quadrature method [30,31],
where the integral is approximated by the weighted sum of function values at certain integration
points,

SMnAb � ÊiJAb

4p

1
2

PU
p�1

PV
q�1

�JmJin�zpq� � JnJim�zpq��W pq; M � 1; 2; 3;

PU
p�1

PV
q�1

J4Jin�zpq�W pq; M � 4;

PU
p�1

PV
q�1

J5Jin�zpq�W pq; M � 5:

8>>>>>>>><>>>>>>>>:
�9b�

In Eq. (9b), the superscripts p and q are used to denote the integration points (abscissas) np
3 with

weight coe�cient W p
n , and hq with weight coe�cient W q

h , from which zpq is evaluated; U and V refer
to the corresponding total integration points which can be selected according to the inclusion
shape aspect ratios a1=a3 and a2=a3. W pq � W p

n W q
h is the Gaussian weighting coe�cient. An al-

gorithm to evaluate magnetoelectroelastic EshelbyÕs tensors is developed and outlined in Table 2.
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3.2. Generalized Tanaka±Mori theorem

Let us consider a ®nite inclusion X0 with arbitrary shape and eigen®eld ZT
Mn�x�, embedded in an

in®nite matrix D with magnetoelectroelastic moduli ÊiJAb, and surrounded by two ®ctitious
ellipsoidal surfaces X1 and X2 (not necessarily similar and coaxial), where X1 is totally contained
within X2; see Fig. 1. When there is no external loading Z0

Mn applied at the boundary of the in®nite
matrix, the average magnetoelectroelastic ®eld in the annulus between X2 and X1, according to
Eq. (6), is given by

ZMn�x�h i � ÿ 1

V2

Z
X2ÿX1

Z
X0

ÊiJAbZT
Ab�x0�GMJ ;in�x

�
ÿ x0�dV �x0�

�
dV �x�; �10�

where V2 is the volume of the annulus. Since X0 and annulus do not intersect, and the integrand in
Eq. (10) is not singular, the order of integration can be changed to yield

ZMn�x�h i � 1

V2

Z
X0

ZT
Ab�x0�

�
ÿ
Z

X2ÿX1

ÊiJAbGMJ ;in�xÿ x0�dV �x�
�

dV �x0�: �11�

Since X1 and X2 are ellipsoidal, it follows from the de®nition of Eshelby tensor, Eq. (8), that

ZMn�x�h i � V0

V2

�S2
MnAb ÿ S1

MnAb� ZT
Ab�x0�


 �
; �12�

Fig. 1. An inclusion X0 embedded in an in®nite matrix, surrounded by two ellipsoidal surfaces X1 and X2.

Table 2

Numerical procedure for evaluation of magnetoelectroelastic EshelbyÕs tensors

Step Operation

1 Input the magnetoelectroelastic moduli ÊiJKl of matrix, shape aspect ratios of a2=a1 and a3=a1 of

inclusion, and pre-determined numbers of abscissas U and V to be used in Gaussian quadrature

method

2 Determine np
3 and hq, and the corresponding weighting coe�cients W pq according to U and V

3 Evaluate zpq
1 �

������������������
1ÿ �np

3�2
q

coshq=a1, zpq
2 �

������������������
1ÿ �np

3�2
q

sinhq=a2 and zpq
3 � np

3=a3

4 Evaluate Kpq
JR � zpq

i zpq
n ÊiJRn (no summation on p and q), and its inverse �Kpq

JR�ÿ1

5 Evaluate J pq
MJin � zpq

i zpq
n �Kpq

MJ �ÿ1
(no summation on p and q)

6 Evaluate SMnAb according to Eq. (9b)
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where V0 is the volume of inclusion X0, and superscript r is used to denote properties belonging to
phase r. In deriving Eq. (12), we have used the properties of the in®nite-body GreenÕs function,
GMJ�xÿ x0� � GMJ�x0 ÿ x�, and GMJ ;in�xÿ x0� � GMJ ;i0n0 �x0 ÿ x�. Eq. (12) is the generalization of
Tanaka±Mori theorem in elasticity [2]. It shows that the average magnetoelectroelastic ®eld in an
annulus is completely determined by the average eigen®eld in X0, ZT

Ab


 �
, and the magnetoelec-

troelastic Eshelby's tensors S1
MnAb and S2

MnAb, which correspond to the ellipsoidal domains X1 and
X2. It does not depend on the shape and eigen®eld distribution of the inclusion X0. The average
®eld vanishes in two situations, (1) X1 and X2 are similar and coaxial so that S1

MnAb � S2
MnAb; or (2)

the average eigen®eld in X0; ZT
Ab


 �
, vanishes.

3.3. Multi-inclusion problem

The generalized Tanaka±Mori theorem can be used to analyze the average ®eld in a multi-
inclusion embedded in an in®nite matrix [17]. To this end let us consider an ellipsoidal inclusion
X2 containing another ellipsoidal inclusion X1 imbedded in an in®nite matrix D with magneto-
electroelastic moduli ÊiJAb; see Fig. 2. X1 and X2 do not need to be similar and coaxial. For
convenience we also denote X1 and and the annulus between X2 and X1 by C1 and C2, and its
volume fraction by f1 and f2, with f1 � f2 � 1. The eigen®eld in the double-inclusion is speci®ed as

ZT
Ab�x� �

X2

r�1

Hr�x�ZT
Abjr; �13�

where

Hr�x� � 1; x 2 Cr;
0; x 62 Cr;

�
is the characterization function describing the topology of the double-inclusion. The eigen®eld in
both phases, ZT

Abj1 and ZT
Abj2, are assumed to be uniform, with jr used to denote quantities of phase

r. Without external loading Z0
Ab applied at boundary, the average ®eld in the double-inclusion can

be imagined to be due to two contributions, one is ZT
Abj2 in X2, and the other is �ZT

Abj1 ÿ ZT
Abj2� in X1.

According to the linearity and Eqs. (7a) and (7b), the average ®eld in C1 is exactly given by

ZAbh i1 � S2
AbMnZT

Mnj2 � S1
AbMn�ZT

Mnj1 ÿ ZT
Mnj2� � S1

AbMnZT
Mnj1 � �S2

AbMn ÿ S1
AbMn�ZT

Mnj2; �14a�

Fig. 2. A double-inclusion X1 and X2 embedded in an in®nite matrix.
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and

RiJh i1 � ÊiJAb�S1
AbMn ÿ IAbMn�ZT

Mnj1 � ÊiJAb�S2
AbMn ÿ S1

AbMn�ZT
Mnj2; �14b�

where �h ir is used to denote volume average over Cr. In a similar manner the average ®elds in C2 is
given exactly by

ZAbh i2 � S2
AbMnZT

Mnj2 �
f1

f2

�S2
AbMn ÿ S1

AbMn��ZT
Mnj1 ÿ ZT

Mnj2�; �15a�

and

RiJh i2 � ÊiJAb�S2
AbMn ÿ IAbMn�ZT

Mnj2 �
f1

f2

ÊiJAb�S2
AbMn ÿ S1

AbMn��ZT
Mnj1 ÿ ZT

Mnj2�: �15b�

The generalized Tanaka±Mori theorem, Eq. (12), has been used in deriving Eq. (15a). The average
®eld in the double-inclusion can then be determined exactly from Eqs. (14a)±(15b) as

ZAbh i � f1 ZAbh i1 � f2 ZAbh i2 � S2
AbMn�f1ZT

Mnj1 � f2ZT
Mnj2� � S2

AbMn ZT
Mn


 � �16a�

and

RiJh i � f1 RiJh i1 � f2 RiJh i2 � ÊiJAb�S2
AbMn ÿ IAbMn��f1ZT

Mnj1 � f2ZT
Mnj2�

� ÊiJAb�S2
AbMn ÿ IAbMn� ZT

Mn


 �
; �16b�

where ZT
Mn


 �
is the average eigen®eld in the double-inclusion. Eqs. (16a) and (16b) show that the

average ®eld in the double-inclusion is completely determined by the shape and orientation of X2

and the average eigen®eld in the double-inclusion, regardless of the shape and orientation of X1.
The analysis for the double-inclusion can be easily extended to a multi-inclusion, in which the

eigen®eld is speci®ed as

ZT
Ab�x� �

Xn

r�1

Hr�x�ZT
Abjr: �17�

Again, eigen®elds in all the phases are assumed to be uniform. The average ®eld in the multi-
inclusion can be imagined to be due to the sum of eigen®eld �ZT

Abjr ÿ ZT
Abjr�1� in Xr�r � 1! nÿ 1�,

and ZT
Abjn in Xn. The average ®eld in Ca (with volume fraction fa) due to the presence of eigen®eld

in Xb, ZAbh iab, is exactly given by

ZAbh iab �

Pb
r�1

fr=fa�Sa
AbMn ÿ Saÿ1

AbMn��ZT
Mnjb ÿ ZT

Mnjb�1�; Xa � Xb;

Sb
AbMn�ZT

Mnjb ÿ ZT
Mnjb�1�; Xa � Xb 6� Xn;

Sn
AbMnZT

Mnjn; Xb � Xn;

8>>>><>>>>: �18�
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from which the average ®eld over Cr is determined to be

ZAbh i1 �
Xn

r�1

ZAbh i1r � S1
AbMnZT

Mnj1 �
Xn

r�2

�Sr
AbMn ÿ Srÿ1

AbMn�ZT
Mnjr �19a�

and

ZAbh ir �
Xn

r0�1

ZAbh irr0 �
Sr

AbMn ÿ Srÿ1
AbMn

fr

Xrÿ1

r0�1

fr0ZT
Mnjr0 � Sr

AbMn

 
ÿ Sr

AbMn ÿ Srÿ1
AbMn

fr

Xrÿ1

r0�1

fr0

!
ZT

Mnjr

�
Xn

r0�r�1

�Sr0
AbMn ÿ Sr0ÿ1

AbMn�ZT
Mnjr0 ; r � 2! n: �19b�

When all Xr are of similar shape and coaxial, Eqs. (19a) and (19b) can be simpli®ed as

ZAbh ir � SAbMnZT
Mnjr; r � 1! n �20a�

and

RiJh ir � ÊiJAb�SAbMn ÿ IAbMn�ZT
Mnjr; r � 1! n; �20b�

so that the average ®eld in the multi-inclusion is still given by Eqs. (16a) and (16b), with S2
AbMn

replaced by SAbMn.

3.4. Multi-inhomogeneity problem

The solution of multi-inclusion problem can be used to solve the multi-inhomogeneity problem,
generalizing Eshelby's equivalent-inclusion concept [3]. We ®rst consider an ellipsoidal inhomo-
geneity X2 containing another ellipsoidal inhomogeneity X1 imbedded in an in®nite matrix D with
magnetoelectroelastic moduli EiJAb, see Fig. 3a. X1 and X2 do not need to be similar and coaxial.
The magnetoelectroelastic moduli of the double-inhomogeneity can be speci®ed as

ÊiJAb�x� �
X2

r�1

Hr�x�Êr
iJAb: �21�

When a uniform ®eld Z1Ab is applied at the boundary, a disturbance ®eld Zd
Ab will be generated due

to the presence of the inhomogeneities. The ®eld in X2, unlike that in a single inhomogeneity, is
not uniform due to the presence of X1. In such a case, we can de®ne an equivalent double-
inclusion with eigen®eld ZT

Abj1 and ZT
Abj2, having exactly the same geometry as the double-

inhomogeneity, as shown Fig. 3b, to represent the double-inhomogeneity. In order to insure the
equivalency between the inclusion and inhomogeneity, the following consistency relationship
should be satis®ed for C1 and C2

Ê;
iJAb�Z1Ab � Zd

Ab� � ÊiJAb�Z1Ab � Zd
Ab ÿ ZT

Ab�; �22a�
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where Ê;
iJAb is the magnetoelectroelastic moduli of inhomogeneity, and ZT

Ab is the eigen®eld in the
equivalent inclusion. Inserting Eqs. (14a) and (15a) into Eq. (22a) yields

Ê1
iJAb�Z1Ab � S1

AbMnZT
Mnj1 � �S2

AbMn ÿ S1
AbMn�ZT

Mnj2�

� ÊiJAb�Z1Ab � �S2
AbMn ÿ IAbMn�ZT

Mnj1 � �S2
AbMn ÿ S1

AbMn�ZT
Mnj2� �22b�

and

Ê2
iJAb�Z1Ab � S2

AbMnZT
Mnj2 �

f1

f2

�S2
AbMn ÿ S1

AbMn��ZT
Mnj1 ÿ ZT

Mnj2��

� ÊiJAb�Z1Ab � �S2
AbMn ÿ IAbMn�ZT

Mnj2 �
f1

f2

�S2
AbMn ÿ S1

AbMn��ZT
Mnj1 ÿ ZT

Mnj2��; �22c�

where b and c are consistency relationships for C1 and C2, respectively. The left-hand side of the
equation denotes actual ®eld in the double-inhomogeneity, while the right-hand side of equation
represents the ®eld in the equivalent double-inclusion. Eqs. (22a)±(22c) can be solved to yield the
eigen®eld in the double-inclusion, ZT

Abjr, as function of far-®eld loading Z1Ab, and the average
disturbance ®eld in the double-inhomogeneity can then be determined from Eqs. (16a) and (16b).
When X1 and X2 are similar and coaxial, we will have

Fig. 3. A double-inhomogeneity X1 and X2 embedded in an in®nite matrix: (a) the double inhomogeneity; (b) the

equivalent double-inclusion.
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ZT
Abjr � ��ÊiJAb ÿ Êr

iJAb�ÿ1ÊiJMn ÿ SAbMn�ÿ1Z1Mn; r � 1; 2: �23�

The generalization to the multi-inhomogeneity is straightforward. For coaxial multi-inhomoge-
neity with similar shape, Eqs. (23), (20a) and (20b) are still valid, with r range from 1 to n.

3.5. Multi-inhomogeneous-inclusion problem

We further consider the multi-inhomogeneous-inclusion problem, where the inhomogeneity not
only has di�erent magnetoelectroelastic moduli from the matrix, but also has di�erent eigen®eld
due to, for example, di�erent thermal moduli. We ®rst consider the double-inhomogeneous-
inclusion as shown in Fig. 4a, where an ellipsoidal inhomogeneous-inclusion X2 containing
another ellipsoidal inhomogeneous-inclusion X1 is imbedded in an in®nite matrix D with mag-
netoelectroelastic moduli ÊiJAb. The magnetoelectroelastic moduli and thermal moduli of the
double-inhomogeneous-inclusion can be speci®ed as

ÊiJAb�x� �
X2

r�1

Hr�x�Êr
iJAb �24a�

and

ZT
Ab�x� �

X2

r�1

Hr�x�ZT
Abjr: �24b�

Fig. 4. A double-inhomogeneous-inclusion X1 and X2 embedded in an in®nite matrix: (a) the double-inhomogeneous-

inclusion; (b) the equivalent double-inclusion.
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When a uniform ®eld Z1Ab is applied at the boundary of in®nite matrix, a disturbance ®eld Zd
Ab will

be generated due to the presence of the inhomogeneous-inclusion. As in the case of double-in-
homogeneity, we can de®ne an equivalent double-inclusion with eigen®eld Z�Abj1 and Z�Abj2, having
exact same geometry as the double-inhomogeneous-inclusion, as shown in Fig. 4b, to represent
the double-inhomogeneous-inclusion. In order to insure the equivalence, the following consis-
tency relationship should be satis®ed by C1 and C2

Ê0iJAb�Z1Ab � Zd
Ab ÿ ZT

Abjr� � ÊiJAb�Z1Ab � Zd
Ab ÿ ZT

Abjr ÿ Z�Abjr� � EiJAb�Z1Ab � Zd
Ab ÿ �ZT

Abjr�; �25a�

where �ZT
Abjr � ZT

Abjr � Z�Abjr is the equivalent eigen®eld in the double-inclusion. Inserting Eqs. (14a)
and (15a) into Eq. (25a) yields

Ê1
iJAb�Z1Ab � S1

AbMn
�ZT

Mnj1 � �S2
AbMn ÿ S1

AbMn��ZT
Mnj2 ÿ ZT

Abj1�

� ÊiJAb�Z1Ab � �S1
AbMn ÿ IAbMn��ZT

Mnj1 � �S2
AbMn ÿ S1

AbMn��ZT
Mnj2� �25b�

and

Ê2
iJAb�Z1Ab � S2

AbMn
�ZT

Mnj2 �
f1

f2

�S2
AbMn ÿ S1

AbMn���ZT
Mnj1 ÿ �ZT

Mnj2� ÿ ZT
Abj2�

� ÊiJAb�Z1Ab � �S2
AbMn ÿ IAbMn��ZT

Mnj2 �
f1

f2

�S2
AbMn ÿ S1

AbMn���ZT
Mnj1 ÿ �ZT

Mnj2��: �25c�

Eqs. (25a)±(25c) can be solved to yield the eigen®eld in the double-inclusion, �ZT
Abjr, and the average

disturbance ®eld in the double-inhomogeneous-inclusion can then be determined from Eqs. (16a)
and (16b). When X1 and X2 are similar and coaxial, we will have

Z�Abjr � ��ÊiJAb ÿ Êr
iJAb�ÿ1ÊiJMn ÿ SAbMn�ÿ1Z1Mn

� ��ÊiJAb ÿ Êr
iJAb�ÿ1ÊiJMn ÿ SAbMn�ÿ1�SMnKl ÿ IMnKl�ZT

Kljr r � 1; 2: �26�

The generalization to the multi-inhomogeneity is straightforward. For coaxial multi-inhomoge-
neity with similar shape, Eqs. (20a), (20b) and (26) are still valid, with r range from 1 to n.

4. Double- and multi-inclusion model

The results presented in Section 3 can serve as a basis for an averaging scheme to predict the
e�ective magnetoelectroelastic moduli of heterogeneous materials. The scheme generalizes the
multi-inclusion model of Hori and Nemat-Nasser on the e�ective elastic moduli [4], and that of Li
on the e�ective thermal expansion coe�cient [5]. We will discuss these two aspects in the following
subsections.
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4.1. The e�ective magnetoelectroelastic moduli

The e�ective magnetoelectroelastic moduli of a composite composed of matrix phase 2 with
magnetoelectroelastic moduli Ê2

iJAb, and reinforcement 1 with moduli Ê1
iJAb, subjected to external

loading Z0
Ab at the boundary, can be approximated by the e�ective moduli of the double-

inhomogeneity shown in Fig. 3. No temperature change is assumed to exist so that the eigen®eld is
zero in both phases. Note that at the boundary of the in®nite body shown in Fig. 3b, it is Z1Ab, not
Z0

Ab, that is assume to be applied. Z1Ab is chosen in such a way that it yields an average ®eld Z0
Ab in

the double inhomogeneity, and thus also in the considered composite. From the de®nition of the
e�ective moduli, we have R1iJ � Rd

iJ


 � � Ê�iJAb�Z1Ab � Zd
Ab


 ��, where the average disturbance ®eld
Zd

Ab


 �
in the double-inhomogeneity can be obtained from Eqs. (16a) and (16b) as function of

ZT
Ab


 �
, so that the e�ective moduli of the double-inhomogeneity (thus the composite materials) is

given by

Ê�iJAb � ÊiJMn�IMnKl � �S2
MnCd ÿ IMnCd�ACdKl��IKlAb � S2

KlEf AEfAb�ÿ1 �27�

with AAbMn de®ned by

AAbMnZ1Mn �
X2

r�1

frZT
Abjr: �28�

The equivalent eigen®eld ZT
Abjr can be determined from the consistency equations (22a) and (22b).

In case of composites with aligned reinforcement of identical shape, ZT
Abjr is given by Eq. (23). The

extension to the multi-phase composite is straightforward. When the reinforcements are aligned
and of similar shape, the equivalent eigen®eld is given by Eq. (23) ranging from 1 to n, and the
e�ective moduli are given by

Ê�iJAb � ÊiJMn�IMnKl � �SMnCd ÿ IMnCd�RCdKl��IMnKl � SMnCdRCdKl�ÿ1 �29�

with RAbMn �
Pn

r�1 frRr
AbMn, and Rr

AbMn � ��ÊiJAb ÿ Êr
iJAb�ÿ1ÊiJMn ÿ SAbMn�ÿ1

.

4.2. The e�ective thermal moduli

The e�ective thermal moduli of a composite composed of matrix phase 2 with magnetoelec-
troelastic moduli Ê2

iJAb and thermal moduli PKlj2, and reinforcement 1 with magnetoelectroelastic
moduli E1

iJAb and thermal moduli PKlj1, subjected to zero Z0
Kl at the boundary, can be approxi-

mated by the e�ective moduli of the double-inhomogeneous-inclusion in Fig. 4. The eigen®eld in
the inhomogeneous-inclusion is ZT

Kljr � �Êr�ÿ1
KliJPiJ jrh. In this situation, the applied ®eld at the

boundary of the in®nite medium should be chosen such that the average ®eld in the composite is
zero. When the reinforcement is aligned and of identical shape, it is determined from Eq. (26)

Z1Ji � ÿ�IJiMn � SJiAbRAbMn�ÿ1
X2

r�1

frSMnEf �Rr
EfGh�SGhCd ÿ IGhCd� � IEfCd �ÿ1ZT

cDjr: �30�
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The average ®eld in the double-inhomogeneity can then be obtained from Eqs. (16a), (16b) and
(26), and the e�ective thermal moduli of the double-inhomogeneity (thus the composite materi-
als), according to P�iJh � ÿ RiJh i, is given by

P�iJ � ÊiJKl�IKlAb � RKlCdSCdAb�ÿ1
X2

r�1

fr�Rr
AbEf �SEfGh ÿ IEfGh� � IAbGh��Êr�ÿ1

GhlMPr
lM : �31�

The extension to the multi-phase composite is straightforward. When all the reinforcements are
aligned and of similar shape, Eq. (31) is still valid, with the summation raging from 1 to n.

From Eqs. (27) and (31), it is clear that the estimated e�ective moduli not only depend on the
magnetoelectroelastic moduli of constituents, but also depend on the magnetoelectroelastic mo-
duli of in®nite matrix, ÊiJAb, which can be chosen arbitrarily. When the magnetoelectroelastic
moduli of the matrix are assigned to the in®nite medium, the generalized Mori±Tanaka approach
is recovered [15,18,32]. If the unknown e�ective moduli of the composite are assigned instead, the
self-consistent approach is recovered. This is also true for elastic composites, as shown by Nemat-
Nasser and Hori [4]. They further showed that the e�ective moduli predicted by the double-
inclusion model comply with variational bounds. Such an evaluation cannot be made here, since
the variational bounds for magnetoelectroelastic moduli is yet to be developed.

5. Numerical results and discussion

In this section, we will present some numerical results to demonstrate the applicability of the
theory. We will consider a transversely isotropic material exhibiting full coupling between static
elastic, electric, and magnetic ®elds, with unique axis along x3 direction. The independent material
constants are the elastic constants C11, C12, C13, C33, and C44; piezoelectric constants e31, e33, and
e15; piezomagnetic constants q31, q33, and q15; dielectric constants j11 and j33; magnetoelectric
constants a11 and a33; magnetic constants l11 and l33; thermal stress constants k11 and k33;
pyroelectric constant p3; and pyromagnetic constant m3. This is the most general situation, and for
a particular material, some of the coupling coe�cients may be zero.

5.1. Magnetoelectroelastic Eshelby tensors

We ®rst demonstrate the applicability of the numerical algorithm for evaluation the mag-
netoelectroelastic EshelbyÕs tensors, which is implemented in a FORTRAN program. We have
calculated the magnetoelectroelastic EshelbyÕs tensors numerically for circular cylindrical inclu-
sion and thin-disc inclusions, and compared them with the available exact closed-form expression
obtained by Li and Dunn [1]. The material moduli we used are listed in Table 3, while the
comparisons are listed in Table 4. We choose U and V to be 16 and 64, respectively, and the aspect
ratios for cylindrical and thin-disc inclusion to be 106 and 10ÿ6, respectively. It is found that the
numerical results agree with exact solutions at ®fth signi®cant digit. Thus the developed algorithm
can be used to evaluate magnetoelectroelastic EshelbyÕs tensors accurately.
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5.2. The e�ective magnetoelectroelastic moduli

We then applied the multi-inclusion model to predict the e�ective magnetoelectroelastic
moduli of a piezoelectric±piezomagnetic composite. Piezoelectric phase is BaTiO3, while
piezomagnetic phase is CeFe2O4. The magnetoelectroelastic moduli of both phases are listed
in Table 5. Assigning the material properties of piezomagnetic phase CeFe2O4 to the in®nite
medium, we are able to estimate the e�ective magnetoelectroelastic moduli of BaTiO3 ®ber
reinforced CeFe2O4, and BaTiO3±CeFe2O4 laminate. Neither phase shows magnetoelectric
coupling. The composites, however, show magnetoelectric coupling, demonstrated by the non-
zero magnetoelectric coe�cients a�11 and a�11, as shown in Fig. 5. It is observed that in ®brous
composites, a�33 is three orders larger than a�11, both being positive, while in laminated com-
posites, a�11 is three orders larger than a�33, both being negative. These dramatic di�erences in the
composites of di�erent microgeometry can be explained by the following argument. In ®brous
composites, when E3 is applied at the boundary of both phases, r11 and r33 are induced in the
piezoelectric phase. As required by the continuity of traction, r11 is also induced in the piezo-
magnetic phase. This second-order stress causes H3 in piezoelectric phase, and then H3 in the
piezoelectric phase because H3 is continuous across phase boundary. Since we know from the
boundary condition that average H3 is zero in composite, there must be B3 in the piezomagnetic
phase to cancel the H3 caused by the second-order stress. However, when E1 is applied at the

Table 4

Comparisons between EshelbyÕs tensors evaluated by numerical integration and exact solution

Cylindrical S1111 S1122 S1133 2S2323, S4141,

S5151

S1212 S1143

��10ÿ11�
S1153

��10ÿ8�

Numerical 0.70061 0.10184 0.29808 0.5 0.59878 )0.76923 0.10145

Exact 0.70061 0.10184 0.29808 0.5 0.59878 )0.76923 0.10145

Thin-disc S3311 2S2323, S3333,

S4343, S5353

S2342 ��10ÿ9� S2352 ��10ÿ7� S4311 ��1011� S5311 ��10ÿ7�

Numerical )0.17706 1 0.25607 0.12141 0.11910 )0.44855

Exact )0.17706 1 0.25607 0.12141 0.11910 )0.44855

Table 3

Material constant for Eshelby's tensors calculationa

C11 C12 C13 C33 C44 a11

286 173 170 269.5 45.3 0:005� 10ÿ9

e15 e31 e33 j11 j33 a33

11.6 )4.4 18.6 0:08� 10ÿ9 0:093� 10ÿ9 0:003� 10ÿ9

q15 q31 q33 l11 l33 l33

550 580.3 699.7 ÿ590� 10ÿ6 157� 10ÿ6 157� 10ÿ6

a Units: elastic constants, GPa; dielectric constants, C2/Nm2; magnetic constants, N s2/C2; piezoelectric constants, C/m2;

piezomagnetic constants, N/Am; magnetoelectric coe�cients, Ns/VC.
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boundary of both phases of a ®brous composite, r13 is induced in the piezoelectric phase ®rst,
and then in the piezomagnetic phase owing to the traction continuity at the phase boundary.
This r13 induces H1 in the piezomagnetic phase. Then H1 is induced in the piezoelectric phase to
maintain an overall zero magnetic ®eld in the composite; this H1 induces B1 in the piezoelectric
phase. The di�erence between a�11 and a�33 is due to the di�erence in the magnetic constants of
the piezoelectric and piezomagnetic phases. For a�33, B3 is caused by the piezomagnetic phase; for
a�11, B1 is caused by the piezoelectric phase, as we just discussed. Since the magnetic constant of
the piezomagnetic phase is two orders larger than that of piezoelectric phase, a�33 is three orders
larger than a�11 in ®brous composite. Similar reasoning explains why a�11 is three orders larger
than a�33 in laminated composite, as well as the sign di�erence of magnetoelectric coe�cients in
®brous and laminated composites.

Finally, it is worthwhile to note that there is an order of magnitude di�erence between the
predicted and measured magnetoelectric coe�cients for the practical composites. The reason is
probably due to the extent of poling for the piezoelectric and piezomagnetic constituents. That
is, the grain orientation distributions in piezoelectric and piezomagnetic phases may not be in
optimized distribution, and thus, the piezoelectric constants and piezomagnetic constants in
constituents may have not achieved the values used in the calculations. The porosity and mi-
crocracks also tends to degrade the performance of the constituents and composites. To overcome
this di�culty, it is necessary to realize the maximum piezoelectric e�ect in piezoelectric phase,
maximum piezomagnetic e�ect in piezomagnetic phase, and maximum interaction between the
piezoelectric and piezomagnetic phases. The maximum piezoelectric and piezomagnetic phases
can be achieved by carefully tailoring the texture in the constituent materials, for example, by the
epitaxial ®lm growth; the e�ects of texture on the overall piezoelectric moduli have been discussed
in [33,34]. To maximize the interaction between the piezoelectric and piezomagnetic phases, a
diversion from the ®brous or laminated con®guration may be necessary, as well as additional
phases. For example, the addition of a conducting phase in the piezomagnetic material will

Table 5

Materials properties of BaTiO3 and CoFeO4
a

C11 C12 C13 C33 C44

BaTiO3 166 77 78 162 43

CoFe2O4 286 173 170 269.5 45.3

e15 e31 e33 j11 j33

BaTiO3 11.6 )4.4 18.6 11:2� 10ÿ9 12:6� 10ÿ9

CoFe2O4 0 0 0 0:08� 10ÿ9 0:093� 10ÿ9

q15 q31 q33 l11 l33

BaTiO3 0 0 0 5� 10ÿ6 10� 10ÿ6

CoFe2O4 550 580.3 699.7 ÿ590� 10ÿ6 157� 10ÿ6

a Units: elastic constants, GPa; dielectric constants, C2/Nm2; magnetic constants, Ns2/C2; piezoelectric constants, C/m2;

piezomagnetic constants, N/Am; magnetoelectric coe�cients, Ns/VC:
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increase its dielectric constant, and thus, e�ectively increase the local electric ®eld in piezoelectric
phase, and enhance its piezoelectric response.

6. Conclusions

The multi-inclusion and inhomogeneity problems in a magnetoelectroelastic solid have been
studied. A numerical algorithm is developed to evaluate magnetoelectroelastic EshelbyÕs ten-
sors. It is shown that the average ®eld in an annulus (between two ellipsoidal surfaces) sur-
rounding an inclusion embedded in an in®nite matrix will only depend on the shapes and
orientations of the two ellipsoids, from which the exact average ®eld in a multi-inclusion
embedded in an in®nite matrix is obtained. The average ®eld in a multi-inhomogeneity is then
solved using the concept of equivalent multi-inclusion. The solutions of multi-inclusion
and inhomogeneity problems serve as basis for an averaging scheme to model the e�ective
magnetoelectroelastic moduli of heterogeneous materials. Some numerical results have been

Fig. 5. Magnetoelectric coe�cients of piezoelectric-piezomagnetic composites: (a) ®brous composite; (b) laminated composite.
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presented to demonstrate the applicability of the algorithm, and the proposed multi-inclusion
model. The potential techniques to enhance the magnetoelectric e�ect in the practical composite
are also discussed.
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