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Viscoelectroelastic behavior of heterogeneous piezoelectric solids
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We study the viscoelectroelastic behavior of heterogeneous piezoelectric solids, focusing on the
connection between heterogeneity and coupled mechanical and electrical relaxations. Our approach
is based on the existence of a correspondence between quasistatic viscoelectroelasticity and static
piezoelectricity when linear constitutive response exists. We couple this correspondence principle
with micromechanics models to predict the overall behavior of heterogeneous piezoelectric solids in
terms of microstructural details. We devote specific attention to a class of two-phase materials
consisting of a lossless piezoelectric phase embedded in a lossy~mechanically and electrically!
matrix and obtain closed form expressions for the effective complex electroelastic moduli.
Numerical results are presented and discussed, and qualitative agreement with experiment is
observed. ©2001 American Institute of Physics.@DOI: 10.1063/1.1337595#
id
n
es
st
w
a

at
e

bu
ta
s.
re
e
ce

t
ug
a

e
he
co
lu
ys
a
to
-
ol
b
s
e

ge
s

pli-
In
sig-

ly-
tric
er-
the

tric

ric
ding
has
tic,
sol-
ent
he
ils
-
uli

e
e of

as

of
ese
cus
ects
we

co-
is

stic
tic
IV
I. INTRODUCTION

Widespread practical applications of piezoelectric sol
in numerous technological fields have fueled the understa
ing of many of their physical properties. A set of properti
that has received little study, though, are the complex ela
dielectric, and piezoelectric constants. Actually, the first t
have received considerable attention in uncoupled elastic
dielectric solids and many excellent texts exist.1–3 Of course
the complex elastic and dielectric constants are associ
with mechanical and electrical losses in the material, resp
tively, and in linear theoretical treatments, alternative,
equivalent, representations exist. These include the loss
gent and quality factor, for both elastic and electric losse

Complex piezoelectric constants, however, have
ceived far less attention in the literature, but they pres
many interesting features. Their complex parts do not ne
sarily represent losses, and they are influenced by both
mechanical and dielectric losses and their coupling thro
the piezoelectric effect. The rigorous thermodynamic tre
ment of complex piezoelectric constants~their existence,
constraints on properties, etc.! has existed for quite som
time,4–7 and a handful of observations exist. In most of t
observed cases, the source of the complex piezoelectric
stants was heterogeneity at some length scale. These inc
observed Debye-type relaxations in ferroelectric single cr
tals that have been attributed to ferroelectric domain w
motion,8 and relaxation in polycrystalline ceramics due
motion of 90° domain walls.9–12 Complex piezoelectric con
stants have also been observed in PVDF piezoelectric p
mers where they are attributed to the strong interactions
tween amorphous and highly oriented crystalline phase13

At a higher length scale, they have been observed in bon14

and in piezoelectric ceramic/polymer matrix composites.15–17

In bone, the are strongly influenced by the highly hetero
neous microstructure. Their role in polymer matrix compo

a!Electronic mail: jjli@its.caltech.edu
2890021-8979/2001/89(5)/2893/11/$18.00
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ites is especially significant because of the extensive ap
cations of such materials in transducer applications.
underwater sonar applications, temperature changes can
nificantly affect mechanical and electric losses in the po
mer phase, which in turn impact the complex piezoelec
constants in a nontrivial way. For example, due to the int
action between the piezoelectric effect of the ceramic and
elastic and dielectric relaxation of the polymer, piezoelec
relaxation will be produced in the composite~demonstrated
by complex piezoelectric constants!, even though neither
phase shows coupled elastic and dielectric relaxation.

Although experimental studies of complex piezoelect
constants in heterogeneous media are limited, correspon
modeling efforts are rarer, even though substantial effort
been directed toward micromechanical modeling of elas
dielectric, and piezoelectric constants of heterogeneous
ids in the absence of losses. The latter include, in rec
years, efforts toward estimating the effective moduli of t
piezoelectric composites in terms of microstructural deta
and constituent properties;18–26 establishing exact connec
tions between different components of the effective mod
and internal electroelastic fields;27–33 and establishing rigor-
ous upper and lower bounds on the effective moduli.34–37

In this work we study the effect of relaxation in th
phases of a heterogeneous solid on the overall respons
the solid. Our approach follows along similar lines
Hashin,38,39 Weng and Li,40 and Dunn41 regarding viscoelas-
tic composites. We do not consider details of the origin
relaxation in individual phases, but instead we assume th
relaxations can be represented by complex moduli. Our fo
is then on the interaction of these phases and how that aff
the overall behavior of the heterogeneous solid. In Sec. II
introduce the basic equations and notation ofviscoelectro-
elasticity. The correspondence between the quasistatic vis
electroelastic problem and the static piezoelectric problem
established in Sec. III, where the complex electroela
moduli are introduced. The effective complex electroelas
moduli for heterogeneous materials are studied in Sec.
3 © 2001 American Institute of Physics
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using the correspondence principle. First, simple microstr
tural models are developed to try to identify the key pheno
ena, then more realistic composite microstructures are
lyzed using the Mori–Tanaka mean field approach.42 Finally,
numerical results are presented and compared with mea
ments in Sec. V.

II. BASIC EQUATIONS AND NOTATION

Uncoupled elastic and dielectric relaxation of materi
has been studied extensively and integral constitutive eq
tions have been used to express the dependence of the
rent material response on the mechanical and electric loa
history. In a similar manner, the constitutive equations
the linear viscoelectroelastic effect, where the elastic and
electric relaxation are coupled, through the piezoelectric
fect, can be written as

s i j ~x,t !5E
2`

t FCi jkl ~x,t2t!
d«kl~x,t!

dt

2ei jk~x,t2t!
dEk~x,t!

dt Gdt,

~1!

Di~x,t !5E
2`

t Feikl~x,t2t!
d«kl~x,t!

dt

1k ik~x,t2t!
dEk~x,t!

dt Gdt,

wheres i j and« i j are stress and strain tensors, respective
Di and Ek are the electric displacement and field, resp
tively; Ci jkl , ei jk , andk ik are elastic, piezoelectric, and d
electric moduli, respectively;x is the position vector of a
material point~in general all the quantities are regarded
functions of position!; t andt are the current and a referenc
time, respectively. In general, each component ofCi jkl , ei jk ,
andk ik may have different time dependence. It is observ
from the constitutive equations that~i! elastic and electric
relaxations are fully coupled through the piezoelectric rel
ation moduli ei jk ; ~ii ! by ignoring the piezoelectric relax
ation, the familiar constitutive equations for uncoupled m
chanical and dielectric relaxations are recovered;~iii ! the
stress and electric displacement depend on the strain
electric field history. These characteristics distinguish
quasistatic viscoelectroelastic effect from the static pie
electric effect, as well as from uncoupled mechanical a
dielectric relaxations.

In the analysis that follows, it is convenient to treat t
elastic and electric fields on equal footing. To this end,
notation introduced by Barnett and Lothe43 for piezoelectric
analysis is utilized. This notation is identical to convention
indicial notation with the exception that lowercase subscr
take on the range 1→3, while uppercase subscripts take
the range 1→4 and repeated uppercase subscripts
summed over 1→4. With this notation, the field variable
take the following forms:

S iJ~x,t !5H s i j ~x,t !

Di~x,t !
, ZJi~ t !5H « i j ~x,t !

2Ei~x,t !
,

~2!
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UJ~ t !5H uj~x,t !,

f~x,t !,

J51,2,3

J54,

and the electroelastic moduli can be written as

EiJKl~x,t2t!55
Ci jkl ~x,t2t!, J,K51,2,3

ei j l ~x,t2t!, K54, J51,2,3

eikl~x,t2t!, J54, K51,2,3

2k i l ~x,t2t!, J54, K54.

~3!

With the electroelastic fields and relaxation moduli written
this abbreviated notation, the constitutive equations~1! can
be rewritten as

S iJ~x,t !5E
2`

t

EiJKl~x,t2t!
dZKl~x,t!

dt
dt. ~4!

Equation~4! reduces to the static piezoelectric constituti
equations when the electroelastic relaxation moduli do
depend on time, i.e., when there is no relaxation.

The equilibrium and gradient equations for viscoelect
elastic solid with a distribution of body force and electr
charge are

S iJ,i~x,t !1rJ~x,t !50 ~5!

and

ZJi~x,t !5UJ,i~x,t !, ~6!

whererJ is the body force whenJ equals to 1–3, and electri
charge whenJ equals 4; the subscript comma is used
denote the partial differentiation with respect to the cor
sponding coordinate. The problem now is to solve the el
troelastic fields modeled by Eqs.~4!–~6!, and subjected to
the following boundary conditions:

S iJ~x,t !5S iJ
0 ~ t ! on S1 ~7a!

and

UJ~x,t !5UJ
0~x,t ! on S2 , ~7b!

whereS1 andS2 combined to form the surface of the solid
Note that now all the field variables are functions of time

III. CORRESPONDENCE PRINCIPLE AND COMPLEX
MODULI

A. Viscoelectroelastic correspondence principle

Consider the Laplace transform of a functionf (x,t),
f̂ (x)5*0

` f (x,t)e2st dt, where s is the transform variable
Taking the Laplace transform of Eqs.~4!–~7! yields

Ŝ iJ~x!5sÊiJKl~x!ẐKl~x!, ~8!

Ŝ iJ,i~x!1 r̂J~x!50, ~9!

ẐJi~x!5ÛJ,i~x!, ~10!

Ŝ iJ~x!5Ŝ iJ
0 on S1 , ~11!

ÛJ~x!5ÛJ
0~x! on S2 . ~12!
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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In the context of linear viscoelasticitysÊiJKl are called the
transform domain~TD! moduli; we adopt the same termino
ogy here. The form of the set of Eqs.~8!–~12! is identical to
the set of equations for linear static piezoelectricity when
transforms of the viscoelectroelastic variables are associ
with the corresponding static electroelastic variables,
sÊiJKl is associated with the static electroelastic mod
EiJKl . For the problem modeled by Eqs.~4!–~7!, it then
follows that theLaplace-transformed viscoelectroelastic s
lution is obtained directly from the solution of the corr
sponding static electroelastic problem by replacing sta
electroelastic moduli EiJKl with the transform domain

moduli sÊiJKl . The final solution can be realized by invertin
the transformed solution. This is theviscoelectroelastic cor-
respondence principle. This correspondence principle re
veals that static piezoelectric solutions can be easily c
verted to quasistatic viscoelectroelastic solutions. T
correspondence principle is directly analogous to corresp
dence principles in linear elasticity and electrostatics of
electrics. It is applicable to both homogeneous and hetero
neous materials.

B. Complex electroelastic moduli

Assume that the viscoelectroelastic solid is subjected
a sinusoidal strain and electric field

ZJi~x,t !5ZJi~x!eivt, ~13!

wherev is the circular frequency andi 5A21. Substituting
Eq. ~13! into Eq. ~4!, and making the change of variablesp
5t-t yields

S iJ~x,t !5 ivZKl~x!eivtE
0

`

EiJKl~x,p!e2 ivp dp. ~14!

Let

EiJKl
c ~x,iv!5 ivE

0

`

EiJKl~x,p!e2 ivp dp, ~15!

where the superscriptc is used to explicitly denote comple
quantities, Eq.~14! can be recast as

S iJ~x,t !5EiJKL
c ~x,iv!ZKl~x,t !. ~16!

Because Eq.~16! formally resembles the static piezoelectr
constitutive equation, theEiJKL

c are calledcomplex electro-
elastic moduli. EiJKL

c can be separated into real and imagina
parts:

EiJKL
c ~x,iv!5EiJKl

r ~x,iv!1 iEiJKl
i ~x,iv!, ~17!

where the superscriptsr and i denote the real and imaginar
parts of the complex moduli. The real and imaginary parts
the complex moduli are related to the piezoelectric entha
stored and dissipated by the viscoelectroelastic solid a
thus, are called thestorage moduliand loss moduli, respec-
tively. By choosing a different set of independent variabl
an alternative representation of the complex electroela
moduli related to internal energy can also be obtained.
ratio of loss moduli to storage moduli is called theloss tan-
gent.

Let us now consider the transform domain moduli,
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sÊiJKl~x!5sE
0

`

EiJKl~x,t !e2st dt. ~18!

Comparing Eq.~18! to Eq. ~15! shows that the functiona
dependence of the complex electroelastic moduliEiJKL

c ( iv)
on frequencyiv is precisely the same as the functional d
pendence of transform domain modulisÊiJKl on the trans-
form variables. Therefore, we have

EiJKL
c ~x,iv!5 ivÊiJKl~x,iv!. ~19!

From the correspondence principle established in Sec. II
it is clear that there is also a correspondence between
complex electroelastic moduliEiJKL

c ( iv) and the static elec-
troelastic moduli of piezoelectric solid.

IV. THE EFFECTIVE COMPLEX ELECTROELASTIC
MODULI OF HETEROGENEOUS SOLIDS

We have considered arbitrary loading, material prop
ties, and field variables in Secs. III A and III B. Now w
sharpen our focus and turn our attention to heterogene
viscoelectroelastic solids subjected to sinusoidal electroe
tic loading, so that Eq.~16! and the complex electroelasti
moduli are applicable. Consider a multiphase composite w
piecewise homogeneity described by

EiJKl
c ~x,t !5(

r
EiJKl

c ~ t !urF r~x!, ~20!

where the subscriptr and the symbolur are used to denote
properties associated with phaser . F r(x) is a characteristic
function describing the topology of the microstructure of t
heterogeneous material such that

F r~x!5H 1,

0,

xPr

x¹r .
~21a!

It has the following property:

^F r~x!P~x!&5cr Pr , ~21b!

where^•&5(1/V)*V(•)dV denotes an average over the vo
ume of heterogeneous materialV; P(x) is any integrable
material property that varies over the microstructure, andr

is the value of that property in phaser; cr is the volume
fraction of phaser and satisfies( rcr51. If the characteristic
length scale of heterogeneity is much less than the wa
length of the applied loading, the effective constitutive equ
tion can be expressed in term of the effective complex e
troelastic moduliEiJKL* ( iv),

^S iJ~x,t !&5EiJKL* ~ iv!^ZKl~x,t !&. ~22!

The correspondence between the complex electroela
moduliEiJKL

c ( iv) and the TD moduliivÊiJKl( iv), Eq.~19!,
combined with the viscoelectroelastic correspondence p
ciple established in Sec. III, leads to a correspondence
tween the effective complex electroelastic moduli of hete
geneous viscoelectroelastic solids and the effective st
electroelastic moduli of piezoelectric solids. That is,the ef-
fective complex electroelastic moduli of a heterogeneous
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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terial are found by replacing the constituent static electr
elastic moduli by the constituent complex electroelas
moduli in the relationships between the effective static e
troelastic moduli and the constituent static electroelas
moduli of the heterogeneous piezoelectric solid. This corre-
spondence principle can be coupled with any exact result
with a micromechanics model to estimate the effective co
plex moduli of heterogeneous viscoelectroelastic solids
Secs. IV A and IV B we focus on two-phase composites c
sisting of one phase that is piezoelectric and lossless~e.g., a
piezoelectric ceramic! and another phase that is not piez
electric, but is both elastically and electrically lossy~e.g., a
polymer!.

A. One-dimensional model systems

To demonstrate the basic ideas, we first consider
one-dimensional models; the constitutive equations of
composite are given by

s5Cc«2ecE, D5ec«1kcE. ~23!

In the following analysis, we assume that phase 1 is
uncoupled viscoelastic material with volume fractionc1 ,
elastic constantC1

c5C1
r 1 iC1

i , and dielectric constantk1
c

5k1
r 1 ik1

i ; and phase 2 is the lossless piezoelectric mate
with volume fractionc2 , elastic constantC2 , piezoelectric
zo
th

-

e

ts
o

. 1
er
n
se
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constante2 , and dielectric constantk2 , all being real. In the
following we will refer to phase 1 as theviscoelastic mate-
rial and phase 2 as thepiezoelectric material, recognizing
that each possesses the properties just outlined.

First consider the case where the viscoelastic and pie
electric materials are arranged in parallel and electric an
elastic loading is applied parallel to the layering. In this co
figuration, the strain« and electric fieldE in both phases are
equal and equal to the average strain and average ele
field in the composite, respectively. As a result, each co
ponent of the effective moduli of the composite is giv
exactly by the linear rule of mixtures. Notable in this case
the fact that the composite exhibits no piezoelectric rel
ation.

Now, consider the case where the viscoelastic and pie
electric materials are arranged in series and electric an
elastic loading is applied perpendicular to the layering.
this configuration, the stresss and electric displacementD in
both phases are equal and equal to the average stress
average electric displacement in the composite, respectiv
The average strain and average electric field in the compo
can be straightforwardly determined from the volume av
age of the strain and electric field in the constituents wh
leads to the following expressions for the effective moduli
the composite:
Cr5
C1

r ~c1e2
21c1C2k21c2C2k2

r !

c1
2e2

21~c1C21c2C1
r !~c1k21c2k1

r !
, Ci5

c1@~c1e2
21c2C2k1

r 1c1C2k2!2C1
i 2c2

2C1
r2e2

2k1
i #

@c1
2e2

21~c1C21c2C1
r !~c1k21c2k1

r !#2
,

er5
c2C1

r k1
r e2

c1
2e2

21~c1C21c2C1
r !~c1k21c2k1

r !
, ei5

c1c2e2@c2C1
r2k2k1

i 1c1C1
r ~e2

21C2k2!k1
i 1k1

r ~c1e2
21c2C2k1

r 1c1C2k2!C1
i #

@c1
2e2

21~c1C21c2C1
r !~c1k21c2k1

r !#2
,

~24!

k r5
k1

r ~c1e2
21c1C2k21c2C1

r k2!

c1
2e2

21~c1C21c2C1
r !~c1k21c2k1

r !
, k i5

c1$c1
2e2

4k1
i 1~c1C21c2C1

r !2k2
2k1

i 1e2
2@2c1~c1C21c2C1

r !k2k1
i 2c2

2k1
r2C1

i #%

@c1
2e2

21~c1C21c2C1
r !~c1k21c2k1

r !#2
.

ese
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As is apparent from Eqs.~24!, piezoelectric loss results from
the interaction between piezoelectric coupling of the pie
electric material and the elastic and dielectric losses of
viscoelastic material. This is shown by dependence ofei on
the product ofe2 andC1

i or k1
i of the polymer. Sincek1

i is
negative whileC1

i is positive,ei may change sign with re
spect to change in the volume fraction~note that the sign
convention for dielectric loss moduli is different from th
usual choice!. It can also be concluded from Eq.~24! that the
dielectric loss modulik i and elastic loss moduliCi of the
composite may be larger than the corresponding constan
uncoupled elastic composites due to the piezoelectric c
pling. These phenomena are shown graphically in Fig
where representative numerical results are presented in t
of a map of the real versus imaginary parts of the consta
as the volume fraction of the piezoelectric material increa
from zero to unity. In the calculation, we have usedC1

c

56.3710.157i GPa, k1
c/k054.43120.0585i , C25111
-
e

in
u-
,

ms
ts
s

GPa,k2 /k05830, ande2515.8C2/m. Also shown in Fig. 1
are corresponding results for an uncoupled composite; th
calculations were carried out using the same equations
with e250.

B. Three-dimensional multiphase composites

Turning to more realistic microstructures, let us consid
the polymer-based piezoelectric composites, where the p
mer is elastic, electrically and elastically lossy, and isotrop
and the reinforcement is piezoelectric, lossless, and tra
versely isotropic. Thex3 direction is assumed to be th
unique axis for both the ceramic reinforcement and the co
posite. Owing to the interaction between the viscoelastic
piezoelectric phases, the composite demonstrates the v
electroelastic effect represented by the effective comp
electroelastic moduli. Our goal is to establish the connecti
between the effective complex electroelastic moduli
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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polymer-based composites and the microstructure. We d
by applying the correspondence principle along with
Mori–Tanaka mean-field approach.42 We obtained closed
form expressions for the effective complex moduli. Deta
of the Mori–Tanaka approach are given by Mura44 and
Nemat-Nasser and Hori.45 Its application to piezoelectric ma

FIG. 1. Storage-loss map of electroelastic moduli of one-dimensional s
composite:~a! elastic constant;~b! dielectric constant;~c! piezoelectric
constant.
Downloaded 03 May 2001 to 131.215.48.8. Redistribution subject to AI
so
e

terials can be found in Dunn and Taya.23 The basic concep
of the Mori–Tanaka approach is to approximate the act
average electroelastic fields in the reinforcement by the e
troelastic fields that exist in a single reinforcement embed
in an infinite matrix, subjected to a uniform electroelas
field at the boundary equal to the as yet unknown aver
field in the matrix. The average field in a single reinforc
ment can be obtained using Eshelby’s equivalent inclus
concept.46 The necessary auxiliary problem for piezoelect
media has been solved by Dunn and Taya22 and Dunn and
Wienecke.47 With this combination of the correspondenc
principle and the Mori–Tanaka approach, the effective co
plex electroelastic moduli for a composite consisting of
ellipsoidal piezoelectric phase embedded in a piezoelec
matrix can be expressed as

EiJKl* 5EiJMn
c u11c2~EiJMn

c u22EiJMn
c u1!AMnKl

MT , ~25!

where

AMnKl
MT 5AMnOp

dil @c1I KlOp1c2AKlOp
dil #21 ~26!

and

AMnKl
dil 5@ I KlMn1SKlOpEOpiJ

c21 u1~EiJMn
c u22EiJMn

c u1!#21. ~27!

The Eshelby tensorS is a function of electroelastic moduli o
matrix and aspect ratio of the inclusion, and has been ta
lated in Dunn and Taya22 and Dunn and Wienecke.47 The
results of Eq.~25! simplify considerably for the special case
of fibrous or laminated piezoelectric composites where o
phase is piezoelectric, but lossless, and the other is nonpi
electric, but lossy. The following equations summarize
effective complex electroelastic moduli for such fibrous a
laminated composites. In the equations, the notationu i( i
51,2) denotes the phase~1 5 matrix, 2 5 reinforcement!
and for simplification we use the Hill modulik5(C11

1C12)/2 andm5(C112C12)/2.
Fibrous composites:

kr5
k1

r k21c2m1
r k21c1k1

r m1
r

c1k21c2k1
r 1m1

r
,

ki5
c1@c2~k22k1

r !2m1
i 1~k21m1

r !2k1
i #

~c1k21c2k1
r 1m1

r !2
,

mr5
m1

r @~11c2!k1
r m212m1

r m21c1k1
r m1

r !]

c1k1
r m212c1m1

r m21~11c2!k1
r m1

r 12c2m1
r2

,

es
mi

c1
5

2c2~m22m1
r !2m1

r2

@c1k1
r m212c1m1

r m21~11c2!k1
r m1

r 12c2m1
r2#2

k1
i

1
~11c2!k1

r2m1
r212m2k1

r m1
r ~c1k1

r 12m1
r !1m2

2@~11c2!k1
r214~k1

r 1m1
r !m1

r #

@c1k1
r m212c1m1

r m21~11c2!k1
r m1

r 12c2m1
r2#2

m1
i ,
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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C13
r 52C12

r u11
2c2C11

r u1~C13u222C12
r u1!

c1k21c2k1
r 1m1

r
,

C13
i 52C12
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TABLE I. Electroelastic moduli of PZT-5A and epoxy. Units:Ci j , GPa;ei j , C2/m; k0 ~permittivity of free
space!58.85310212 C2/Nm2.

C11
r C11

j C12
r C12

I k11
r /k0 k11

j /k0

Epoxy 6.37 0.034 3.58 20.012 4.43 20.059
PZT-5A 121 0 75.2 0 916 0

C13 C33 C44 e31 e33 e15 k33 /k0

Epoxy 3.58 6.37 1.40 0 0 0 4.43
PZT-5A 75.2 111 21.1 25.4 15.8 12.3 830
ry
x
r

th
le

fo
e
t

o

-
u
ri
pa
r

re
os

s
su

b

s
un

ue
tr

f-
e

ns is
of

:

where

ar5
c2 e33u2

2

~e33u2
21C33u2 k33u2!2

1S c2 k33u2
e33u2

21C33u2 k33u2
1

c1

2C11
r u1

D
3S c2 C33u2

e33u2
21C33u2 k33u2

1
c1

k11
r u1

D ,

ai5S c2 C33u2
e33u2

21C33u2 k33u2
1

c1

k11
r u1

D c1 C11
i u1

2C11
r u1

2

2
2c1c2 k33u2 k11

i u1
2k11

r u1
2~e33u2

21C33u2 k33u2!
2

c1 k11
i u1

2C11
r u1 k11

r u1
2

.

V. NUMERICAL RESULTS AND DISCUSSION

To demonstrate the applicability of the general theo
we present numerical results for PZT-5A reinforced epo
composites. The material moduli of PZT-5A and epoxy a
summarized in Table I. In order to study the influence of
piezoelectric effect, we also present the effective comp
moduli of composites with pure elastic reinforcement,
which the piezoelectric constants are assumed to be z
Both fibrous composites and laminates are considered. In
following we loosely refer to the phases as theceramicand
the polymer, although more specifically we mean the piez
electric phase and the nonpiezoelectric phase.

It is important to note thatS iJZJi represents the piezo
electric enthalpy rather than the internal energy with the c
rent constitutive representation, thus it is not necessa
positive. The loss tangents, representing the imaginary
of the piezoelectric enthalpy, thus are also not necessa
positive. The overall internal energy dissipated, which is
lated to the piezoelectric enthalpy, however, is always p
tive.

A. Fibrous composites

Figure 2~a! shows the complex moduliC11, C12, C13,
and C33 of piezoelectric and elastic fibrous composite
These are shown in the form of maps of the real ver
imaginary parts of the moduli; other representations can
easily constructed from these results. These constants
identical in the piezoelectric and elastic composites. Thi
because in their definition they are associated with the
form far-field strains«115«22 and «33. These strains are
uncoupled from the electric field in the polymer matrix d
to the fibrous configuration because they only induce elec
ay 2001 to 131.215.48.8. Redistribution subject to AI
,
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displacementD3 in piezoelectric ceramic, which has no e
fect on the electric field in polymer matrix. Therefore, th
stress state in piezoelectric composite under these strai
identical to that in the elastic composite. The loss moduli

FIG. 2. Storage-loss map of electroelastic moduli of fibrous composites~a!
elastic moduli;~b! dielectric modulus;~c! piezoelectric moduli.
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the composites are much higher than those of matrix in so
fiber volume-fraction regions, and exhibit a maximum
high volume fractions. This is because the ceramic is m
stiffer than the polymer, and has zero loss moduli. It is a
noted that the loss tangents ofC12 andC13 change signs from
negative to positive with the increase of volume fraction
fiber. The negative loss tangent ofC12 of the polymer sug-
gests thats11«22 produces rather than dissipates ener
However, the overall energy dissipated for the deformat
«22, (s111s22)«22, remains positive. The addition of elast
or piezoelectric fibers changes the signs of loss tangen
C12 and C13, because for the fibrous configuration, the l
eral deformation of polymer is constrained by the ceram
fibers.

Figure 2~b! shows the complex modulus for the diele
tric constantk33 of the piezoelectric and elastic composite
Due to the fibrous configuration, the average electric fieldE3

in the elastic composite, the polymer matrix, and the cera
fiber are identical. Thus the effectivek33 in the elastic com-
posite obeys the rule of mixtures. For piezoelectric comp
ites, the storage modulus is approximately given by rule
mixture for the following reason. An applied far-fieldE3 will
induces11 ands22 in the piezoelectric ceramic, which wil
then introduces11 and s22, as well as the correspondin
strains«11, «22, and«33, in the polymer matrix due to the
continuity of traction between the phases. In order to ma
tain overall zero strain in the composite, negative strai
2«11, 2«22, and2«33 are also introduced in the cerami
However, the strain«33 must be continuous across fibrou
boundary and thus must remain zero. Therefore, the de
mations«11 and«22 in the polymer and ceramic phases a
also constrained, and have limited effect on electric displa
mentD3 . As a result the storage modulus of the piezoel
tric composite does not deviate significantly from a line
variation with respect to the fiber volume fraction. The lo
modulus of the piezoelectric composite is higher than tha
elastic composite due to the additional contribution from
elastic loss in the polymer, and shows two local peaks.
first peak at high volume fraction is because the addition
the polymer phase to the piezoelectric ceramic introdu
dielectric loss in the composite that does not exist in
piezoelectric ceramic. With further addition of the polym
phase, the volume average of the dielectric loss due to
piezoelectric coupling decreases, and the loss modulus
decreases. Eventually it will reach the point where the ela
loss from the polymer dominates, and that is the reason
the second peak.

Figure 2~c! shows the complex piezoelectric constan
e31, e33, and e15 of the fibrous piezoelectric composite
Peaks occur in the loss moduli at high volume fractions
all three piezoelectric constants because the loss moduli m
be zero at volume fractions of zero and unity. Between th
two limits, the interaction between the piezoelectric effect
the fibers and the relaxation of the polymer results in
nonzero piezoelectric loss moduli of the composite. T
losses ine31 ande33 are purely due to the elastic loss in th
polymer, and thus, they have a positive loss tangent. Ag
this is because the far-field strains they are associated w
«11 and«33, are uncoupled from the electric field in polym
Downloaded 03 May 2001 to 131.215.48.8. Redistribution subject to AI
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matrix due to the fibrous configuration, as discussed for F
1~a!. Thus the dielectric loss in the polymer has no effect
the piezoelectric loss in this particular deformation mod
The loss tangent ofe15 changes sign with an increase in th
volume fraction. This is because the piezoelectric cons
e15 is associated with the far-field strain«13, which will
induce an electric displacementD1 in the piezoelectric ce-
ramic. SinceD1 must remain continuous across fiber–mat
interface,D1 , as well asE1 , will be induced in the polymer
matrix. Thus both the elastic and dielectric losses in the po
mer, which have opposite loss tangents, contribute to
piezoelectric loss associated withe15. It is also observed tha
there is a peak in storage modulus ofe33. This is because
D35e33«331e11(«111«22) , wheree33 is positive ande11 is
negative. When a far-field«33 is applied,«11 and«22 in the
ceramic will have signs opposite to«33 due to the Poisson
effect, thus the initial addition of polymer will enhance th
averageD3 , and leads to a higher effectivee33.

B. Laminated composites

Figure 3~a! shows the complex modulusC13 of the pi-
ezoelectric and elastic laminates, respectively. In the pie
electric laminate, the storage and loss moduli ofC13 are
smaller than those in the elastic laminate. This is becauseC13

is associated with the far-field strain component«33, which
introduces a positiveD3 in the ceramic. BecauseD3 is con-
tinuous across phase boundaries in the laminate, a pos
D3 is also induced in the matrix by«33, which in turn, in-
duces an electric field in the matrix. A negativeE3 is then
induced in the ceramic to maintain the overall zero elec
field boundary condition, which thus induces stresss11 in
the ceramic:s115C13«332e31E3 . Becausee31 is negative,
the stresss11, and the corresponding storage and lo
moduli of C13, are lower in the piezoelectric laminate. Th
also explains the negative peak in the loss modulus at h
volume fractions, since both elastic and dielectric losses
polymer, which have opposite signs, contribute to the l
tangent ofC13.

Figure 3~b! shows the complex modulus for the diele
tric constantk11 of the piezoelectric and elastic laminate
Due to the laminate configuration, the average electric fi
E1 in the elastic composite, polymer matrix, and ceram
fiber are identical. Thus the effectivek11 in the elastic com-
posite obeys the rule of mixtures. The storage and l
moduli of the piezoelectric composite, however, both sh
peaks at high ceramic volume fractions due to the piezoe
tric coupling. This is because when a positive electric fie
E1 is applied to the composite, negative stressess13 will be
induced in the piezoelectric ceramic, which will again intr
duce negatives13 in the polymer due to the continuity o
traction, and correspondingly a negative strain«13. Thus a
positive strain«13 must be induced in the piezoelectric c
ramic to maintain the overall zero strain boundary conditio
This positive strain«13 will give extra electric displacemen
besides the contribution fromE1 , D15e15«131k11E1 , thus
effectively enhancing the effective storage and loss mod
of k11 at high ceramic volume fractions.
P license or copyright, see http://ojps.aip.org/japo/japcr.jsp
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Figure 3~c! shows the complex moduli for the piezoele
tric constantse31, e33, ande15 for piezoelectric laminate.e15

has a positive loss tangent because only the elastic loss o
polymer, which has a positive loss tangent, contributes to
This is because for the laminate configuration, the strain«13

is uncoupled from the electric field in the polymer. Bo
elastic and dielectric losses contribute to the loss modul
e31 and e33, which are apparently dominated by dielectr
loss since they both have negative loss tangents.

C. Comparison with experiment

In an attempt to validate the theory to some degree,
fabricated and tested a series of PZT-5A reinforced ep
laminates with different PZT-5A volume fractions. PZT-5
thin sheets were obtained from Morgan Matroc, Inc., and
epoxy is FM 73 film adhesive provided by CYTEC Eng
neered Materials, Inc., with Young’s modulusE1

r 52.72

FIG. 3. Storage-loss map of electroelastic moduli of laminated compos
~a! elastic moduli;~b! dielectric modulus;~c! piezoelectric moduli.
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GPa, andQ215E1
i /E1

r 50.043.48 The complex moduli for
Young’s modulusE11 of the piezoelectric laminates wa
measured by Ledbetter and Kim,48 using a three-componen
Marx oscillator.49,50 Figure 4 shows the loss modulus fo
Young’s modulusE11 of laminate as a function of volume
fraction of PZT-5A. The open circles are measurements
the lines are predictions. The dashed line is a prediction
the case where mechanical and dielectric losses of the
ramic phase were assumed to be zero, and only the loss
the polymer phase are considered. In this case the theore
prediction underestimates the measurements, althoug
agrees qualitatively. The solid line is a prediction whe
losses in the ceramic phase are considered, albeit app
mately. To effect this calculation, we assumed the lo
moduli of the PZT-5A are given by the elastic and piezoel
tric loss moduli of Motorola 3203HD PZT~see Table II!
reported by Mukherjee and Sherrit,51 and the dielectric loss
moduli of PZT-5A reported by Morgan Matroc.52. The elas-
tic loss moduli are scaled by a common factor 0.75 to ma

QM5
Re~C112C13

2 /C33!

Im~C112C13
2 /C33!

575,

while the dielectric loss moduli are determined fromQE

5k33
r /k33

i 550, both given by Morgan Matroc52 for thin disk
PZT-5A. With these considerations, the theoretical pred
tions show better agreement with experiment, but overe
mate the loss tangent of the composite. This is probably
cause we do not accurately know all the components of
loss moduli of PZT-5A.

s:

FIG. 4. Loss modulus ofE11 of PZT-5A reinforced epoxy laminate as
function of PZT-5A volume fraction.

TABLE II. Loss moduli used in the calculation for PZT-5A. Units:Ci j ,
GPa;ei j , C2/m; k0 ~permittivity of free space! 5 8.85310212 C2/Nm2.

C11
i C12

i C13
i C33

I C44
i

0.885 0.061 0.203 0.710 0.634

k11
i /k0 k33

i /k0 e31
i e33

I e15
i

218.3 216.6 0.574 0.27 20.291
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VI. CONCLUSION

We studied the viscoelectroelastic behavior of hetero
neous piezoelectric solids. Emphasis was placed on the
nection between the heterogeneous microstructure and
coupled mechanical and electrical relaxations. We make
tensive use of the existence of a correspondence betw
quasistatic viscoelectroelasticity and static piezoelectri
when linear constitutive response exists, and this corresp
dence is discussed in detail. We coupled this correspond
principle with micromechanics models to predict the over
behavior of heterogeneous piezoelectric solids in terms
microstructural details. We devoted specific attention to
class of two-phase materials consisting of a lossless pi
electric phase embedded in a lossy~mechanically and elec
trically! matrix and obtained closed-form expressions for
effective complex electroelastic moduli. Numerical resu
are presented and discussed, and qualitative agreement
limited measurements for a piezoelectric laminate were
served.
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