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Viscoelectroelastic behavior of heterogeneous piezoelectric solids
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We study the viscoelectroelastic behavior of heterogeneous piezoelectric solids, focusing on the
connection between heterogeneity and coupled mechanical and electrical relaxations. Our approach
is based on the existence of a correspondence between quasistatic viscoelectroelasticity and static
piezoelectricity when linear constitutive response exists. We couple this correspondence principle
with micromechanics models to predict the overall behavior of heterogeneous piezoelectric solids in
terms of microstructural details. We devote specific attention to a class of two-phase materials
consisting of a lossless piezoelectric phase embedded in a (oshanically and electrically

matrix and obtain closed form expressions for the effective complex electroelastic moduli.
Numerical results are presented and discussed, and qualitative agreement with experiment is
observed. ©2001 American Institute of Physic§DOI: 10.1063/1.1337595

I. INTRODUCTION ites is especially significant because of the extensive appli-
. . o . . _ cations of such materials in transducer applications. In

~ Widespread practical applications of piezoelectric solidsnderwater sonar applications, temperature changes can sig-
in numerous technological fields have fueled the understandsisicantly affect mechanical and electric losses in the poly-
ing of many of their physical properties. A set of propertieSmer phase, which in turn impact the complex piezoelectric
that has received little study, though, are the complex elastiGonstants in a nontrivial way. For example, due to the inter-
dielectric, and piezoelectric constants. Actually, the first tWotion hetween the piezoelectric effect of the ceramic and the
have received considerable attention in uncoupled elastic andastic and dielectric relaxation of the polymer, piezoelectric

dielectric solids and many excellent texts existOf COUrse  rejaxation will be produced in the composigemonstrated
the complex elastic and dielectric constants are associat complex piezoelectric constajteven though neither

with mechanical and electrical losses in the material, reSpPeGshase shows coupled elastic and dielectric relaxation

tively, and in linear theoretical treatments, alternative, but Although experimental studies of complex piezoelectric
equivalent, representations exist. These include the 10ss taggnstants in heterogeneous media are limited, corresponding
gent and quality factor, for both elastic and electric losses. yqqejing efforts are rarer, even though substantial effort has
_Complex  piezoelectric constants, however, have repeen girected toward micromechanical modeling of elastic,
ceived far less attention in the literature, but they presenfjigjectric, and piezoelectric constants of heterogeneous sol-
many interesting features. Their complex parts do not nece§gs in the absence of losses. The latter include, in recent
sarily represent losses, and they are influenced by both thg.5-5  efforts toward estimating the effective moduli of the
mechanical and dielectric losses and their coupling througlyie;oelectric composites in terms of microstructural details
the piezoelectric eff(_act. The rigorous thermpdyngmm treatyng constituent propertié&:28 establishing exact connec-
ment of complex piezoelectric constanitheir existence, jons hetween different components of the effective moduli
constraints on properties, etdias existed for quite SOme ,nq internal electroelastic fieldé:* and establishing rigor-
time,”" and a handful of observations exist. In most of the ;5 upper and lower bounds on the effective modufi’
observed cases, the source of the complex piezoelectric con- |, this work we study the effect of relaxation in the
stants was heterogeneity at some length scale. These i”d”Bﬁases of a heterogeneous solid on the overall response of
observed Debye-type relaxations in ferroelectric single crysgo solid. Our approach follows along similar lines as
tals that have been attributed to ferroelectric domain Wa”Hashin?“gWeng and L® and Dunf! regarding viscoelas-
motion; and relaxation in polycrystalline ceramics due 0 i composites. We do not consider details of the origin of
motion of 90° domain wallS~** Complex piezoelectric Con- yelaxation in individual phases, but instead we assume these
stants have also been observed in PVDF piezoelectric polygaxations can be represented by complex moduli. Our focus
mers where they are attributed to the strong interactions b&g then on the interaction of these phases and how that affects
tween amorphous and highly oriented crystalline phé%es. the overall behavior of the heterogeneous solid. In Sec. Il we
At a higher length scale, they have been observed in EJAg’ne’introduce the basic equations and notationvistoelectro-
and in piezoelectric ceramic/polymer matrix cqmpos%ﬁa‘é. elasticity The correspondence between the quasistatic visco-
In bone, the are strongly influenced by the highly heterogeggctroelastic problem and the static piezoelectric problem is

neous microstructure. Their role in polymer matrix compOS-ggiaplished in Sec. Ill, where the complex electroelastic
moduli are introduced. The effective complex electroelastic

3E|ectronic mail: jjli@its.caltech.edu moduli for heterogeneous materials are studied in Sec. IV
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using the correspondence principle. First, simple microstruc- u(x,t), J=1,2,3
tural models are developed to try to identify the key phenom-  U;(t) = b(x1), J=4

ena, then more realistic composite microstructures are ana- e '
lyzed using the Mori—Tanaka mean field appro&chinally, — and the electroelastic moduli can be written as
numerical results are presented and compared with measure- Cja(xt—1), JK=123

ments in Sec. V.
. ej(xt—7), K=4, J=123 3
ki (X, t= 1) = gu(x,t—7), J=4, K=123 ®
—Kky(x,t—7), J=4, K=4.

Uncoupled elastic and dielectric relaxation of rn""te”""ls\Nith the electroelastic fields and relaxation moduli written in

has been studied extensively and integral constitutive €4Udpis abbreviated notation, the constitutive equatitscan
tions have been used to express the dependence of the CWE rewritten as

rent material response on the mechanical and electric loading

II. BASIC EQUATIONS AND NOTATION

history. In a similar manner, the constitutive equations for s = t E i Zy (X, 7) 4
the linear viscoelectroelastic effect, where the elastic and di- (X1 = _w ki (X, 1= 7) dr 7 )
electric relaxation are coupled, through the piezoelectric ef- ) o ) o
fect, can be written as Equation(4) reduces to the static piezoelectric constitutive
equations when the electroelastic relaxation moduli do not
o (1) = J't Cii(X,t—17) dey(x,7) depend on time, i.e., when there is no relaxation.
e | UK dr The equilibrium and gradient equations for viscoelectro-
elastic solid with a distribution of body force and electric
dE(x,7) charge are
—€j(X,t—17) —g, |97
(1) EiJ,i(X:t)"'PJ(X:t):O (5)
t d8k|(X,T)
Di(x,t)= €iki (X, 1= 7) — 53— and
Zyi(x,t)=Uy;(x,1), (6)
dEk(X,T) . .
+ ki (X,t—17) —dr dr, wherep; is the body force whed equals to 1-3, and electric

charge whenJ equals 4; the subscript comma is used to
whereo;; ande;; are stress and strain tensors, respectivelydenote the partial differentiation with respect to the corre-
D; and E, are the electric displacement and field, respecsponding coordinate. The problem now is to solve the elec-
tively; Ciji , €ijx» andk; are elastic, piezoelectric, and di- troelastic fields modeled by Eg#&)—(6), and subjected to
electric moduli, respectivelyx is the position vector of a the following boundary conditions:
material point(in general all the quantities are regarded as <0
functions of positiolt t and  are the current and a reference 2D =25t on S (79
time, respectively. In general, each componer€gf , & , and
and «;, may have different time dependence. It is observed 0
from the constitutive equations théf elastic and electric Us(x)=U5(xt) on S, (70)
relaxations are fully coupled through the piezoelectric relaxwhereS, andS, combined to form the surface of the solid.
ation moduliey; ; (i) by ignoring the piezoelectric relax- Note that now all the field variables are functions of time.
ation, the familiar constitutive equations for uncoupled me-
chanical and dielectric relaxations are recover@il) the
stress and electric displacement depend on the strain an
electric field history. These characteristics distinguish th
quasistatic viscoelectroelastic effect from the static piezo-
electric effect, as well as from uncoupled mechanical and®. Viscoelectroelastic correspondence principle
dielectric relaxations. L _ Consider the Laplace transform of a functidfx,t),

In the analysis that follows, it is convenient to treat the;, . .. st . .

. T . . f(X)=[of(x,t)e °'dt, wheres is the transform variable.
elastic and electric fields on equal footing. To this end, the.l_akin the Laplace transform of Eqgl)—(7) yields
notation introduced by Barnett and Loffidor piezoelectric 9 P y

H. CORRESPONDENCE PRINCIPLE AND COMPLEX
ODULI

analysis is utilized. This notation is identical to conventional S )= sE,},,(X)Z(X), (8
indicial notation with the exception that lowercase subscripts
take on the range-%3, while uppercase subscripts take on 2” (X)+ py(x)=0, 9)
the range 14 and repeated uppercase subscripts are ’ .
summed over +:4. With this notation, the field variables Z;5i(x)=Uj;i(x), (10
take the following forms: . 0
S(x)=37 on S, 11
E ) t)_ O'ij(X,t) , t)_ Sij(X,t) |J( ) iJ 1 ( )
W= ot DT gty 0,0=0%x) on S,. (12

)
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In the context of linear viscoelasticityE; jki are called the
transform domair{TD) moduli; we adopt the same terminol-
ogy here. The form of the set of Eq®8)—(12) is identical to
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o0

SEJKI(X):SJ Eii(x.t)e ®tdt. (18)

0

the set of equations for linear static piezoelectricity when th&comparing Eq.(18) to Eq. (15 shows that the functional
transforms of the viscoelectroelastic variables are associatédfpendence of the complex electroelastic mogi, (i)

with the corresponding static electroelastic variables, an
SEM is associated with the static electroelastic modul
Eijki . For the problem modeled by Eq&)—(7), it then

follows that theLaplace-transformed viscoelectroelastic so-
lution is obtained directly from the solution of the corre-

@n frequencyiw is precisely the same as the functional de-

ipendence of transform domain modslk, i, on the trans-
form variables. Therefore, we have

EfkL (X iw) =i 0EjK(X,iw). (19

sponding static electroelastic problem by replacing staticFrom the correspondence principle established in Sec. Il A,

electroelastic moduli Ek,; with the transform domain
moduli sAEJK|. The final solution can be realized by inverting
the transformed solution. This is tlvéscoelectroelastic cor-
respondence principleThis correspondence principle re-

it is clear that there is also a correspondence between the
complex electroelastic modufif;,, (i ) and the static elec-
troelastic moduli of piezoelectric solid.

veals that static piezoelectric solutions can be easily con-

verted to quasistatic viscoelectroelastic solutions. Thi§y THE EEEECTIVE COMPLEX ELECTROELASTIC
correspondence principle is directly analogous to corresponyopuLl OF HETEROGENEOUS SOLIDS
dence principles in linear elasticity and electrostatics of di-

electrics. It is applicable to both homogeneous and heterog
neous materials.
B. Complex electroelastic moduli

Assume that the viscoelectroelastic solid is subjected t
a sinusoidal strain and electric field

Zy(x,H)=Zgz(x)e'", (13

wherew is the circular frequency anid= — 1. Substituting
Eqg. (13) into Eq. (4), and making the change of variablps
=t-7 yields

(X, t) =i wZK|(X)ei“’tf;EiJK|(X'p)e_iwp dp. (14
Let

6 (xio)=io | Epaope e dp, 19

where the superscrigtis used to explicitly denote complex
quantities, Eq(14) can be recast as

3050, 1) =Ed (X, 0)Zi (X,1). (16)
Because Eq(16) formally resembles the static piezoelectric

constitutive equation, th&f,,, are calledcomplex electro-

e- We have considered arbitrary loading, material proper-
ties, and field variables in Secs. IIlA and Il B. Now we
sharpen our focus and turn our attention to heterogeneous
viscoelectroelastic solids subjected to sinusoidal electroelas-
tic loading, so that Eq(16) and the complex electroelastic
0 . . ) : ) :
moduli are applicable. Consider a multiphase composite with
piecewise homogeneity described by
Efa (0= 2 Bl (D120, (20
where the subscript and the symbo), are used to denote
properties associated with phase®,(x) is a characteristic
function describing the topology of the microstructure of the
heterogeneous material such that

1, Xer
D (x)= 0, xer. (213
It has the following property:
(D, (X)P(x))=c,P,, (21b)

where(-)=(1N)[y(-)dV denotes an average over the vol-
ume of heterogeneous materid] P(x) is any integrable
material property that varies over the microstructure, and P
is the value of that property in phase c, is the volume

elastic moduliES,,, can be separated into real and imaginaryfraction of phase and satisfie, ¢, = 1. If the characteristic

parts:
ES kL (X, 0)=Elx (Xiw)HEl (X i),

17

where the superscriptsandi denote the real and imaginary
parts of the complex moduli. The real and imaginary parts o

length scale of heterogeneity is much less than the wave-
length of the applied loading, the effective constitutive equa-
tion can be expressed in term of the effective complex elec-
troelastic moduliE;Sy (i w),

f

(Zis(x, 1)) =EfkL (1 0)(Zk (X,1)). (22

the complex moduli are related to the piezoelectric enthalpy

stored and dissipated by the viscoelectroelastic solid and,he correspondence between the complex electroelastic
thus, are called thetorage moduliandloss moduli respec-  moduli Efj, (i ) and the TD moduIiniJK|(iw), Eq.(19),
tively. By choosing a different set of independent variablescombined with the viscoelectroelastic correspondence prin-
an alternative representation of the complex electroelasticiple established in Sec. lll, leads to a correspondence be-
moduli related to internal energy can also be obtained. Théween the effective complex electroelastic moduli of hetero-

ratio of loss moduli to storage moduli is called toss tan-
gent
Let us now consider the transform domain moduli,

geneous viscoelectroelastic solids and the effective static
electroelastic moduli of piezoelectric solids. Thattlse ef-
fective complex electroelastic moduli of a heterogeneous ma-
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terial are found by replacing the constituent static electro-constant,, and dielectric constamn,, all being real. In the
elastic moduli by the constituent complex electroelastidollowing we will refer to phase 1 as thascoelastic mate-
moduli in the relationships between the effective static elecrial and phase 2 as thgiezoelectric materialrecognizing
troelastic moduli and the constituent static electroelasticthat each possesses the properties just outlined.

moduli of the heterogeneous piezoelectric solitlis corre- First consider the case where the viscoelastic and piezo-
spondence principle can be coupled with any exact results @lectric materials are arranged in parallel and electric and/or
with a micromechanics model to estimate the effective comelastic loading is applied parallel to the layering. In this con-
plex moduli of heterogeneous viscoelectroelastic solids. Ifiguration, the strair: and electric fieldE in both phases are
Secs. IVA and IV B we focus on two-phase composites conequal and equal to the average strain and average electric
sisting of one phase that is piezoelectric and losdless, a  field in the composite, respectively. As a result, each com-
piezoelectric ceramjcand another phase that is not piezo-ponent of the effective moduli of the composite is given
electric, but is both elastically and electrically los®g., a  exactly by the linear rule of mixtures. Notable in this case is

polymep. the fact that the composite exhibits no piezoelectric relax-
: ) ation.
A. One-dimensional model systems Now, consider the case where the viscoelastic and piezo-

To demonstrate the basic ideas, we first consider tw&lectric materials are arranged in series and electric and/or
one-dimensional models; the constitutive equations of th&lastic loading is applied perpendicular to the layering. In
composite are given by this configuration, the stressand electric displacemeitin

both phases are equal and equal to the average stress and
o=C’%—€°E, D=e’s+«°E. 23 averarg)]e electric dis?:)lacement ?n the composite, SEespectively.
In the following analysis, we assume that phase 1 is thé@he average strain and average electric field in the composite
uncoupled viscoelastic material with volume fraction, can be straightforwardly determined from the volume aver-
elastic constanC{=C+iC), and dielectric constank{  age of the strain and electric field in the constituents which
=K +i Kil; and phase 2 is the lossless piezoelectric materidieads to the following expressions for the effective moduli of
with volume fractionc,, elastic constan€,, piezoelectric the composite:

. Ci(C185+C1Cokp+CoCok5) - C1[(C185+CoCoK +C1Cokp)°Ch — C5C°€5K} ]

Cieg'f'(C102+C2C5)(C1K2+C2K5) , [C§e§+(C1C2+C2C5)(C1K2+CzKa)]z ,
. c,Ciki€; i_Clczez[czcrlszKi1+Clcrl(e§+C2K2)Ki1+ K5(C1€5+ CoCok] +C1Cok,)CY]
c2e2+(c1Cp+C,Ch)(CrkptCokt) [cZes+(c1Cp+ CoCh)(CrkptCok])]? '
(24
 Ki(C185+¢1Corpt CoClp) - cr{ciegrt +(c1Ca+CoCh) 25K + 5[ 261(C1Co+ CoCh) ok — C514°Ch Y
= , K'= )
cie3+(c1Ca+CoCY) (Crhp+ oY) [c3e5+ (c1Cy+CyCh)(Crka+ Cok}) ]2

As is apparent from Eq$24), piezoelectric loss results from GPa,«,/«,=830, ande,=15.8C%/m. Also shown in Fig. 1
the interaction between piezoelectric coupling of the piezogzre corresponding results for an uncoupled composite; these

electric material and the elastic and dielectric losses of thgajculations were carried out using the same equations but
viscoelastic material. This is shown by dependence'ain  ith e,=0.

the product ofe, andC’, or «; of the polymer. Sincex} is
negative whileC} is positive,e' may change sign with re-
spect to change in the volume fractignote that the sign
convention for dielectric loss moduli is different from the Turning to more realistic microstructures, let us consider
usual choicg It can also be concluded from E@4) thatthe  the polymer-based piezoelectric composites, where the poly-
dielectric loss modulix' and elastic loss modulC' of the  mer is elastic, electrically and elastically lossy, and isotropic,
composite may be larger than the corresponding constants #nd the reinforcement is piezoelectric, lossless, and trans-
uncoupled elastic composites due to the piezoelectric courersely isotropic. Thex; direction is assumed to be the
pling. These phenomena are shown graphically in Fig. lunique axis for both the ceramic reinforcement and the com-
where representative numerical results are presented in terrpssite. Owing to the interaction between the viscoelastic and
of a map of the real versus imaginary parts of the constantgiezoelectric phases, the composite demonstrates the visco-
as the volume fraction of the piezoelectric material increaseelectroelastic effect represented by the effective complex
from zero to unity. In the calculation, we have us€d electroelastic moduli. Our goal is to establish the connections
=6.37+0.157 GPa, «j/ky=4.431-0.058%, C,=111 between the effective complex electroelastic moduli of

B. Three-dimensional multiphase composites

Downloaded 03 May 2001 to 131.215.48.8. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/japo/japcr.jsp



J. Appl. Phys., Vol. 89, No. 5, 1 March 2001

J. Y. Liand M. L. Dunn 2897

L I B R B DL BRI LR terials can be found in Dunn and Ta$/AThe basic concept
08 E B of the Mori—Tanaka approach is to approximate the actual
T . average electroelastic fields in the reinforcement by the elec-
06 3 troelastic fields that exist in a single reinforcement embedded
= - 1 in an infinite matrix, subjected to a uniform electroelastic
2 04 field at the boundary equal to the as yet unknown average
© 02 L field in the matrix. The average field in a single reinforce-
T =0 ] ment can be obtained using Eshelby’s equivalent inclusion
o’ I concept® The necessary auxiliary problem for piezoelectric
- | | | | | 2 media has been solved by Dunn and T&yand Dunn and
02 Loil L1 L1 L1 L Lt . 47 . . . .
0 20 40 60 80 100 120 W_|en_ecke. With th|s_ combination of the correspo_ndence
(@) C' (GPa) principle and thel Mon—Tapaka approach, the effegtlve com-
plex electroelastic moduli for a composite consisting of an
Y — — ellipsoidal piezoelectric phase embedded in a piezoelectric
o So = ¢, =4 matrix can be expressed as
s E 1= Efamnl 1+ C2(Efymnl2— Efymnl ) Al (25)
-1 e =
LasE = where
¢ = 3
2F E Adil
F E A=A Mnopl C1! KIOp+C2AKIOp] ! (26)
25 Flastic E
-3 ;" Piezoelectric _; and
Y 3] =30 MIEA EVEE N E I B R
. dI —
0 200 4(30 600 800 AMInKI:[I KIMn+SKIOpECOp|J| (E|JMn 2 |JMn 1)] 1 (27)
(b) K/K0
The Eshelby tensds is a function of electroelastic moduli of
0.005 ———— T — matrix and aspect ratio of the inclusion, and has been tabu-
0 ¢3! lated in Dunn and Taya and Dunn and WienecKg.The
10,005 c,=0 results of Eq(25) simplify considerably for the special cases

FIG. 1. Storage-loss map of electroelastic moduli of one-dimensional series
composite:(a) elastic constantfb) dielectric constantj(c) piezoelectric

constant.

polymer-based composites and the microstructure. We do so i —

RS R RN R R R RN RN RARREREARE RARE

o] bbb b bevss b

o

of fibrous or laminated piezoelectric composites where one
phase is piezoelectric, but lossless, and the other is nonpiezo-
electric, but lossy. The following equations summarize the
effective complex electroelastic moduli for such fibrous and
laminated composites. In the equations, the notafi¢in
=1,2) denotes the phagé = matrix, 2 = reinforcement
and for simplification we use the Hill modulk=(Cy;
+Cy9)/2 andm=(C.;—Cyy)/2.

Fibrous composites

ki Kk, 4 comik,+cikim)

kl’
C1ko+ ok +mj

Cal Ca(kp—Kg)2my + (Ko +mY) %Ki ]

’

by applying the correspondence principle along with the

(C1kp+ oKy +mi)?

Mori—Tanaka mean-field approath.We obtained closed
form expressions for the effective complex moduli. Details

mi[ (14 c,)Kim,+2mim,+ ¢ kim}
of the Mori-Tanaka approach are given by Mtfrand m' = il 2)kaM; 1M+ Cakymy)]

. . . . 2
Nemat-Nasser and Hofi.Its application to piezoelectric ma- C1Kimy+2¢,mim, + (1+¢,)kimj +2¢,my

m' 2¢,(my—m})?mi?

- 1
C1 [cikimy+2c;mimy+ (1+cy)kim) +2c,m}?]2

miZ+ 2m,kmf (¢, kg +2mf) +ma[ (1+cp)ki? + 4K +mmi]
1

+(1+c2)|<;2

[c1Kimy+2c,mim,+ (14 c,p)kim) + 2¢c,mi %]
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2¢,CY4l1(Crg2—2Chyl1)
C1ko+ Coki +mj

r __ r
13=2C,1 +

(Cida—2C1J1)Ch1 = ClylaCals  Clyli(Crala—2CT1) (coky+my)

i i
=2C! 1+ 2c
1 1211 2
3 Clk2+ Czk2+|||5‘ (Clk2+ Czk;‘l‘“ﬁ)z

€1C2(Cq4,—2CY 1)2

Clk2+ Czkg_‘l‘ m;_

C33=2¢1Clql1+C,Caglo—

4¢1C,(Cyg,—2CYy 1)Ci12| 1 N 2¢1C5(Cq4,—2CY 1)2(Czki1+ mil)

i i
=2¢,C 1+

33— 2€1Cqq)1

C1Ko+ Cok, +m] (C1kp+ Cok)+mi)2

2¢;CMm (€185~ Cagl 2k 11l a— MiK11]2) + (1+C) (Caglp— M) k541

r __ r
CamMt G e i—c +(1—C2)(Cys oo 1 + Ok (1+¢,)2mE k|,
ci(€1g5— Cadaral2) +(1—¢5)(Cad ax a1+ K1aloMy) + (1+Co) “mi kg4

cierd5+[Ciraglot (1+Co) kygl51(Caa,—2m) i 2(1+Cobmi(Cyg M) ky4ly

Ci44: mll+202br br2+bi2 1 bl‘2+ bl2

Cie1gl5+[Corpalot (1+Cp) k1 11(Cagl— 2m)) i
—2c,m; . b
b'2+Dp'2

2¢5e31]2,Clyl4 2C,€31,C41 N 2C,CY 4l €5yl1(cok) +m))

€31~ v €317
C1ko+ oK) +m) 1Ko+ CoK) +m) (C1ko+ ok +mi)?
r
o —cle C1€31/5(C14,—2C51)
33~ C2| €332~
Clk2+02k5_+m5_

2C}; N (C1dl2—2C 1) (coky +mh)
C1ko+ Cok, +mf (C1kp+ Cok) +m))?

i
€33=C1C2€31|2

. 4cy€15 My K41

€15

C%(615|§_C44|2 Kyl2) +(1— C%)(C44|2 K1+ kaalom)) + (14 o) °mi kY|4 ’

X . . , . 4
i Acsends k1gf[ (1 C5)(Cada kg1 + Kaalo M) + (14 Cx) (kg1 My +mMikyyly)]

€15= — 2 2 2 2 2
[ci(ersl5_Cad2 k112) +(1—C5)(Cayalp k14l1+ k11l 2mi) + (14 C) "My k74 1]

4cge14 o( Kyl 1My + MKy

+ 7
ci(e1sl5 Cadlz k11l2) + (1= C3)(Cadly k|1 + k1alo M) + (1+ €)Mkl

01(615|§+ Cual2 k11l2— Cadl2 K1al1) +(1+Co) (kg o= K7ql 1) MY

ci(ergl3_Cadz k11l2) + (1—C3)(Cadlz k|1 + k1alomy) +(1+ ) 2mi ks

r __ r r
K11= K1q|1+2C5 K1q|1

, .
C1€15/5+[C1Calo+ (1+C)mi (ka2 — K1al7) bit 2(1+4¢5)Cobryaly (w11l o= waal 1) My

i i r
K11=K11|1—2C2 K14} b2 pi2 b2+ bi2

Ci€185+[C1Cad o+ (1+C)Mi](ryalo— 2k145) ol
111

+2c,b" .
br2+b|2
C1C2€31/5 C1Cp€312(CoK, +mb)
=y K Cp ks 1C2€31|5 o CKi| 1C2€31|2(C2Ky 1
K33=C1 Kq[1TCo Kglo™ ———— 33~ C1Kyql1— )
Clk2+02k5_+m5_ (Clk2+02k5+m2)2

where

b'=cie;s|5+[C1Cad 2+ (1+Co)miI[Cy kgl + (1+Co)kaq D],
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i
1+—CZ:[01C44|2+(1+Cz)mr1]f<11|'1+[01 K112+ (1+C) kqql7)Imy
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TABLE |. Electroelastic moduli of PZT-5A and epoxy. Unit§;; , GPa;e;
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, C2Im; Kk, (permittivity of free

Cu lel Ci Cllz K11/ Ko Kju/"o
Epoxy 6.37 0.034 358  —0.012 4.43 —0.059
PZT-5A 121 0 75.2 0 916 0
Ciz Css Cuas €31 €33 €15 K33l Ko
Epoxy 3.58 6.37 1.40 0 0 0 4.43
PZT-5A 75.2 111 21.1 -5.4 15.8 12.3 830
where displacemenD in piezoelectric ceramic, which has no ef-
) fect on the electric field in polymer matrix. Therefore, the
al= C2€3d> Cz K332 i ! stress state in piezoelectric composite under these strains is
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V. NUMERICAL RESULTS AND DISCUSSION 005 :‘CZI el e e
. . ' 4
To demonstrate the applicability of the general theory, 0 20 40 60 r(G}ig 100120 140
we present numerical results for PZT-5A reinforced epoxy @) (a%
composites. The material moduli of PZT-5A and epoxy are
. . . 0.01—
summarized in Table I. In order to study the influence of the 3 o=l
piezoelectric effect, we also present the effective complex 0] y
moduli of composites with pure elastic reinforcement, for 001
which the piezoelectric constants are assumed to be zero. ]
Both fibrous composites and laminates are considered. Inthe > %% Elastic
following we loosely refer to the.phases as 'd'mramican.d «-0.03 Piezoelectric
the polymer although more specifically we mean the piezo- 004
electric phase and the nonpiezoelectric phase. T
It is important to note thak;;Z;; represents the piezo- -0.05
electric en'ghal'py rather than the internallepergy with the cur- 006352 P e
rent constitutive representation, thus it is not necessarily 0 200 400 600 800 1000
positive. The loss tangents, representing the imaginary part (b) K57
of the piezoelectric enthalpy, thus are also not necessarily - et
positive. The overall internal energy dissipated, which is re- o % 2
lated to the piezoelectric enthalpy, however, is always posi- ] &
tive 00053 ¢
A. Fibrous composites _ 'O'OP;
. £ 0.0157 e
Figure Za) shows the complex modu;;, C15, Cy3, O 3 15
and Cj; of piezoelectric and elastic fibrous composites. = -0.024
These are shown in the form of maps of the real versus 0.0251
imaginary parts of the moduli; other representations can be 3
easily constructed from these results. These constants are 003
identical in the piezoelectric and elastic composites. This is 0035 T
because in their definition they are associated with the uni- 4 0 er‘:C 2/m)8 1216
form far-field strainse,;=¢€,, and e33. These strains are © §

Uncoupled from the elegtric field in the po'Vm?r matrix due_FIG. 2. Storage-loss map of electroelastic moduli of fibrous composées:
to the fibrous configuration because they only induce electrielastic moduli;(b) dielectric modulus{c) piezoelectric moduli.
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the composites are much higher than those of matrix in sommatrix due to the fibrous configuration, as discussed for Fig.
fiber volume-fraction regions, and exhibit a maximum atl1(a). Thus the dielectric loss in the polymer has no effect on
high volume fractions. This is because the ceramic is muclthe piezoelectric loss in this particular deformation mode.
stiffer than the polymer, and has zero loss moduli. It is alsoThe loss tangent of;5 changes sign with an increase in the
noted that the loss tangents®f, andC;; change signs from volume fraction. This is because the piezoelectric constant
negative to positive with the increase of volume fraction ofe s is associated with the far-field straiys, which will
fiber. The negative loss tangent 6f, of the polymer sug- induce an electric displacemebt; in the piezoelectric ce-
gests thato,.e,, produces rather than dissipates energyramic. SinceD; must remain continuous across fiber—matrix
However, the overall energy dissipated for the deformatiorinterface,D,, as well asE;, will be induced in the polymer
€22, (0117 029) €22, remains positive. The addition of elastic matrix. Thus both the elastic and dielectric losses in the poly-
or piezoelectric fibers changes the signs of loss tangent gher, which have opposite loss tangents, contribute to the
C,, andC,3, because for the fibrous configuration, the lat- piezoelectric loss associated wiky. It is also observed that
eral deformation of polymer is constrained by the ceramidhere is a peak in storage moduluseaf. This is because
fibers. Di=es3se33te11(e11t €29 , Whereess is positive andey 4 is
Figure 2b) shows the complex modulus for the dielec- negative. When a far-fiele3; is applied,s;; ande,, in the
tric constantk; of the piezoelectric and elastic composites.ceramic will have signs opposite to;; due to the Poisson
Due to the fibrous configuration, the average electric figJd ~ effect, thus the initial addition of polymer will enhance the
in the elastic composite, the polymer matrix, and the cerami@verageDs, and leads to a higher effectiveg;.
fiber are identical. Thus the effectives in the elastic com-
posite obeys the rule of mixtures. For piezoelectric compos-
ites, the storage modulus is approximately given by rule of ) )
mixture for the following reason. An applied far-fieliy will ~ B- Laminated composites
induce o, and oy, in the piezoelectric ceramic, which will Figure 3a) shows the complex modulu@,; of the pi-
then introduceo;; and o, as well as the corresponding ezoelectric and elastic laminates, respectively. In the piezo-
strainse 1, €2, andess, in the polymer matrix due to the electric laminate, the storage and loss moduli®f; are
continuity of traction between the phases. In order to mainsmaller than those in the elastic laminate. This is bec@yge
tain overall zero strain in the composite, negative strainsis associated with the far-field strain componegy, which
—&11, — &2z, and —eggz are also introduced in the ceramic. introduces a positiv®5 in the ceramic. Becaud®; is con-
However, the straire3; must be continuous across fibrous tinuous across phase boundaries in the laminate, a positive
boundary and thus must remain zero. Therefore, the defod; is also induced in the matrix byss, which in turn, in-
mationse,; and ey, in the polymer and ceramic phases areduces an electric field in the matrix. A negatikg is then
also constrained, and have limited effect on electric displaceinduced in the ceramic to maintain the overall zero electric
mentD3. As a result the storage modulus of the piezoelecield boundary condition, which thus induces stress in
tric composite does not deviate significantly from a linearthe ceramicio;;=Cj3e33—€3;E3. Becausees; is negative,
variation with respect to the fiber volume fraction. The lossthe stresso,;, and the corresponding storage and loss
modulus of the piezoelectric composite is higher than that omoduli of C43, are lower in the piezoelectric laminate. This
elastic composite due to the additional contribution from thealso explains the negative peak in the loss modulus at high
elastic loss in the polymer, and shows two local peaks. Theolume fractions, since both elastic and dielectric losses in
first peak at high volume fraction is because the addition opolymer, which have opposite signs, contribute to the loss
the polymer phase to the piezoelectric ceramic introducetangent ofC5.
dielectric loss in the composite that does not exist in the  Figure 3b) shows the complex modulus for the dielec-
piezoelectric ceramic. With further addition of the polymer tric constantk,, of the piezoelectric and elastic laminates.
phase, the volume average of the dielectric loss due to thBue to the laminate configuration, the average electric field
piezoelectric coupling decreases, and the loss modulus al€®, in the elastic composite, polymer matrix, and ceramic
decreases. Eventually it will reach the point where the elastifiber are identical. Thus the effectiva; in the elastic com-
loss from the polymer dominates, and that is the reason foposite obeys the rule of mixtures. The storage and loss
the second peak. moduli of the piezoelectric composite, however, both show
Figure 2c) shows the complex piezoelectric constantspeaks at high ceramic volume fractions due to the piezoelec-
€31, €33, and e;s of the fibrous piezoelectric composite. tric coupling. This is because when a positive electric field
Peaks occur in the loss moduli at high volume fractions forE, is applied to the composite, negative stresseswill be
all three piezoelectric constants because the loss moduli mustduced in the piezoelectric ceramic, which will again intro-
be zero at volume fractions of zero and unity. Between thesduce negativer,; in the polymer due to the continuity of
two limits, the interaction between the piezoelectric effect oftraction, and correspondingly a negative straig. Thus a
the fibers and the relaxation of the polymer results in thepositive straine;3; must be induced in the piezoelectric ce-
nonzero piezoelectric loss moduli of the composite. Theramic to maintain the overall zero strain boundary condition.
losses ines; andes; are purely due to the elastic loss in the This positive straire 53 will give extra electric displacement
polymer, and thus, they have a positive loss tangent. Agaiesides the contribution froe,, D;=e;se13+ «k11E1, thus
this is because the far-field strains they are associated witleffectively enhancing the effective storage and loss moduli
g1 andezsz, are uncoupled from the electric field in polymer of «; at high ceramic volume fractions.
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GPa, andQ *=E!/E[=0.043% The complex moduli for
Young’'s modulusk,; of the piezoelectric laminates was
measured by Ledbetter and Kithusing a three-component
Marx oscillator?®>° Figure 4 shows the loss modulus for
Young's modulusk;; of laminate as a function of volume
"T000 400 600 | 800 1000 1200 1400 fraction of PZT-5A. The open circles are measurements and
(b) ke, the lines are predictions. The dashed line is a prediction for
the case where mechanical and dielectric losses of the ce-
ramic phase were assumed to be zero, and only the losses in
the polymer phase are considered. In this case the theoretical
prediction underestimates the measurements, although it
agrees qualitatively. The solid line is a prediction where
losses in the ceramic phase are considered, albeit approxi-
mately. To effect this calculation, we assumed the loss
moduli of the PZT-5A are given by the elastic and piezoelec-
tric loss moduli of Motorola 3203HD PZTsee Table Il
. reported by Mukherjee and Shertttand the dielectric loss
] moduli of PZT-5A reported by Morgan MatrGé. The elas-
006 T T T tic loss moduli are scaled by a common factor 0.75 to match
4 0 4 8 12 16
© e, (C */m)

K1
iﬂnl‘T’:.||;‘?|<||T‘|n|.‘1"nn?n|}"

o

2
. . . . Re(Cq;—C1/Cs)
FIG. 3. Storage-loss map of electroelastic moduli of laminated composites: ~ Q= > =
(a) elastic moduli;(b) dielectric modulus{c) piezoelectric moduli. Im(C1;— C34/Cz2)

] ) ) while the dielectric loss moduli are determined fra@x
Figure 3c) shows the complex moduli for the piezoelec- _ Kr33/Ki33: 50, both given by Morgan Matr&2for thin disk
tric constant®s;, €ss, ande,s for piezoelectric laminate®;s  pzT54" with these considerations, the theoretical predic-
has a positive loss tangent because only the elastic loss of the < <how better agreement with experiment, but overesti-
polymer, which has a positive loss tangent, contributes o it e the loss tangent of the composite. This is probably be-

This is because for the laminate configuration, the sain  .5,se we do not accurately know all the components of the
is uncoupled from the electric field in the polymer. Both |,ss moduli of PZT-5A.

elastic and dielectric losses contribute to the loss moduli of
€31 and ez, which are apparently dominated by dielectric

loss since they both have negative loss tangents.
TABLE Il. Loss moduli used in the calculation for PZT-5A. UnitS;

GPa;e;, C/m; ko (permittivity of free space= 8.85x 10~ 2 CI/Nm?

i
C. Comparison with experiment

In an attempt to validate the theory to some degree, we Cu Cly Cis Ci Cls
fabricated and tested a series of PZT-5A reinforced epoxy g ggs 0.061 0.203 0.710 0.634
laminates with different PZT-5A volume fractions. PZT-5A
thin sheets were obtained from Morgan Matroc, Inc., and the &/, K3 Ko el els els
epoxy is FM 73 film adhesive provided by CYTEC Engi- ~ 155 166 0.574 0.27 0201

neered Materials, Inc., with Young’'s modulus;=2.72
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