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ABSTRACT: A micromechanics approach is developed to analyze the average fields and effective
moduli of heterogenecous media that exhibit full coupling between stationary elastic, electric, and
magnetic fields. Exact relations regarding the internal field distribution inside a heterogeneous
magnetoelectroelastic solid are firstestablished, followed by exact connections between the effective
magnetoelectroelastic and thermal moduli of two-phase composites. The Mori-Tanaka mean field
approach is then applied to obtain closed form expressions for the effective moduli of fibrous and
laminated composites. Finally, numerical results for BaTiO;-CoFe,04 composites are presented and

discussed.

1. INTRODUCTION

HE desire to develop materials exhibiting properties su-
Tperior to those currently existing has motivated the ad-
vancement of composite materials technology. There are
many advantages to using composite materials over more
traditional materials, such as the possibility of weight or vol-
ume reduction in a structure while maintaining a comparable
or improved performance level. In recent years, an increas-
ing interest has been directed toward smart or intelligent
composite materials that are capable of responding in a de-
sired way to internal or environmental changes. An example
is the development of piezoelectric composites where signif-
icant progress has been made since the 1970s and now appli-
cations such as underwater hydrophones and medical ultra-
sonic imaging devices are common. These materials exhibit a
remarkable product property, created through the interaction
between the phases, which is a field coupling in the composite
that is absent in the constituent materials. One example of such
a product property is pyroelectricity. It can be achieved by
combining a material with a large thermal expansion coeffi-
cient with a piezoelectric material. The composite can ex-
hibit pyroelectricity even though neither of the constituents
does. Such composites are currently used in numerous ther-
mal-imaging devices and sensors. Also, the magnetoelectric
effect in composite materials consisting of a piezoelectric
phase and a piezomagngtic phase has drawn attention. Van
Run et al. (1974) reported the fabrication of a
BaTiO;-CoFe,0, composite with a magnetoelectric coeffi-
cient two orders larger than that of Cr,0;, which had the
highest magnetoelectric coefficient among single-phase ma-
terials known at that time. Bracke and Van Vliet (1981) re-
ported a broad band magnetoelectric transducer with a flat
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frequency response using composite materials. Since then,
numerous researchers have investigated the magneto-
electric coupling in a piezoelectric-piezomagnetic compos-
ite both theoretically and experimentally (Harshe et al.,
1993a,b; Avellaneda and Harshe, 1994; Nan, 1994;
Benveniste, 1995). Harshe et al. and Avellaneda and
Harshe studied the 2-2, 3-0, and 0-3 magnetoelectric com-
posite theoretically on a case by case basis. They obtained
expressions for the effective magnetoelectric coefficient
and a figure of merit for magnetoelectric coupling. Nan pro-
posed two models to estimate the effective properties of pi-
ezoelectric-piezo- magnetic composite materials. His mod-
els, however, fail to satisfy the exact connections between
different components of the effective moduli obtained by
Benveniste for piezoelectric composites (Benveniste,
1995), thus casting doubt on their theoretical rigor. To our
knowledge, none of these modeling efforts consider ther-
mal effects. Along different, but related lines, Li and Dunn
(1998a) solved inclusion and inhomogeneity problems in
an infinite magnetoelectroelastic medium. Their key results
are explicit expressions for the generalized Eshelby ten-
sors, which are readily used for micromechanics modeling
of heterogeneous solids. Indeed, the objective of this work
is to use these results to study the average fields and effec-
tive behavior of magnetoelectroelastic composites with full
coupling between the elastic, electric, and magnetic fields.

As will be apparent, the present work is a generalization of
recent work directed toward heterogeneous piezoelectric
media, and so it is worthwhile to briefly review them. Work
in this area falls into two broad categories: 1) direct estimates
of average fields and effective properties, and 2) the develop-
ment of internal consistency relations between the effective
moduli and internal fields. The work of Cao et al. (1992a,b),
Sottos et al. (1993), Zhang et al. (1993), Wang (1992), Dunn
and Taya (1993a,b), and Chen (1994, 1996) fall into the for-
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mer category while the work of Benveniste and Dvorak
(1992), Schulgasser (1992), Benveniste (1993a,b,c, 1994),
Dunn (1993a,b), and Chen (1993) fall into the latter.

In this work, we present the basic equations and notation
used for magnetoelectroelastic media in Section 2. Some
exact relations regarding the effective behavior and the av-
erage fields are then derived in Section 3. These include an
exact connection between the effective magnetoelectro-
elastic and thermal moduli of two-phase composites. In
Section 4 we use the reasonably well-known Mori-Tanaka
(1973) mean field approach coupled with the magneto-
electroelastic Eshelby tensor obtained by Li and Dunn
(1998a) to obtain explicit expressions for the effective
magnetoelectroelastic and thermal moduli of two techno-
logically important composite microgeometries: continu-
ous cylindrical fibers and laminates. These results are then
~ discussed in Section 6 where extensive numerical results
are also presented.

2. BASIC EQUATIONS

We consider magnetoelectroelastic media that exhibit lin-
ear, static, anisotropic coupling between the magnetic, elec-
tric, and elastic fields, but temperature enters the problem
only as a parameter through the constitutive equations. In
this case, the constitutive equations can be expressed as

05 = Cynen +ey(EN+qu(—H )— 1,0
D = eyey —ky(E))—ay(=H;)—pf (1)
B, = quéen — ay(—E;)— puy(—=H;)— mb

Here 0;;and ¢; are the stress and strain; D, and E, are the elec-
tric displacement and field; B, and A; are the magnetic flux
and field. Cy, K, and u;; are the elastic stiffness, the dielec-
tric, and magnetic permeability tensors. They directly con-
nect like fields, e.g., stresses to strains. Elastic fields are cou-
pled to the electric and magnetic fields through the
piezoelectric, e;;, and piezomagnetic, gy, coefficients, re-
spectively. Electric and magnetic fields are coupled through
the magnetoelectric coefficients, a;. Finally, elastic, electric,
and magnetic fields are coupled to a temperature change 6
through the thermal stress tensor 4, the pyroelectric coeffi-
cient p,, and the pyromagnetic coefficient »,. The symmetry
conditions satisfied by the moduli are given by Nye (1957).
In the analysis that follows, it is convenient to treat the
elastic, electric, and magnetic fields on equal footing. To this
end, the notation introduced by Barnett and Lothe (1975) for
piezoelectric analysis and generalized to incorporate mag-
netic coupling by Alshits et al. (1992) is utilized. This nota-
tion is identical to conventional indicial notation with the ex-
ception that lowercase subscripts take on the range 1 - 3,
while uppercase subscripts take on the range 1 - 5 and re-
peated uppercase subscripts are summed over 1 - 5. With
this notation, the field variables take the following forms:

o, J=123 e M =123
z:/‘J = Dl J=4 ZMn = _En M =4 (2)
B, J=35 -H, M=35

The magnetoelectroelastic and thermal moduli are expressed
as

(C,-J-,,,,, J,M =123
e M=4,J=123
qm M=35J7=123
Cimn J =4, M =123
EL/Mn =K J = 43M =4
-a, J=4M=5
Gimn  J =5 M =123
-a, J=5M=4
M J=SM=35
AL/ J = 1,2,3
H,J =3 D J=4 (3)
m; J=75

With this shorthand notation, the constitutive equations can
be written as

2y =EyqZy — 11,0 4

Of course, one can easily make alternative choices for the in-
dependent and dependent variables and formulate the basic
equations using the same formalism.

3. EXACT RELATIONS REGARDING AVERAGE
FIELDS AND EFFECTIVE BEHAVIOR

3.1 General Heterogeneous Medium

Consider a heterogeneous magnetoelectroelastic medium
subjected to homogeneous potential boundary conditions,
Z% ,and a uniform temperature change 8. By homogeneous
boundary conditions it is meant that when they are applied to
a homogeneous solid they result in homogeneous fields. The
volume averaged fields in the composite are connected by
the effective moduli £}, and T} :

()= Efsn{Zam) - 11,0 ®)

where
1
()= J, ©ar

denotes a volume average over the heterogeneous medium.
Under the action of such boundary conditions, the average
strain theorem of elasticity (see, for example, Aboudi, 1991)
can be generalized to show
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(Zun) = 23, ©®)

Furthermore, as a generalization of the Hill condition for
elastic heterogeneous solids (Hill, 1963; Kreher, 1988) and
heterogeneous piezoelectric solids (Li and Dunn 1998b), it is
easy to verify that

(2uZs) =(Zu)Zs) M

Equations (6) and (7) are obtained through the use of the di-
vergence theorem on the surface of the medium and are based
on the assumptions that (1) ¢, £;, and H, are derivable from
the continuous elastic displacement, electric, and magnetic
potential, respectively; (2) g, D,, and B, satisfy equilibrium
and Gauss’s law, respectively; and (3) the composite is sub-
Jjected to homogeneous boundary conditions that would pro-
duce homogeneous magnetoelectroelastic fields in a homo-
geneous medium.

It is advantageous to split the elastic, electric, and mag-
netic fields in the heterogeneous medium into two parts: one
due to external loading Z (denoted by a superscript /) and
the other due to the temperature change 6 (denoted by a su-
perscript /1 ):

Zp=25+2Zj Iy =Zj+ZIj (8)

In view of these definitions, the average field theorem of

Equation (6) implies

(Zi)=2. (z)=0 ©
Consequently, Equation (4) can be decomposed into two
equations:

=l = EpwnZt, (10)
20 = EppZl 11,0 (1

Generalizing Kreher’s (1988) terminology, we call field I the
loading field and field II the residual field. Because both
fields satisfy the equilibrium and gradient equations, the gen-
eralized Hill condition applies to both the loading and resid-
ual fields.

Taking into account the boundary conditions and the ef-
fective constitutive equations, we can show

<Z/1Wn> = ng . (128)
(Z])) = Ebwn2%, (12b)

<Zzlvlm> =0 (13a)

(zl)y = -1140 (13b)

Substituting Equations (12) and (13) into the Hill condition
(7), we obtain four scalar equations:

(2,2}) = ZYEdnZ), (14)
(20 2),) = -zZm156 (15)
(zhzl)=0 (16)
(zfzi) =0 (an

From Equations (15) and (16), we obtain
S0TT* — (7]
ZMy = (Z;1y) (18)

Equations (14)—(18) establish the rigorous connection be-
tween the effective properties and a statistical description of
the microstructure for heterogeneous magnetoelectroelastic
media. One can continue this line of analysis and obtain ex-
act relations for the second-order moments of the internal
fields, however, we do not pursue this line of inquiry here. In
the next section, we will use Equation (18) to establish an ex-
act connection between the effective magnetoelectroelastic
moduli and the effective thermal moduli for a two-phase
composite.

3.2 Two-Phase Composites

Here we specialize the results of the previous section to a
composite consisting of a matrix with a single dispersed
phase. We require that the material properties of the dis-
persed phase are constant with respect to a fixed sample co-
ordinate system. Thus orientational variations of an
anisotropic dispersed phase are prohibited. The two phases
are characterized by their volume fractions ¢; and c¢,,.
magnetoelectroelastic moduli £, |; and £, |2, and ther-
malmoduli IT,; |; andI1;; |;, where the subscript 1 is used for
the matrix and 2 is used for the dispersed phase. As aresult, in
the fixed sample coordinate system, E;j,,(x) and IT;; (x) as-
sume only two values.

We have already noted that <Z fm> = 79, . Furthermore,
ng is also equal to the volume-weighted average of Zj{,,n
over each phase. As a result we have

o (ZL ) + ea(Z8,)) = 28, (19a)

Applying an analogous result f0r<2{, ), and using the consti-
tutive equations for each phase and the composite yields
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2<Z/[\4n|2 > = E?/anlc\)//n

(19b)

crEupn l<ZIIWnl1> + 2E i

Provided that AF/V[nCD [deﬁned by (EiJMn |1 —ElJMn I2) .
AFypep = Iy.p Where [;;.pis a grouping of the 2nd-rank and
4th-rank identity tensors] exists, Equations (19) can be ar-
ranged to yield

1
<wa"!|> = *Cl" AF sty (Eap — Ean12)Z5,

(20)
1
(Zhal2) = = - AFuny (Elas = Eul )23
In an analogous manner we obtain
1 —
<levlfn‘1> = AF iy A7 — 11, )0
@n

1 —
<Zzlv11n|2> = —EAFMniJ (Ht/ - HIJ )9

where II,, = oIl |, + ¢TI,/ |,. Substituting Equation
(20) into Equation (18), followed by some manipulation,
yields

Y =+ (ESm = Eirm2)AF snep

XIeply = Hepl2) (22)
Equation (22) is an exact result that rigorously connects the
effective thermal moduli to the effective magnetoelectro-
elastic moduli. Similar results for heterogeneous elastic sol-
ids were first obtained by Levin (1967) and Rosen and
Hashin (1970). For heterogeneous piezoelectric solids, Dunn
(1993b) and Benveniste (1993c) derived analogous results
using two different approaches (Benveniste has actually ob-
tained results for multi-phase composites). Note that in the
derivation here, no specific microstructure was assumed.
These exact relations are thus applicable to two-phase com-
posites with a wide range of microstructural geometry. Also
note that we have not specified how one obtains the effective
magnetoelectroelastic moduli of the composite, but we have
simply assumed that they can be obtained. Thissmay be done
either experimentally or through detailed micromechanics
modeling, the latter being the subject of the following section.

Finally, a general expression for the effective magneto-
electroelastic moduli of perfectly bonded two-phase com-
posites can be obtained using Equation (19b) and the consti-
tutive equations in each phase to yield

Efnem = Emh + 2(Eyas h—Euvap DA (23)

In Equation (23) 4 45, is the concentration factor that relates

the average strain and potential gradients in phase 2 to that in
the composite, i.e.,

(Zz/vm|2> = AynanZY (24)

The estimation of 4,4, is thus the key to predicting the ef-
fective magnetoelectroelastic moduli E%,,,. In the next sec-
tion we will generalize the Mori-Tanaka (1973) theory for
elastic composites to predict the effective magnetoelectro-
elastic moduli of a two-phase composite.

4. MICROMECHANICS MODELS

To make progress, we consider a two-phase composite
consisting of a matrix containing dispersed ellipsoidal parti-
cles that are perfectly aligned. By modeling the shape of the
dispersed phase as ellipsoidal, we can model a wide range of
microstructural geometries. Extreme cases are lamina and
continuous fiber reinforced composites. The simplest ap-
proximation of Aypup 1S Aymas = Iumap Which represents a
generalization of the well-known Voigt (1889) approxima-
tion. The dilute approximation is then the next simplest
micromechanics approximation. The key assumption made
in the dilute approximation is that the interaction among the
dispersed phases in a matrix-based composite can be ig-
nored, and the concentration factor A, 4, is obtained from
the solution of the auxiliary problem of a single particle em-
bedded in an infinite matrix. Mathematically, this solution

can be expressed as

= [Lamas + S mntk E[;iy'] (Eijapla=Eiap )17

(25)

dil
A MnAb

Here the superscript —1 denotes an inversion operation, and
Syvmap are magnetoelectroelastic Eshelby tensors. For ellip-
soidal inclusions, they are functions of the shape of the inclu-
sion and the magnetoelectroelastic moduli of the matrix.
They are composed of one 4th rank tensor, four 3rd rank ten-
sors, and four 2nd rank tensors. Explicit expressions of Sy,,.45
for a transversely isotropic solid containing an aligned cylin-
drical inclusion or a penny-shape inclusion are given by Li
and Dunn (1998a). For more general cases, the Eshelby ten-
sors can be evaluated numerically.

Although quite simple, it is widely recognized that the di-
lute approximation is in general only accurate for small rein-
forcement volume fractions. To model more accurately the
effects of modest volume fractions, say up to about 40 per-
cent, we appeal to the effective field theory originally devel-
oped by Mori and Tanaka (1973). Their original work was
concerned with estimating the average internal stress in a
matrix containing precipitates with eigenstrains. Since then,
the method has been substantially generalized and success-
fully applied to many problems in the mechanics and physics
of composite materials. The key assumption in Mori-Tanaka
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theory is that 4,4, is given by the solution for a single parti-
cle embedded in an infinite matrix subjected to an applied
magnetoelectroelastic field equal to the as yet unknown av-
erage field in the matrix. This assumption is easily expressed
as

<Zz[wn|2> = A4 <Zﬁ1bll> (26)

With Equations (19a), (24), and (26), the concentration fac-
tor, A 1, can be written in the form:

MT _ gdil dil \—1
Ay = A 1l g + c2A%) 27

Equations (23), (25), and (27) allow us to model the effective
moduli of magnetoelectroelastic composites with various
microstructural geometries.

5. EXPLICIT EXPRESSIONS FOR THE
EFFECTIVE MODULI

We have obtained explicit expressions for the effective
magnetoelectroelastic moduli using the Mori-Tanaka theory
for two composite microgeometries: continuous fibers
aligned in the x;-direction and lamina oriented in the x;—x-
plane (layered in the x;-direction). In both cases, full cou-
pling exists between the elastic, electric, and magnetic fields,
and the material properties of both phases are at most trans-
versely isotropic with the unique axis along the x;-direction.
In both cases, the resulting independent material constants
are the elastic constants Cy;, Cys, Ci3, Ca3, and Cyy, piezo-
electric constants e;s, €31, and e33, piezomagnetic constants
q1s» 931, and gs3, dielectric constants «; and k33, magneto-
electric constants a; and a33, magnetic constants zq; and ¢33,
thermal stress constants 4,; and 433, pyroelectric constant ps,
and pyromagnetic constant ms. For the elastic constants, we
use the well-known Hill moduli £ and m instead of C,; and
C\3, Where k=(Cy, + Cp)2 and m =(C), — C},)/2. The effec-
tive moduli are obtained by substituting in the closed-form
expressions of Li and Dunn (1998a) for the Eshelby tensors
into Equation (25), and then simplifying the combination of
Equations (23), (25), and (27). After the effective
magnetoelectroelastic moduli are obtained in this way, the
effective thermal moduli are obtained through the exact con-
nections of Equation (22). The explicit results are presented
here for the two composite microgeometries. Constants de-
fined for the purpose of simplifying these expressions are
tabulated in the Appendix.

5.1 Fibrous (Circular Cylinder) Composite

Elastic Moduli

_ kzkl + Czkzl?l] + clklml
C kz + CZkl + m

k*

m (/qu + Czkﬂﬂz + C]klml + 2m2m] )
clkl my + kl m + Czkl m + 2c1m2m1 + 26‘2”112

m* =

¢ (Cisla=Crshy Yky +my)
Clkz + Czkl + m

Chy = Cisl+

c (Cish=Cish )?
C]kz + Czkl +m1

Ch = Cyli+c {CB [L=Csli—

Cl = Cylh+illesh—esh ) fe— gh)
+ (Caaa=Caal)ih = fd)+ (qisl,—q1s | Ngd — ie)]
Piezoelectric Moduli

cy(esilhr—en Nk + my)
CIkZ + C2k1 + nmy

= ey i+

«©
Wix

el = ey3|+o, [933 l,—essh

L8 (Ci3h=Cizlr Nesila—es i )
ClkZ -+ Czkl + m

efs = ejsli+illesl—esh)ga— fo)
+ (Cas)y=Caah W o — ia) + (qi5]a—qis |1 Yic — gb)]
Piezomagnetic Moduli

7 = au| +C2(Q3112"¢I31 [} )(ky + my)
31 3t Clkz + CZkl + m

g3 = guhtea| gl —guh

L8 (Ci3h=Cislh Xg31la—g31h )
ClkZ + CZkl -+ my

gts = qisl +il(esla—eisli )ch — ae)
+ (Cy4l3=Casl Nad = bh) + (q15|2—q1s |1 )(be — cd)]
Dielectric Moduli
kf) = kK =k [ )(ga = fo)

+ (eish—eish)(a— /) + (@ h—ay | ic— gb)]

c(eslr—esrhy )2 J

*
K33 = Ky3|j+ea|K33)a—K33h+
33 1l { 33l2—K33 ) cky + Coky +
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Magnetoelectric Moduli

aly = ay 1 +j[(k11 k11| )ae = ch)

+ (eysla—ejsh W(bh — ad) + (ay |a—ayy | N(be — cd)]

ady = ayl+e; [033 la—assl;

_aleih—enh)gsih=gsil)
C]k2 + CZkl + m

Magnetic Permeability Moduli

uty = unh+l(ay la—ay |y )(ch— ae)

+ (qis)a=q1s || (bA — ad) + (pyy |;—p11 [ Nbe — cd)]

a (i3 h—pnh)? ]

*
33 = i +c2 - +
M Hi33ly [#33[2 e ik + kg + my

Thermal Moduli

Cili Anh=2nlh )
Cihtaky — ak

= Anh+

*
% = aldslitedss)z

(Cy3[=Cis [ (A1 l=A1h)
Cil+eak; — ak

(esth—est (A=A l)
Ciulhiteaky, — ak

pi = apshtepih—ac

(@1 2=g31 DA l—=Auh)
Ciliteiky — ¢k

*
m3 = cyms|+cymzly—ci o

5.2 Laminated Composite
Elastic Moduli
Cly =k +m — r{(ah— de)[(Ci3,—Cizh I
= (es1l2—esth )1+ (ne = ih)[(Ci3la=Cisli)e
= (et ha—es1 )b + (id = na)[(Ci3 2= Ci3lh )g
= (esila—est )1+ (g = B)[(Cii [2=Crih A
= (g31l2—g31l1)el + (g6 = H(Cri[2=Crihn

= (g512=gs [T+ (f = ghI(Ci ,=Cii |l )

= (@31l=g h)al}
Cfy = Cisli+ = [eai lo=es )07 = )

+ (Cish=Cisl )(th = ng) + (g5 =31 h g = )]
Cl = Cxsl+~ [(ess hess )/ = jh)

+ (C33)h=C33 ) h = ng)+ (g3312—g3311 )g — )]

et o Couh Culs
"=

:Cah+aCula
Cés = aymy + ¢y

Piezoelectric Moduli
* r .
e3 = ey li— ;[(631 la—e3i h )(nb — jd)

+ (Ci3h=Ci3 U = ne) + (g31 12— g3 1 (e — 1b)]

-
e}y = exli— B [(es3l2—es3 |y )(nb — jd)
+ (Ca3 ;= Cs3 1 Yd = nc) + (g33 12— q33 11 )(Je — 1b)]

c,Cusl (er5l2—eish)
2Cy i +aiCusla

efs = ejsh+
Piezomagnetic Moduli
g = g |1+‘:‘[(€31 h—es |l J(bh = df)
+ (Ci3l,—Cish Xdg — ch) + (g312—gn h Nef — bg)]

.
g% = g3l +;[(€33 la—es3 |y )(bh = df)

+ (C33|,=Cs31 )(dg — ch) + (g33]2—q33 1 Mef — bg)]

2Casl (Gish—qish)
c2Cashi+aCasla

*
qis = qish+

Dielectric Moduli

(ershh—eish)?

*
ki = ckplitek htac
c2Caalhi+aCusla
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’
K3 = k33— " [(re33l2—K33 11 Y(nb — jd)
— (e33]2—e33 ) )(Id = nc) + (az3 |, —assh )e — 1b)]
Magnetoelectric Moduli

(ersla—ersh Nqisla— s i)
c2Casli+¢1Casla

® ;
aly = cay h+aantac

-
ass a33|1+;[(ff33[2'"/€33 [ )(bh = df)

— (e33la—easly Ndg — ch) + (assr—ass | of — bg)l
Magnetic Permeability Moduli A

415

(q15 = @151 )?

*
uhi = aqunhtepnhtac
2Casli+a1Casl2

phy = #3311+£[(033 la—a33 | bk — df)
— (g33l2—g33 11 dg — ch)

+ (u3sla—p33h Nef = bg)]
Thermal Moduli
Ay o= adphtedn h+r{(psh—psl)
X [h(ja — ib)+ e(nb— jd)+ f(id — na)]
+ (A33)i=A33 )[AGic = la)
+ e(ld = nc)+ g(na— id)]

+ (msly=ms|olelie = 16) + f(la— ic) + glib= ja)l}

P = Auh+ U psh=psla)Uh = n)+ Gash =R )
X (ng = th) + (m3 i =ma ) = Jjg))

p5 = p3h= - [(psh=psla)(d = nb)+ (s =23l2)
X (nc = 1d)+ (ms ly=ms |21 = je)]

m = myl=[(pah=pal)(bk = &)+ Assh=A5s12)

X (dg = ch)+ (m3|y—ms |3 )(cf — bg)]
6. NUMERICAL RESULTS AND DISCUSSION

We have obtained closed form expressions of effective
magnetoelectroelastic moduli and thermal moduli for both fi-
brous and laminated composites. These results have been
checked by several means. First, all the effective moduli re-

cover the moduli of the constituent phases at the two volume
fraction limits. Second, by ignoring piezomagnetic and
magnetoelectric effects in the constituent phases, the effective
properties recover Chen’s (1994, 1996) results for piezoelec-
tric composites. Finally, for the fibrous composite, our results
satisfy all of the exact connections between the effective
magnetoelectroelastic moduli of a two-phase composite ob-
tained by Benveniste (1995). This is in contrast to the results
of Nan (1994) which violate some of Benveniste’s exact con-
nections.

From the closed form expressions, we see that the effec-
tive magnetoelectric coefficients, a;; and as3, depend on
(eish — ersl)(qisla — g1sl1) and (e31l2 — est|)(gs1l2— g31h), re-
spectively. This is perhaps the most direct demonstration of
the existence of a product property for these composites. The
magnetoelectric effect exists in the composite even if neither
phase exhibits the magnetoelectric effect. In such a case, the
magnetoelectric effect in the composite arises from the inter-
action between the piezoelectric and piezomagnetic phases.
Similar phenomena exist for the pyroelectric and pyromag-
netic effects, which directly depend on (31, — es1l)@ 1l —
Anly) and (g3l — g311)@nk —An ), respectively. This illus-
trates that the pyroelectric effect can be produced by the in-
teraction between the piezoelectric effect and thermal expan-
sion, while the pyromagnetic effect can be produced by
interaction between the piezomagnetic effect and thermal
expansion. These observations also provide guidelines on
how to enhance the magnetoelectric, pyroelectric, and pyro-
magnetic effects in a composite medium.

To further demonstrate the working of our theory, we have
performed calculations to obtain the effective magnetoelectro-
elastic moduli of a composite consisting of a CoFe,04 matrix
reinforced by BaTiOs. As noted in the introduction, this com-
posite has been studied by other researchers, both experimen-
tally and theoretically. The magnetoelectroelastic moduli of
the two phases are presented in Table 1, where the x;-x; plane
is isotropic and the unique axis is along the x;-direction.

Figures 1-6 show the effective elastic, dielectric, mag-
netic, piezoelectric, piezomagnetic, and magnetoelectric
moduli of the BaTiO;-CoFe,0, fibrous and laminated com-
posites as a function of the BaTiO3 volume fraction. For the

Table 1. Material properties of BaTiO; and CoFe,0y.

Cuy Ci2 Cis Cas Cua
(GPa) (GPa) (GPa) (GPa) (GPa)
BaTiO4 166 77 78 162 43
CoFe,0, 286 173 170 269.5 45.3
€5 €34 €33 K11 K33
(C/m?)  (C/m?) {C/m?) (C¥Nm?) (C¥Nm?)
BaTiO; 11.6 -44 186 11.2x10° 126 x10°°
CoFe, 0, O 0 0 0.08 x 10-° 0.093 x 10°°
G15(M/A) ga1(M/A) gs3(m/A) #11(Ns?/C?)  p33(Ns?/C?)
BaTiO, 0 0 0 5x 107 10 x 1076

CoFe, O, 550 580.3 699.7 -590 x 10® 157 x 10°®
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fibrous composite, the effective moduli Cug, K11, 411, €15, and
¢15 show nonlinear behavior with respect to the volume frac-
tion, while for the laminate, the effective moduli Cs3, Cy3,
K33, 133, €31, €33, g3}, and ¢33 show nonlinear behavior with
respect to the volume fraction. The magnetoelectric moduli
ay; and as; change nonlinearly with volume fraction in both
composites. All other effective moduli vary essentially lin-
early with volume fraction. The fundamental reason for this
is that the microgeometry of the fibrous composite requires
that Dy, B, E3;, and H; are continuous across the phase
boundaries (generators parallel the x3-direction), while the
laminate requires that £, #,, Ds, and B; are continuous
across the phase boundaries (generators normal to the x3-di-
rection).

To understand the behavior of the effective Cyy,er5,and g5
of the fibrous composite, assume that the composite is sub-
Jected to a uniform far-field e,5. This will directly induce a
shear stress 0,3 in both phases, D, in the piezoelectric phase
and B, in the piezomagnetic phase. Due to the continuity of
D, and B; at the phase boundaries, D, and B, will be induced
in the piezomagnetic and piezoelectric phases, respectively.
This willin turn induce £, in the piezomagnetic phase and H,
in the piezoelectric phase. Due to the average field theorem,
E, and H, will then be induced in the piezoelectric and
piezomagnetic phases, respectively, to enforce the require-
ment that the overall electric and magnetic fields inside the
composite vanish. This will then cause an additional 0y in
both phases, D, in the piezoelectric phase and B, in
piezomagnetic phase, due to the piezoelectric and piezomag-
netic effect. It is this second-order effect that causes the non-
linear behavior of Cyy, €5, and g;5s with respect to the volume
fraction. For the laminated composite, D, in the piezoelectric
phase and B, in the piezomagnetic phase will not induce D,
and B, in the piezomagnetic and piezoelectric phases, re-
spectively, and so there will be no second order effect fields
generated. This is why Cyy, e5, and g, 5 vary roughly linearly
with volume fraction in the laminate. A similar argument ex-
plains why &, and u,;; change nonlinearly in the fibrous
composite, but not in the laminate.

To understand the behavior of the effective Cy3, Css, e33,
and g3; of the laminated composite, assume that the compos-
ite is subjected to a uniform far-field £55. This will directly in-
duce stresses o, and o33 in both phases, Ds in the piezoelec-
tric phase and Bj in the piezomagnetic phase. Due to the
continuity of D; and B; at the phase boundaries, Dj and B;
will be induced in the piezomagnetic and piezoelectric
phases, respectively. This will cause E; in the piezomagnetic
phase and Hj in the piezoelectric phase, which will then in-
duce E; and Hj; in the piezoelectric and piezomagnetic
phases, respectively, to maintain the overall zero electric and
magnetic field in the composite. This will then cause addi-
tional stresses 0, and o35 in both phases, Ds in the piezoelec-
tric phase and Bj; in the piezomagnetic phase. This sec-
ond-order effect results in the nonlinear behavior of Ci3, Cs3,
e33, and g33 of the laminate, but, for the same reason discussed
in the previous paragraph, not for the fibrous composite.

Also, a similar argument explains why «3; and 33 vary
nonlinearly with volume fraction of the laminate, but not in
the fibrous composite. However, strong nonlinear depend-
ence on the volume fraction is not observed in the effective
Cy1 and Cy; of laminate because e3, and g5, are of opposite
sign and so the second-order stresses caused by piezoelectric
and piezomagnetic phases tend to cancel each other.

The most interesting behavior, however, is the overall
magnetoelectric effect that is present in the composite, but not
in either of the individual phases. In the fibrous composite, a;3
is three orders of magnitude larger than a,, while in laminate,
ay is three orders of magnitude larger than as;. If in a fibrous
composite, boundary conditions consistent with a uniform
far-field £ are applied, o}, and 055 will be induced in the pie-
zoelectric phases. As required by traction continuity at the
phase boundaries, g, is also induced in the piezomagnetic
phase. This second order stress causes H; in the
piezomagnetic phase, and then in the piezoelectric phase be-
cause Hj is uniform inside the composite. However, from the
uniform far-field £5 boundary condition, we know that the
overall H; is zero in the composite. Thus, B; must be intro-
duced in the piezomagnetic phase to cancel the Hj caused by
the second order stress. However, if boundary conditions con-
sistent with a uniform far-field £, are applied, 0,3 will be in-
duced in the piezoelectric phase, and then in the
piezomagnetic phase due to traction continuity at the phase
boundary. This 0,3 will induce H, in the piezomagnetic phase
and then H, will be induced in the piezoelectric phase to
maintain the requirement of overall zero magnetic field in the
composite. This #; will induce B, in the piezoelectric phase.
The large difference between as; and a,, of the composite is
then due to the difference in magnetic constants between the
piezoelectric and piezomagnetic phases. For ass, By is caused
by the piezomagnetic phase, while for ayy, By is caused by the
piezoelectric phase, as discussed above. The magnetic con-
stant of the piezomagnetic phase is two orders of magnitude
larger than that of the piezoelectric phase. A similar argument
explains why ay; is two orders of magnitude larger than as; for
the laminate.

Finally, in Figures 7 and 8 we compare our results to those
of Avellaneda and Harshe (1994) for the magnetoelectric co-
efficient and figure of merit for a laminated (2-2) composite.
Our model cannot be compared directly with theirs since
they assume the piezomagnetic phases are short-circuited
and - 15 no electric field is realized in the piezomagnetic
phases. However, by setting the dielectric constants of the
piezomagnetic phase to be infinite, we can simulate this situ-
ation. We carried this out and simplified our expression for
the magnetoelectric coefficient in this case as

o = {612[433

3+ (Cssh=Cssl ) (ts3h=p33h)]

—cic2e33l g33hitssh

33

-1
L& [Cash(ussh=2p530)+ Csshmss h] + Cashessly } (28)

= acessh gssh mssh
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Figure 7. Comparison of the effective magnetoelectric constant as;
of the laminated composite versus the volume fraction of BaTiO,.

‘Figures 7 and 8 show the comparison between our results and
those of Avellaneda and Harshe (1994) for the magnetoelec-
tric coefficient and the figure of merit k2, = a37/k 3 u3; ,re-
spectively. Our results agree favorably with theirs, and the
results suggest that short-circuiting the piezomagnetic
phases in a composite laminate is an effective way to en-
hance the magnetoelectric coefficient. A similar argument
explains why the higher magnetic permeability of the piezo-
electric phase compared to that of the piezomagnetic phase
results in a higher magnetoelectric coefficient. This was also
observed by Avellaneda and Harshe.

7. CONCLUSIONS

We presented a micromechanics approach to analyze the
average fields and effective moduli of heterogeneous media
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Figure 8. Comparison of figure of merit of the laminated composite
versus the volume fraction of BaTiOj.
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that exhibit full coupling between stationary elastic, electric,
and magnetic fields. Exact relations regarding the internal
field distribution inside a heterogeneous magnetoelectro-
elastic solid were established, along with exact connections
between the effective magnetoelectroelastic and thermal
moduli of two-phase composites. The Mori-Tanaka mean
field approach was applied to obtain closed-form estimates
for the effective moduli of fibrous and laminated composites.
Finally, numerical results for BaTiO;-CoFe,04 composites
were presented and discussed.

APPENDIX
Constants for the Fibrous Composite

[ a0 TR T I R I e
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