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Abstract

This paper examines the engineered domain con'gurations and the macroscopic properties
of ferroelectric crystals using an energy minimization theory. The energy minimizing domain
con'gurations have been constructed, and their macroscopic properties have been calculated and
compared well with experiments. The optimal domain con'gurations have also been identi'ed.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Domain con'guration and its evolution under electromechanical loading is an out-
standing problem in ferroelectrics that has attracted great research interest in the past
decade. On the one hand, the evolution of domain con'guration is responsible for the
observed macroscopic nonlinearity in ferroelectrics, such as hysteresis loop and butter8y
loop (Jona and Shirane, 1993); on the other hand, the complex nonlinear interactions
between domains pose a signi'cant challenge to the modelling and simulation of fer-
roelectrics. The problem is further complicated by the multiple length scales involved,
ranging from domain walls, domains, grains, to ceramic inclusions in a composite.
As a result, the macroscopic behaviors of ferroelectrics were traditionally modelled
phenomenologically using energetic approaches without addressing the microstructural
phenomena in details. Recently, micromechanics-informed phenomenological theories
have been developed to include limited information at domain level, such as volume
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fraction and shape of domains, but they often ignored the detailed structures of domains
and domain walls (Hwang et al., 1995; Chen et al., 1997; Huber et al., 1999; Li and
Weng, 1999). While those approaches have shed considerable insight on the macro-
scopic properties of ferroelectrics and are computationally inexpensive, they could not
capture accurately the connection between macroscopic behaviors of ferroelectrics and
their microstructural phenomena, which is still not well understood. Phase-'eld theory
has also been developed to simulate the domain formation and domain pattern evolu-
tion in ferroelectrics (Nambu and Sagala, 1994; Hu and Chen, 1998; Li et al., 2001;
Bhattacharya and Ravichandran, 2003), although they are computationally extensive
and often limited to two-dimensional geometries. We hope to address these issues in
this paper from a diCerent perspective, i.e., constructing the detailed domain con'gu-
rations analytically from the energy minimization. What we propose is a mesoscopic
theory of ferroelectrics involving numerous domains, which collectively determine the
macroscopic behavior of ferroelectrics. Despite tremendous progress made in the last
decade in the quantum mechanical computations of ferroelectricity (Bellaiche et al.,
2000; Fu and Cohen, 2000), the mesoscopic phenomena are currently beyond the ca-
pabilities of 'rst principle calculations, and our mesoscopic approach is intended to 'll
this gap.
We are particularly interested in explaining the dramatically enhanced piezoelectric-

ity in relaxor ferroelectric single crystals (Park and Shrout, 1997; Kuwata et al., 1982)
using the engineered domain con'gurations, and in identifying the optimal domain con-
'gurations and poling directions for the optimized electromechanical couplings. The
domain con'gurations in a ferroelectric arise from the minimization of its potential
energy (Shu and Bhattacharya, 2001). When the crystal transforms from a nonpolar
dielectric to a polar ferroelectric at Curie temperature, the reduction of symmetry leads
to several symmetry-related, spontaneous polarized, and distorted variants, on which
the stored energy density is minimized by the corresponding transformation strains and
polarizations. Under a high electromechanical loading, a subset of ferroelectric vari-
ants will be selected which are energetically favored by the applied electromechanical
'eld, leading to macroscopic piezoelectricity; this is the so-called poling. The selected
variants need to be arranged in a compatible manner electromechanically to minimize
their interaction energy, leading to complicated domain con'gurations, with the size of
domains regulated by the domain wall energy. Having this energy minimization philos-
ophy in mind, we seek to characterize the energy minimizing domain con'gurations in
ferroelectrics and to predict their corresponding macroscopic properties. We will focus
on the linear piezoelectricity of ferroelectrics without addressing the evolution of do-
main con'gurations. In other words, we assume that the domain con'guration obtained
by the poling is stable with the domain walls either pinned by defects or clamped
within the domain con'guration, and the applied electric 'eld or mechanical stress
during service is small and thus will not trigger domain switching. As such, we are
dealing with the intrinsic piezoelectricity without concerning the extrinsic contribution
from domain wall motions. This treatment is motivated by the enhanced piezoelectric-
ity in relaxor crystals with engineered domain con'gurations, and we hope it can also
help us to identify the optimal poling directions for the optimized electromechanical
coupling. In addition, we feel that the understanding at the linear regime is essential for
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our subsequent investigations on the domain evolution in ferroelectrics at higher electric
'eld. Although our theory is developed for ferroelectrics, it can be easily adapted to
other material systems involving phase transformations, such as shape memory alloys
and ferromagnetic shape memory alloys.
As an application of the theory we will investigate the ultrahigh strain and piezo-

electric behavior recently discovered in relaxor based rhombohedral single crystals
Pb(Mg1=3Nb2=3)O3–PbTiO3 (PMN–PT) and Pb(Zn1=3Nb2=3)O3–PbTiO3 (PZN–PT)
poled along the [0 0 1] direction (Park and Shrout, 1997; Kuwata et al., 1982), where
the electromechanical coupling factor of more than 90% and piezoelectric strain of
more than 1.5% were demonstrated. In contrast, PMN–PT and PZN–PT crystals poled
along the [1 1 1] direction, the polar axis, exhibit much lower electromechanical cou-
pling, and the question arises on the mechanism responsible for the dramatic piezoelec-
tric property enhancement in these crystals. While it was suggested that the enhanced
electromechanical coupling is related to the so-called engineered domain con'gura-
tion, where two or more crystallographically equivalent ferroelectric variants coexist
in a single crystal poled along a nonpolar axis (Park et al., 1999, Wada et al., 1999;
Liu and Li, 2003), the exact nature of the enhancement and the optimal domain con-
'guration are not clear, which we intend to address in this paper. We will carry out
the detailed calculations on BaTiO3 and PMN–PT to demonstrate that such engineered
domain con'gurations indeed lead to enhanced piezoelectricity, and will identify the
optimal domain con'gurations for the superior electromechanical coupling.
The paper is organized as follows. The energy minimization of ferroelectrics will

be presented in Section 2, where the energetics of ferroelectrics will be discussed
and energy minimizing domain con'gurations will be constructed. In Section 3, the
equations for the eCective electromechanical moduli of ferroelectrics with engineered
domain con'gurations will be presented. The theory is then applied to tetragonal and
rhombohedral crystals poled along a nonpolar axis, and compared with available ex-
perimental data. Optimal electromechanical poling and domain con'gurations will also
be identi'ed.

2. Energy minimization of ferroelectrics

In this section, we seek to characterize ferroelectric single crystals with engineered
domain con'guration. The energetics of ferroelectrics will be given 'rst, and the energy
minimizing domain con'guration will then be constructed using multi-rank laminates.

2.1. Energetics of ferroelectrics

We consider a ferroelectric/conductor system, where � ∈R3 is a bounded domain
occupied by a ferroelectric subject to an applied traction T0 on 9�2, and C1 and
C2 are domains occupied by conductors with total charge Q and 'xed potential �0,
respectively. In addition, we assume the ferroelectric experiences a deformation u(x) :
� → R3 and a polarization p(x) : � → R3 due to the applied electromechanical load.
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Under the in'nitesimal strain approximation, the potential energy of the ferroelectric
is given by (Shu and Bhattacharya, 2001)

F(u; p) =
∫

�

(
1
2

∇p · a∇p+ W (e[u]; p) − E0 · p
)
dx−

∫
9�2

T0 · udS

+

0
2

∫
R3

|∇�|2 dx; (2.1)

where e[u] = 1
2 (∇u + (∇u)t) is the symmetric in'nitesimal strain tensor and � is the

electric potential, obtained by solving Maxwell’s equation in R3,

∇ · (−
0∇� + p��) = ∇ ·D= �f ; (2.2)

subjected to the boundary conditions∫
9C1

9�
9n dS = 0; ∇� = 0 on C1;

� = 0 on C2;

� → 0 as |x| → ∞; (2.3)

where

��(x) =

{
1 if x∈ �;

0 if x∈R3 \ �

is the characteristic function of �, 0 is the null vector, D is the electric displacement,
and �f is the free charge density which is assumed to be zero in the ferroelectric; as
such D is divergence-free except on the surface of conductors. E0 is the electric 'eld
in the absence of the ferroelectric, which is determined by solving

− 
0∇2�0 = �f0 (2.4)

for �0 subjected to∫
9C1

9�0

9n dS = − Q

0

; ∇�0 = 0 on C1;

�0 = �0 on C2;

�0 → 0 as |x| → ∞; (2.5)

where all variables with a subscript 0 denote the quantities in the absence of the
ferroelectric.
In the potential energy (2.1), the second term is the ‘stored energy density’ of the

ferroelectric which depends on the state variables, strain e[u] and polarization p. It
encodes the information that the ferroelectric prefers certain states of transformation
strain and polarization. In particular, it has a multi-well structure, leading to ‘vari-
ants’ or ‘domains’ of diCerent transformation strains and polarizations separated by
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‘domain walls’. The domain wall energy is represented by the 'rst term of the potential
energy which penalizes the polarization gradient, where a is a positive de'nite second
order tensor. The third term is the potential associated with the applied electric 'eld
E0 which tends to align the polarization towards E0, and the fourth term is the energy
associated with the applied mechanical load. The 'nal term is the depolarization energy
due to the electric 'eld generated by the polarization distribution in the ferroelectric,
where 
0 = 8:85 × 10−12 C2=Nm2 is the permittivity of free space.
This type of potential energy is justi'ed in Shu and Bhattacharya (2001) following

ideas in micromagnetics (Brown, 1963; James and Kinderlehrer, 1993), by consider-
ing the total energy of the ferroelectric-conductor system described and excluding the
energy of the conductors in the absence of the ferroelectric. Detailed derivation can
be found in Shu and Bhattacharya (2001) and will not be repeated here. However, we
do want to emphasize the diCerence between ferroelectrics and shape memory alloys
or ferromagnetics here. For shape memory alloy, there is no energy term analog to
the depolarization energy, while for ferromagnetics, the anisotropy energy is usually
comparable in magnitude to Zeeman’s energy caused by the applied magnetic 'eld,
and is not nearly as dominating as the stored energy density in ferroelectrics. These
diCerences will lead to subtle diCerences in domain con'gurations, as we will elaborate
later.

2.2. Energy-minimizing domain con8gurations

We are interested in the equilibrium domain con'gurations in ferroelectrics under
electromechanical loadings, and propose that such domain con'gurations minimize the
potential energy (2.1). In order to construct the domain con'guration in an energy min-
imizing manner, we consider a constrained theory of ferroelectrics, which is adapted
from the constrained theory of magnetoelastic solids (DeSimone and James, 2002). In
particular, we assume that the transformation strain e and polarization p of a ferroelec-
tric are constrained within the multiple energy wells K,

(e; p)∈K=
K⋃

i=1

{(e(i); p(i))};

which contains K energy wells or variants with transformation strain e(i) and polariza-
tion p(i). As a result, we have

W (e; p) = 0:

In addition, we assume the size of the ferroelectric domain is much larger than the
domain wall thickness, so that the domain wall energy can be ignored (DeSimone,
1993). The electromechanical loading, T0 and E0, will then select a subset of ferro-
electric variants from K which are energetically favored. As a result, we only need
to minimize the depolarization energy by arranging polarization distribution, or the se-
lected ferroelectric variants, in an energy minimizing manner. To this end, we must
consider the compatibility between ferroelectric variants.
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One pair of ferroelectric variants (e(1); p(1)) and (e(2); p(2)) are said to be compatible
if they satisfy

e(1) − e(2) = 1
2 (a ⊗ n + n ⊗ a);

(p(1) − p(2)) · n = 0 (2.6)

for some unit vector n and vector a. Here we do not diCerentiate polarization in the
deformed and nondeformed con'gurations, since the strain is assumed to be small.
(2:6)1 is the Hadamard jump condition that ensures the existence of a nontrivial
continuous displacement 'eld u across a coherent interface with normal n such that
[(∇u+∇uT)=2]∈ {e(1); e(2)}, and (2:6)2 ensures that p∈ {p(1); p(2)} is divergence free
with interface normal n, and thus cost no extra depolarization energy. As a result, an
energy-minimizing rank-one laminate can be formed consisting of variants 1 and 2
with interface normal given by n.
For a more general case with K ferroelectric variants, the set K is said to consist of

K pair-wise compatible ferroelectric variants if there exist vectors njk and ajk , where
j; k = 1; : : : K , such that

e( j) − e(k) = 1
2 (ajk ⊗ njk + njk ⊗ ajk);

(p( j) − p(k)) · njk = 0: (2.7)

If (2.7) is satis'ed, then the K variants can still form an energy minimizing domain
con'guration by arbitrary volume fractions, which can be constructed by multi-rank
laminates. The following construction is in analog to DeSimone and James’ construction
in magnetoelasticity (2002), extending Bhattacharya’s work in martensitic transforma-
tion (1993). We repeat the construction here since it is essential for the understanding
of our subsequent analysis.
To this end we consider a set of variants coexisting in a ferroelectric crystal, with

transformation strain and polarization satisfying (2.7); the volume fraction of each
variant is �i, which could be determined by the applied electromechanical loading. The
average strain 〈e〉 and polarization 〈p〉 of the ferroelectric crystal are thus given by

〈e〉 =
K∑

i=1

�ie(i); 〈p〉 =
K∑

i=1

�ip(i); where �i¿ 0;
K∑

i=1

�i = 1; (2.8)

and we seek to construct an energy minimizing domain con'guration satisfying (2.8).
As a matter of fact, given (2.7) and any �1; : : : ; �K−1 ∈ [0; 1], it is possible to form an
energy minimizing domain con'guration such that

〈e〉=�1e(1)+�2(1−�1)e(2)+ · · ·+�K−1

K−2∏
r=1

(1−�r)e(K−1)+
K−1∏
r−1

(1−�r)e(K);

〈p〉 = �1p(1)+�2(1 − �1)p(2)+ · · ·+�K−1

K−2∏
r=1

(1−�r)p(K−1)+
K−1∏
r−1

(1−�r)p(K);
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which can be proven by induction. We will show the case K =3 explicitly to illustrate
the method. By (2.7), we have

e(1) − e(2) = 1
2 (a12 ⊗ n12 + n12 ⊗ a12);

e(1) − e(3) = 1
2 (a13 ⊗ n13 + n13 ⊗ a13);

e(2) − e(3) = 1
2 (a23 ⊗ n23 + n23 ⊗ a23); (2.9)

and

(p(1) − p(2)) · n12 = 0;

(p(1) − p(3)) · n13 = 0;

(p(2) − p(3)) · n23 = 0: (2.10)

Thus, for any �1 ∈ [0; 1], we have

(�1e(1) + (1 − �1)e(2)) − (�1e(1) + (1 − �1)e(3)) =
1 − �1

2
(a23 ⊗ n23 + n23 ⊗ a23)

and

((�1p(1) + (1 − �1)p(2)) − (�1p(1) + (1 − �1)p(3))) · n23 = 0: (2.11)

Now 'nd skew matrices w1, w2, w3, w4 that satisfy

w1 − w2 = 1
2 (a12 ⊗ n12 − n12 ⊗ a12) ≡ v1;

w3 − w4 = 1
2 (a13 ⊗ n13 − n13 ⊗ a13) ≡ v2;

(�1w1+(1−�1)w2)−(�1w3+(1−�1)w4)=
1−�1

2
(a23⊗n23−n23⊗a23)≡v3;

�2(�1w1 + (1 − �1)w2) + (1 − �2)(�1w3 + (1 − �1)w4) = 0: (2.12)

It is easy to verify that

w1 = (1 − �1)v1 + (1 − �2)v3;

w2 = −�1v1 + (1 − �2)v3;

w3 = (1 − �1)v2 − �2v3;

w4 = −�1v2 − �2v3 (2.13)

satisfy (2.12). Now let us set

F1 = e(1) + w1 + i2;

F2 = e(2) + w2 + i2;

F3 = e(1) + w3 + i2;

F4 = e(3) + w4 + i2; (2.14)
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where i2 is the second rank unit tensor. Clearly, Fi are contained in the energy wells.
They also satisfy

F1 − F2 = a12 ⊗ n12;

F3 − F4 = a13 ⊗ n13;

(�1F1 + (1 − �1)F2) − (�1F3 + (1 − �1)F4) = (1 − �1)a23 ⊗ n23: (2.15)

Therefore, it is possible to construct the sequence of deformation made of alternating
bands of 'ne twins of (F1; p(1)) and (F2; p(2)), and 'ne twins of (F3; p(1)) and (F4; p(3))
(Ball and James, 1992; Bhattacharya, 1993; DeSimone and James, 2002), with the
average strain and polarization given by

〈e〉 = �1e(1) + (1 − �1)�2e(2) + (1 − �1)(1 − �2)e(3);

〈p〉 = �1p(1) + (1 − �1)�2p(2) + (1 − �1)(1 − �2)p(3): (2.16)

No depolarization energy is induced since (2.11) is satis'ed. This completes the proof
for K = 3.
Now, suppose, it holds for the case K = n, and we show that it also holds for

K = n + 1. Picking n pairs of (e(1); p(1)); (e(2); p(2)); : : : ; (e(n−1); p(n−1)) and (e(n); p(n)),
and by hypothesis we can form a domain con'guration with

eI = �1e(1) + �2(1 − �1)e(2) + · · · + �n−1

n−2∏
r=1

(1 − �r)e(n−1) +
n−1∏
r−1

(1 − �r)e(n);

pI = �1p(1) + �2(1 − �1)p(2) + · · · + �n−1

n−2∏
r=1

(1 − �r)p(n−1) +
n−1∏
r−1

(1 − �r)p(n):

Picking another n pairs of (e(1); p(1)); (e(2); p(2)); : : : ; (e(n−1); p(n−1)) and (e(n+1); p(n+1)),
and by hypothesis we can form another domain con'guration with

eII = �1e(1) + �2(1 − �1)e(2) + · · · + �n−1

n−2∏
r=1

(1 − �r)e(n−1) +
n−1∏
r−1

(1 − �r)e(n+1);

pII = �1p(1)+�2(1 − �1)p(2)+ · · ·+�n−1

n−2∏
r=1

(1−�r)p(n−1)+
n−1∏
r−1

(1−�r)p(n+1):

Notice that

eI − eII =
1
2

n−1∏
r=1

(1 − �r)(an(n+1) ⊗ nn(n+1) − nn(n+1) ⊗ an(n+1));

(pI − pII) · nn(n+1) =
n−1∏
r=1

(1 − �r)(p(n) − p(n+1)) · nn(n+1) = 0;
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thus by hypothesis, it is possible to form a laminate consisting of alternating bands of
(eI; pI) and (eII; pII), with the average strain and polarization given by

〈e〉 = �neI + (1 − �n)eII;

〈p〉 = �npI + (1 − �n)pII; (2.17)

for any �n ∈ [0; 1]. This completes the proof.
It remains to show that given any {�r : �r ¿ 0;

∑K
r=1 �r =1}, we can 'nd �r ∈ [0; 1],

r = 1; : : : K , such that

�r =




�r

r−1∏
i=1

(1 − �i); r = 1; : : : K − 1;

r−1∏
i=1

(1 − �i); r = K:

(2.18)

This is true for the following choice of �r (Bhattacharya, 1993),

�r =




0;
r−1∑
i=1

�i = 1;

�r

1 − ∑r−1
i=1 �i

otherwise:

(2.19)

As a result, it is possible to construct an energy minimizing domain con'guration using
multi-rank laminates when the ferroelectric variants are pair-wise compatible.

3. The e#ective moduli of ferroelectric crystals

With the energy minimizing domain con'guration of a ferroelectric crystal con-
structed by the multi-rank lamination, we seek to determine its linear electromechanical
behavior under a small applied 'eld. Laminated materials have been analyzed exten-
sively for the eCective conductivity, elasticity, and thermoelasticity, and a comprehen-
sive review can be found in Milton (2002). Here, we assume that the applied 'eld
under consideration is not large enough to trigger domain switching, so that the linear
piezoelectric theory applies, with the static piezoelectric constitutive equation given by



e1
e2
e3
e4
e5
e6
D1

D2

D3




=




S11 S12 S13 S14 S15 S16 d11 d21 d31

S12 S22 S23 S24 S25 S26 d12 d22 d32

S13 S23 S33 S34 S35 S36 d13 d23 d33

S14 S24 S34 S44 S45 S46 d14 d24 d34

S15 S25 S35 S45 S55 S56 d15 d25 d35

S16 S26 S36 S46 S56 S66 d16 d26 d36

d11 d12 d13 d14 d15 d16 �11 �12 �13

d21 d22 d23 d24 d25 d26 �12 �22 �23

d31 d32 d33 d34 d35 d36 �13 �23 �33







�1

�2

�3

�4

�5

�6

E1

E2

E3




;

(3.1)
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which can be rearranged as[
Y

Z

]
=

[
A B

Bt N

] [
F

G

]
; (3.2)

where superscript t is used to denote a matrix transpose, and the 'eld variables and
the electromechanical moduli are given by

Y =




e1

e2

e6

D3


 ; Z=




e3

e4

e5

D1

D2




; F=




�1

�2

�6

E3


 ; G =




�3

�4

�5

E1

E2




;

and

A =




S11 S12 S16 d31

S12 S22 S26 d32

S16 S26 S66 d36

d31 d32 d36 �33


 ;

B=




S13 S14 S15 d11 d21

S23 S24 S25 d12 d22

S36 S46 S56 d16 d26

d33 d34 d35 �13 �23


 ;

N =




S33 S34 S35 d13 d23

S34 S44 S45 d14 d24

S35 S45 S55 d15 d25

d13 d14 d15 �11 �12

d23 d24 d25 �12 �22




:

Now, let us consider the linear piezoelectric behavior of a ferroelectric laminate
consisting of two variants as shown in Fig. 1. Notice that the normal of the laminate is
chosen as the x3 axis, which allows us to take advantage of electromechanical continuity
conditions at the interface. For each variant r=1; 2, the constitutive equations are given
by [

Yr

Zr

]
=

[
Ar Br

Bt
r Nr

] [
Fr

Gr

]
; (3.3)
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x3

2

2

1

1

Fig. 1. A ferroelectric laminate consisting of two variants.

leading to a heterogeneous electromechanical 'eld distribution in the laminate. The
continuity conditions at the interface, however, require that

Y1 = Y2 = PY; G1 =G2 = PG; (3.4)

where the overhead bar is used to denote volume averaged 'eld variables in the lami-
nate. As a result, for each phase we have

Fr = A−1
r

PY − A−1
r Br PG;

Zr = Bt
rFr +Nr PG = Bt

rA
−1
r

PY + (Nr − Bt
rA

−1
r Br) PG; (3.5)

where subscript r is used to denote a 'eld variable in phase r, which leads to

PF= 〈A−1〉 PY − 〈A−1B〉 PG;

PZ= 〈BtA−1〉 PY + (〈N〉 − 〈BtA−1B〉) PG; (3.6)

where 〈·〉 is used to denote volume averaged physical properties. Rearranging the equa-
tions yields

PY = 〈A−1〉−1 PF+ 〈A−1〉−1〈A−1B〉 PG;

PZ= 〈BtA−1〉〈A−1〉−1 PF+ (〈BtA−1〉〈A−1〉−1〈A−1B〉
+〈N〉 − 〈BtA−1B〉) PG; (3.7)

which leads to the following eCective electromechanical moduli:

A∗ = 〈A−1〉−1;

B∗ = 〈A−1〉−1〈A−1B〉;
Bt∗ = 〈BtA−1〉〈A−1〉−1;

N∗ = 〈BtA−1〉〈A−1〉−1〈A−1B〉 + 〈N〉 − 〈BtA−1B〉: (3.8)

Clearly, the matrix of the eCective electromechanical moduli is diagonally symmetric.
Eqs. (3.8) are exact for rank-one laminates, but can also be applied to calculate the ef-
fective electromechanical moduli of a multi-rank laminate if there is separation of scales
between diCerent levels, so that the lower level laminates can be regarded as homoge-
neous as far as the eCective behavior of higher level laminate is concerned. They are
explicit algebraic equations that can be numerically implemented easily. As such, we
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can use it to determine the electromechanical behavior of ferroelectric single crystals
with engineered domain con'gurations. Combining with appropriate micromechanics
approximation, it can also be applied to study the eCective properties of ferroelectric
ceramics (Dunn, 1995; Li, 2000).

4. Ferroelectric crystals with engineered domain con*gurations

We now apply the theory to ferroelectrics with engineered domain con'gura-
tions, including tetragonal crystal such as BaTiO3 and rhombohedral crystal such as
PMN–PT.

4.1. Tetragonal crystal

We 'rst consider a tetragonal crystal, where the transformation strains and polariza-
tions are given by

e(±1) =




� 0 0

0 � 0

0 0 �


 ; p(±1) = ±




pt

0

0


 ;

e(±2) =




� 0 0

0 � 0

0 0 �


 ; p(±2) = ±




0

pt

0


 ;

e(±3) =




� 0 0

0 � 0

0 0 �


 ; p(±3) = ±




0

0

pt


 (4.1)

with respect to the cubic crystallographic axes. There are in total six ferroelectric
variants, with variants ±i having opposite polarization directions yet identical trans-
formation strain. It can be easily veri'ed that each pair of variants is compatible,
satisfying (2.7).
If such a tetragonal crystal is poled by an electric 'eld along the [1 1 1] axis,

E0 = [1; 1; 1]E0 and T0 = 0;

as shown in Fig. 2, then three variants 1, 2, and 3 with positive polarization component
will coexist in ferroelectric to minimize the potential energy with the electric 'eld,
since variants −1, −2, and −3 are energetically disfavored. In addition, they will
have equal volume fraction, �i = 1

3 , to minimize the depolarization energy. Otherwise,
the crystal will have net polarization component parallel to the (1 1 1) planes which
are deposited with electrode, leading to nonzero depolarization 'eld. It is worthwhile
to comment on similar situations in shape memory alloys and ferromagnetics. If an
external stress is applied to a tetragonal shape memory alloy along the [1 1 1] axis,
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E field  [111]
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Fig. 2. The coexistence of three ferroelectric variants in the [1 1 1] poled tetragonal crystal.

three variants will coexist. However, if the stress is slightly deviated from the [1 1 1]
axis, only one variant favored by the deviated stress will exist. This will not occur
in ferroelectrics if the applied electric 'eld is slightly deviated from the [1 1 1] axis
thanks to the in8uence of depolarization energy. On the other hand, if a magnetic 'eld
along the [1 1 1] axis is applied to a ferromagnetic with the easy axes along 〈1 0 0〉, the
magnetization will gradually rotate from the easy axis to the [1 1 1] axis, resulting in a
uniform magnetization after saturation. This again, will not occur in ferroelectrics, since
anisotropy energy, or the stored energy density, is much stronger in ferroelectrics than
in ferromagnetics compared to the energy caused by the external 'eld, and polarization
rotation will not occur under an ordinary electric 'eld. If an extremely high electric
'eld is applied to a tetragonal ferroelectric along the [1 1 1] axis, then the 'eld induced
phase transition will occur and the crystal will become rhombohedral (Wada et al.,
1999). This is beyond the scope of this study.
Since all the three coexisting variants are pair-wise compatible with nij‖〈1 1 0〉, we

can construct such a three-variant system using a rank-two laminate as follows:

1. Choose variants 2 and 1 to construct a band I with domain wall or interface normal
given by n12‖[1 1 0], and choose variants 2 and 3 to construct a band J with domain
wall given by n23‖[0 1 1]; in both bands the volume fraction of variant 2 is �1=1=3.

2. Choose bands I and J to construct a rank-two laminate with interface normal given
by n13‖[1 0 1] and volume fraction of band I given by �2 = 1=2.

The construction is schematically shown in Fig. 3. Since the engineered domain con-
'guration is a rank-two laminate, Eqs. (3.8) needs to be applied twice to determine the
eCective moduli of the single crystal. The eCective moduli of bands I and J were calcu-
lated 'rst using (3.8) with the electromechanical moduli of single-domain single crystal
as input. Then the eCective moduli of bands I and J were used as input to calculate
the eCective moduli of single crystal, which is then transformed into a new coordinate
system with x1‖[ P1 2 P1]; x2‖[ P1 0 1]; x3‖[1 1 1] in order to be compared with experiments.
When there is separation of scales between laminates, bands, and domains, so that
bands I and J can be regarded as homogeneous as far as the macroscopic behavior
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rank-one lamination
rank-two lamination

Fig. 3. The construction of energy minimizing domain con'guration by rank-two laminate for tetragonal
crystal poled along the [1 1 1] direction.

Table 1
Electromechanical moduli of single-domain single crystalline barium titanate, S: 10−12 m2=N; d: 10−12C=N;
�: 
0

S11 S12 S13 S33 S44 S66 d31 d33 d15 �11 �33

7.38 −1:39 −4:41 13.10 16.40 7.46 −33:72 93.95 560.7 4367 132.5

of single crystal is concerned, the procedure leads to exact eCective moduli of single
crystal with engineered domain con'guration. For barium titanate, the single-domain
electroelastic moduli are listed in Table 1 (Zgonik et al., 1994). Using these data, we
calculate the eCective elastic, piezoelectric, and dielectric constants of barium titanate
poled along the [1 1 1] axis as follows (S : 10−12m2=N; d : 10−12C=N; � : 
0):

S=




5:94 −2:33 −1:12 0 2:42 0

−2:33 5:94 −1:12 0 −2:42 0

−1:12 −1:12 4:73 0 0 0

0 0 0 2:00 0 −5:17

2:42 −2:42 0 0 2:00 0

0 0 0 −5:17 0 1:67




;

d =




−34:64 34:65 0 0 161:0 0

0 0 0 175:7 0 85:59

−72:03 −72:01 159:3 0 0 0


 ;

� =



1055:0 0 0

0 954:22 0

0 0 2199:0


 :
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From the calculations, we notice that the barium titanate poled along the [1 1 1]
axis has symmetry very close to 3m (Nye, 1957). It is also con'rmed that the three-
variant domain con'guration indeed leads to enhanced piezoelectricity, where piezo-
electric coeQcient d33 is found to be 70% higher than that of single-domain sin-
gle crystal, consistent with 62% enhancement observed in experiment (Wada et al.,
1999). The single-domain piezoelectric coeQcient d33 was reported to be 125 pC=N in
Wada et al. (1999), slightly higher than 93:95 pC=N reported by Zgonik et al. (1994).
Most likely this is an extrinsic eCect due to some 180◦ domain wall movement. In
addition, piezoelectric coeQcients d31 and d32 are about 114% higher than those of
single-domain single crystal. As such, we are able to explain the enhanced piezoelec-
tric coeQcient observed in barium titanate poled along the [1 1 1] direction using the
engineered domain con'guration, which takes into account the energy minimizing do-
main con'guration, the anisotropy of ferroelectric variants, and the interaction between
ferroelectric domains. We not only demonstrate the enhancement in the longitudinal
direction, which is consistent with experiment observation, but also predict the en-
hancement in the transverse direction which has yet to be reported in the literature.
This is certainly worth investigating experimentally.
It is not clear, however, that if the barium titanate poled along the [1 1 1] axis

is optimal as far as the electromechanical coupling is concerned. As such, we also
consider a barium titanate poled by an electric 'eld along the [0 1 1] axis combined
with a compressive stress along the [1 0 0] axis, E0=[0; 1; 1]E0, T0=[−T0; 0; 0]. Under
such electromechanical poling, variant 1 becomes energetically unfavored, leading to
the coexistence of variants 2 and 3. Such a two-variant system can be constructed
by a rank-one laminate with domain wall given by n23 = [0 1 1] and volume fraction
given by � = 1=2. In a global coordinate system with x1‖[1 0 0]; x2‖[0 1 P1]; x3‖[0 1 1],
the eCective elastic, piezoelectric, and dielectric constants for such barium titanate are
calculated as follows, which possess mm2 symmetry:

S=




7:38 −2:90 −2:90 0 0 0

−2:90 7:02 −1:18 0 0 0

−2:90 −1:18 7:02 0 0 0

0 0 0 26:31 0 0

0 0 0 0 10:26 0

0 0 0 0 0 11:93




;

d =




0 0 0 0 248:0 0

0 0 0 137:2 0 0

−23:85 −176:9 219:5 0 0 0


 ;

� =



2877:8 0 0

0 193:61 0

0 0 2249:5


 :
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Table 2
Piezoelectric coeQcients and electromechanical coupling factors of barium titanate crystals with engineered
domain con'guration; d: 10−12 C=N

dij d31 d32 d33 k31 (%) k32 (%) k33 (%)

Single crystal −33:72 −33:72 93.95 36 36 76
Two-variant −23:85 −176:9 219.5 6 47 59
Three-variant −72:03 −72:01 159.3 21 21 52

It is noted that for the two-variant system poled along the [0 1 1] direction, the piezo-
electric coeQcient d32 is more than 400% higher than that of single-domain single
crystal, and piezoelectric coeQcient d33 is more than 100% higher, suggesting much
larger piezoelectric enhancement than the three-variant system. To our best knowledge,
such two-variant engineered domain con'guration has yet to be explored in experiment.
The predicted piezoelectric coeQcients for both three- and two-variant crystals are

summarized in Table 2. It is interesting to notice that although the piezoelectric coef-
'cient d33 is enhanced by the engineered domain con'gurations, the electromechanical
coupling factor k33 is actually reduced. On the other hand, barium titanate poled along
[0 1 1] direction does have higher k32 than that of single-domain crystal.

4.2. Rhombohedral crystal

We then consider rhombohedral crystals such as PMN–PT. The transformation strains
and polarizations of rhombohedral ferroelectric are given by

e(±1) =




% & &

& % &

& & %


 ; p(±1) = ±




pr

pr

pr


 ;

e(±2) =




% −& −&

−& % &

−& & %


 ; p(±2) = ±




−pr

pr

pr


 ;

e(±3) =




% & −&

& % −&

−& −& %


 ; p(±3) = ±




−pr

−pr

pr


 ;

e(±4) =




% −& &

−& % −&

& −& %


 ; p(±4) = ±




pr

−pr

pr


 : (4.2)
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Table 3
Electromechanical moduli of PMN–PT, S: 10−12 m2=N; d: 10−12 C=N; �: 
0

S11 S12 S13 S14 S33 S44 S66

62.16 −53:85 −5:58 −166:24 13.34 510.98 232.02

d31 d33 d15 d22 �11 �33

−90 190 4100 1340 3950 640

v

[-1,-1,1] [-1,1,1]

[1,-1,1] [1,1,1]

E field [0,0,1]

Fig. 4. The coexistence of four ferroelectric variants in the [0 0 1] poled rhombohedral crystal.

The total number of variants is 8. It can be easily veri'ed that each pair of variants is
compatible. The single-domain single crystal data of PMN–PT, which are used in the
following calculations, are listed in Table 3 (Zhang et al., 2003a).
We 'rst consider a rhombohedral crystal poled along the [0 0 1] axis, E0 = [0; 0; E0],

with T0 = 0, as shown in Fig. 4. As a result of the poling, four variants with posi-
tive polarization component along x3 axis will coexist in ferroelectric to minimize the
potential energy with electric 'eld. In addition, they will have equal volume fractions,
�i = 1=4, to minimize the depolarization energy. Otherwise, the crystal will have net
polarization components parallel to the (0 0 1) planes which are deposited with elec-
trode, leading to nonzero depolarization 'eld. Since the four variants are pair-wise
compatible with nij‖〈1 1 0〉 or nij‖〈0 0 1〉, corresponding to 71◦ domain wall and 109◦

domain wall, we can construct such a four-variant system using a rank-three laminate
as follows:

1. Construct bands i, j, k using variant 1 with variants 2, 3, and 4, respectively, with
domain wall or interface normals given by n12‖[0 1 1], n13‖[0 0 1], and n14‖[1 0 1];
the volume fraction of variant 1 is �1 = 1=4 within each band.

2. Construct rank-two laminates J and K using band i with bands j and k, respectively,
with interface normals given by n23‖[ P1 0 1] and n24‖[0 0 1]; the volume fraction of
band i within each laminate is �2 = 1=3.
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3. Construct a rank-three laminate using J and K with interface normal given by
n34‖[0 P1 1] and volume fraction of band I given by �3 = 1=2.

Since the engineered domain con'guration is a rank-three laminate, Eqs. (3.8) needs
to be applied three times to determine the eCective moduli of the single crystal. The
calculated elastic, piezoelectric, and dielectric constants of PMN–PT, expressed in a
coordinate system with x1‖[1 0 0]; x2‖[0 1 0]; x3‖[0 0 1] in order to be compared with
experiments, are given as follows, which has symmetry very close to 4m:

S=




240:3 −121:0 −116:8 0 0 0

−121:0 240:6 −117:0 0 0 0

−116:8 −117:0 236:3 0 0 0

0 0 0 14:7 0 0

0 0 0 0 15:3 0

0 0 0 0 0 16:5




;

d =




0 0 0 0 70:0 0

0 0 0 63:5 0 0

−1099:4 −1102:0 2207:2 0 0 0


 ;

� =



311:5 0 0

0 303:1 0

0 0 2705:3


 :

The rank-three laminate follows from a general procedure for constructing the energy-
minimizing microstructure with N pair-wise compatible variants. A detailed examina-
tion of four variants available here, however, suggests that simpler rank-two laminates
are also possible. For example, we can use variants 1 and 3 with equal volume fractions
to construct a band I of orthorhombic symmetry,

eI =




% & 0

& % 0

0 0 %


 ; pI =


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0

0

p


 :

Similarly, we can construct a band J using variants 2 and 4,

eJ =




% −& 0

−& % 0

0 0 %


 ; pJ =



0

0

p


 :
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In each band, only 109◦ domain walls exist. Clearly, bands I and J have eCective
orthorhombic symmetry, and are compatible with each other with interface normal
given by [0 1 0] (Shu and Bhattacharya, 2001). Thus they can form another level of
laminate to represent crystals poled along the [0 0 1] direction. The calculated elastic,
piezoelectric, and dielectric constants of PMN–PT are given as follows, which has
symmetry very close to 4m:

S=




244:7 −121:1 −121:1 0 0 0

−121:1 244:7 −121:1 0 0 0

−121:1 −121:1 244:7 0 0 0

0 0 0 13:2 0 0

0 0 0 0 13:8 0

0 0 0 0 0 20:0




;

d =




0 0 0 0 51:2 0

0 0 0 50:4 0 0

−1151:8 −1151:8 2309:4 0 0 0


 ;

� =



282:9 0 0

0 287:2 0

0 0 2846:7


 :

In a similar manner, bands I and J can also be constructed to contain only 71◦ domain
walls using variants 1 and 4, and variants 2 and 3, respectively, so that

eI =


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and
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They are again compatible with each other and have orthorhombic symmetry. In this
case, the interface normal between bands I and J is [0 0 1]. The calculated
elastic, piezoelectric, and dielectric constants are given as follows, which possesses
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2mm symmetry,

S=




235:4 −121:1 −111:8 0 0 0

−121:1 244:7 −121:1 0 0 0

−111:8 −121:1 235:4 0 0 0

0 0 0 14:1 0 0

0 0 0 0 16:1 0

0 0 0 0 0 14:9




;

d =




0 0 0 0 85:9 0

0 0 0 49:2 0 0

−1038:5 −1151:8 2196:1 0 0 0


 ;

� =



337:0 0 0
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
 :

Since there are less interfaces involved in rank-two laminates, they are more likely
to occur in crystals. Indeed, interweaving domain con'gurations containing either 109◦

or 71◦ domain walls have been observed in PMN–PT crystals poled along [0 0 1] di-
rections (Zhang et al., 2003b). The calculated piezoelectric coeQcients d31 and d33 and
electromechanical coupling factors k31 and k33 of four-variant PMN–PT with various
kinds of engineered domain con'gurations are summarized in Table 4, and compared
with measured values for PMN–PT poled along the [0 0 1] axis (Zhang et al., 2001).
It is observed that the eCective piezoelectric coeQcients and electromechanical cou-
pling factors calculated using rank-three and rank-two laminates agree well with ex-
periment measurement, especially for the electromechanical coupling factor k33, which
shows excellent agreement with experiment. Among all three domain con'gurations,
the rank-two laminate with 109◦ domain wall agrees with measurement best. This
suggests that the enhanced piezoelectricity is indeed related to the engineered domain
con'gurations.

Table 4
Elastic constant, piezoelectric constants, dielectric constants and electromechanical coupling factors of single
crystalline PMN–PT poled along the [0 0 1] direction; d: 10−12 C=N; �: 
0

d31 d33 k31 (%) k33 (%)

Rank-3 −1099:4 2207.2 46 93
Rank-2 (109◦) −1151:8 2309.4 46 93
Rank-2 (71◦) −1038:5 2196.1 44 93
Experiment −1330 2820 59 94
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It remains to be seen, again, that if the PMN-PT poled along the [0 0 1] axis is
optimal as far as the electromechanical couplings is concerned. In particular, there is
only a modest increase in k31 for this four-variant system. As such, we also consider a
PMN–PT crystal poled by an electric 'eld along the [0 0 1] direction, E0 = [0; 0; 1]E0,
combined with a positive shear stress �12 applied at the boundary. Due to the applied
shear stress, variants 2 and 4 become energetically unfavored, leading to the coexistence
of variants 1 and 3 by 109◦ domain wall, n13 = [0 0 1]. The domain con'guration can
be constructed by a rank-one laminate which requires the application of (3.8) only
once. The elastic, piezoelectric, and dielectric constants of this PMN–PT are calculated
as following:

S=




62:2 56:7 −116:1 0 0 0

56:7 71:7 −126:0 0 0 0

−116:1 −126:0 244:7 0 0 0

0 0 0 16:7 0 0

0 0 0 0 11:0 0

0 0 0 0 0 731:5




;

d =




0 0 0 0 40:6 0

0 0 0 65:3 0 0

−1146:1 −1157:6 2309:4 0 0 0


 ;

� =



248:6 0 0

0 328:2 0

0 0 2846:7


 :

Similarly, we can pole the PMN–PT crystal by an electric 'eld along the [0 1 1] axis,
E0=[0; 1; 1]E0, which disfavors variants 3 and 4, leading to the coexistence of variants
1 and 2 by 71◦ domain wall, n12 = [0 1 1]. In such case, the 'nal coordinate system
is chosen to be x1‖[0 P1 1], x2‖[1 0 0], and x3‖[0 1 1], so that x3 is parallel to the pol-
ing direction. The elastic, piezoelectric, and dielectric constants of the [0 1 1] poled
PMN–PT are calculated as following:

S=




62:2 −116:1 56:7 0 0 0

−116:1 244:7 −126:0 0 0 0

56:7 −126:0 71:7 0 0 0

0 0 0 18:2 0 0

0 0 0 0 694:4 0

0 0 0 0 0 11:5




;
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Table 5
Piezoelectric coeQcients and electromechanical coupling factors of two-variant single crystal, poled along
[0 0 1] or 〈0 1 1〉 directions; d: 10−12 C=N; �: 
0

d31 d32 d33 k31 (%) k32 (%) k33 (%)

Two-variant ([0 0 1] poling + �12) −1146:1 −1157:6 2309.4 92 86 93
Two-variant (〈0 1 1〉 poling) 700.2 −1628:9 936.9 71 84 89
Experiment (〈0 1 1〉 poling) 690 −1670 980

d =




0 0 0 0 4574:4 0

0 0 0 89:8 0 0

700:2 −1628:9 936:9 0 0 0


 ;

� =



3636:6 0 0

0 311:1 0

0 0 1743:3


 :

The calculations, along with measured piezoelectric coeQcients of a similar crystal
PZN–PT poled along the [1 1 0] axis (Liu and Lynch, 2003), are summarized in
Table 5. Again, we observed excellent agreement between our calculation and exper-
imental measurement for crystal poled along the 〈1 1 0〉 direction. In addition, crystal
electromechanically poled along the [0 0 1] direction with two variants coexisting has
superior electromechanical coupling coeQcients k31, k32, and k33 simultaneously. k33
is comparable to that of four-variant system, while k31 is much higher. This suggests
that the two-variant system poled along the [0 0 1] direction with appropriate shear
stress applied is optimal for electromechanical coupling. Such new poling procedure is
certainly worthy investigation experimentally.

5. Concluding remarks

In summary, we have characterized the engineered domain con'gurations in
ferroelectric crystals using energy minimizing multi-rank lamination. The eCective
electromechanical properties of ferroelectric crystals with engineered domain con'g-
urations have been calculated and good agreement with experimental measurements
has been observed. We are also able to identify the optimal domain con'gurations and
poling directions for the enhanced electromechanical coupling.
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