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Abstract

The e�ective electroelastic moduli of textured piezoelectric polycrystalline aggregates have
been modeled by the self-consistent approach and traditional Voigt-Reuss averages. The

orientational averaging scheme in textured piezoelectric polycrystals has been developed
using the orientation distribution function (ODF), which can be done analytically with a
series of generalized associated Legendre functions, or numerically with the Gaussian

quadrature method. Gaussian distribution function has been adopted to simulate a wide
range of textures in piezoelectric polycrystals, and a key parameter a is identi®ed to be
closely related to the processing conditions such as poling ®eld intensity. Numerical results

are presented and discussed for poled and unpoled BaTiO3 ceramics, and BaTiO3 ®lms with
perfectly aligned grains, which agree well with known theoretical results. It is found that
the electroelastic moduli of piezoelectric polycrystalline aggregates show strong dependence
on texture; piezoelectric constants higher than the corresponding single crystal values can

be achieved at certain texture; and dielectric constants are more sensitive to grain shape
than elastic constants. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Applications of piezoelectric materials have increased dramatically in recent
years, fueled largely by their many uses in smart materials and structural systems.
Their attractiveness stems from their inherent ability to convert electrical energy
to mechanical energy and vice versa. They are a natural choice for ultraprecise
displacement transducers and actuators. Their role in functional material systems
is rapidly increasing as a result of technological trends toward higher speed, less
driving power, and miniaturization of devices.

Among the piezoelectric materials, piezoelectric ceramics and thin ®lms may
have received the most attention. For contemporary and future applications,
polycrystalline piezoelectric ceramics are more attractive than single crystals
because they are more versatile, their physical and mechanical properties can be
tailored to speci®c applications, they are less expensive to produce, and quality
control is more easily maintained. Piezoelectric thin ®lms are widely recognized
for their potential applications in electronic and electro-optic devices. Because of
their high dielectric constant and breakdown voltage, BaTiO3 thin ®lms are the
best storage dielectrics for ultra-large-scale integrated memory devices.
Ferroelectric PZT ®lms show superior piezoelectric and pyroelectric properties and
are used in nonvolatile memories, thermal or ultrasonic image sensors, and surface
acoustic wave ®lters.

Despite the di�erence in their processing, piezoelectric ceramics and thin ®lms
can be classi®ed as polycrystalline aggregates, with individual grains oriented with
a certain distribution. So they can be analyzed under the uni®ed framework.
When a piezoelectric ceramic is fabricated by standard ceramic processing
techniques, it is an aggregate of randomly oriented piezoelectric grains. No net
macroscopic polarization is realized because the polarization directions are
randomly oriented, and the material is not macroscopically piezoelectric. If the
isotropic non-piezoelectric ceramic is subjected to a large electric ®eld at high
temperature (a process termed poling), the directions of polarization in many of
the grains are permanently realigned resulting in a macroscopic spontaneous
polarization and hence, piezoelectricity. The most prominent microstructural
characteristic of thin ®lms is the so-called columnar grain, i.e., highly oriented
long needle-like grain. Sakashita et al. (1993) reported a fabrication of PZT thin
®lm with the tetragonal perovskite structure and [001] texture. Stemmer et al.
(1995) compared the domain con®guration in epitaxial ferroelectric PbTiO3 ®lms,
where domains with x3 axis parallel and normal to the substrate surface are
observed. A highly c-oriented Bismuth Titanate (BIT) ®lm was obtained on a
silver foil by Lu et al. (1996). No evidence of grain orientations other than [001]
was observed for ®lms with one- through ten-layer coating. When the number of
coating layers was greater than ten, the [200] orientation was dominant. The
preferential orientation in the [200] direction of BIT thin ®lm is very attractive
because the largest value of spontaneous polarization lies in the x1ÿx3 plane and
in the x1 direction. In all the cases, the grain orientation distribution is very
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important in determining the macroscopic behaviors of the polycrystalline
aggregates.

From the above discussion on the microstructures of piezoelectric polycrystals,
it is clear that texture plays an important role in their e�ective behaviors, and its
in¯uence can not be overemphasized. It will introduce piezoelectricity in the
otherwise isotropic ceramics, and provide the optimized performance to the
piezoelectric thin ®lms. Therefore, an understanding of the e�ect of texture on the
overall properties is very important to the design, processing, and application of
piezoelectric polycrystals. Previous studies on piezoelectric ceramics have been
carried out by Marutake (1956), Olson and Avellaneda (1992), and Dunn (1995).
Marutake and Olson and Avellaneda were concerned with unpoled ceramics,
which consist of grains having randomly oriented polar axes, and thus are
isotropic and non-piezoelectric at the macroscopic level. They showed that the
piezoelectric interaction at grain level signi®cantly a�ects the macroscopic
dielectric and elastic constants of the unpoled ceramics. Dunn considered the
e�ect of grain shape, porosity, and microcracks on the elastic and dielectric
constants of unpoled ceramics. He found that dielectric constant is more sensitive
to both grain shape and grain level piezoelectric coupling. All the work focused
on the elastic and dielectric moduli of unpoled and thus macroscopically non-
piezoelectric ceramics, and an account of e�ect of texture on the macroscopic
behaviors of piezoelectric ceramics is still lacking. The work on piezoelectric thin
®lms is even more limited. Benveniste (1994) obtained exact connections between
polycrystal and crystal properties in a two-dimensional piezoelectric polycrystal
composed of single crystals of class 2mm. Li et al. (1999) gave the conditions for
the existence of exact solutions for the e�ective thermal and electroelastic moduli
of polycrystals exhibiting ®ber texture. No attempt has been made to estimate the
e�ective moduli of piezoelectric thin ®lms for more general symmetries and
microstructures.

In this work, we will study the e�ect of polycrystalline microstructure, especially
the texture, on the e�ective behaviors of piezoelectric ceramics and thin ®lms. As
a result of their similarity in polycrystalline microstructure, they are studied under
the same framework. The paper is organized in the following manner. Basic
equations and notation on piezoelectricity are introduced in Section 2. Various
micromechanics schemes are generalized to piezoelectric polycrystals in Section 3.
The orientation distribution and orientational average are then discussed in
Section 4. Finally, numerical results and discussion on BaTiO3 polycrystals with
general texture, BaTiO3 thin ®lms with perfect aligned grains, and isotropic
BaTiO3 ceramics are presented in Section 5.

2. Basic equations and notation

We consider the piezoelectric, and thus inherently anisotropic, analog of the
uncoupled theory of elasticity, where the electric and elastic ®elds are fully
coupled. The ®eld variables and material moduli are represented either by
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conventional indicial notation or by bold characters. The constitutive equation for
stationary linear response of a piezoelectric solid can be expressed as

sp � CpqEq ÿ epkEk

Di � eiqEq � kikEk �1�
In Eq. (1) sp and Ep are the elastic stress and strain, respectively; Di and Ei are the
electric displacement and ®eld, respectively. Cpq, eiq, and kik are the elastic sti�ness
tensor (measured in a constant electric ®eld), the piezoelectric tensor, and the
dielectric tensor (measured at a constant strain), respectively. The well known
contracted notation for tensors is adopted (Nye, 1957). We introduce the matrix
representation for these quantities

S �
�
s
D

�
Z �

�
E
ÿE

�
G �

�
C et

e ÿk
�

�2�

where S and Z are 9 � 1 column vectors representing the electroelastic ®eld
variables, G is 9 � 9 matrix representing the electroelastic moduli, and the
superscript t is used to denote the transpose of matrix. Electric ®eld ÿE instead of
E is used as independent variable because it allows the construction of a
symmetric moduli matrix, which is proven advantageous. The constitutive Eq. (1)
can then be rewritten as

S � GZ �3�
It is noted that the constitutive Eq. (3) is only one of four representations
available for piezoelectricity. By choosing di�erent independent ®eld variables,
other representations can be realized. The current representation is proven
advantageous for the analysis of the inclusion and inhomogeneity problems,
because the independent variables E and ÿE are derivable from electric potential
and elastic displacement, which can be determined by the Green's function
method (Dunn and Taya, 1993). This representation, however, leads to a non-
positive de®nite energy function, piezoelectric enthalpy, which is disadvantageous
in discussing the bounds on the e�ective moduli. In that situation, s and E can be
chosen as independent variables, leading to a positive de®nite energy function, and
thus, upper and lower bounds on the e�ective moduli. Finally, we note that
transformation between di�erent representations can be done easily through the
constitutive equations.

Assuming statistical homogeneity for a heterogeneous solid subjected to external
loading consistent with the uniform ®eld Z 0 at the boundary, the e�ective
electroelastic moduli G� can be de®ned as

hSi � G �hZi, �4�
where h.i=f(.)dO(y, j, f ) denotes an orientational volume average, in which (y,
j, f ) are Euler angles describing the orientation of a grain OÿX1X2X3 in a global
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coordinate system Oÿx1x2x3 depicted in Fig. 1 (see, for example, Roe, 1965). Due
to linearity we have

Z�y, j, f� � A�y, j, f�Z 0 �5�

where A(y, j, f ) is the concentration factor for grain at orientation (y, j, f ),
which is a function of microstructure parameters, such as grain shape, orientation,
and interaction between di�erent grains. From the average ®eld theorem (Dunn
and Taya, 1993; Hori and Nemat-Nasser, 1998), i.e., hZ(y, j, f )i=Z 0, we can
show that

hA�y, j, f�i � I, �6�

where I is the 9 � 9 unit matrix. Inserting Eq. (5) into Eq. (4), combined with the
constitutive Eq. (3) for individual grains at di�erent orientations, and after some
manipulation, we have

G � � hG�y, j, f�A�y, j, f�i, �7�

where G(y, j, f ) are the electroelastic moduli of grain at orientation (y, j, f )
expressed in the global coordinate system. Eq. (7) is an exact expression that
rigorously connects the e�ective moduli of the polycrystal with electroelastic

Fig. 1. Euler angles (y, j, f ) for a grain in a global coordinate system.
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moduli and concentration factors of individual grains. It is clear from Eq. (7) that
the estimation of e�ective electroelastic moduli depends on the estimation of the
concentration factor A(y, j, f ), which is the starting point of various
micromechanics approximations.

3. Micromechanics schemes

The simplest assumption on the concentration factor is A(y, j, f )=I. This
corresponds to assuming uniform stress and electric ®eld in the polycrystal
subjected to an external loading, and gives us

G � � hG�y, j, f�i �8�
Analogously, by assuming S(y, j, f )=B(y, j, f )S0, and letting B(y, j, f )=I, a
uniform strain and electric displacement assumption, we obtain

G � � hG ÿ1�y, j, f�iÿ1 �9�
Eqs. (8) and (9) are the piezoelectric analogs of Voigt-Reuss averages in elastic
solids (Voigt, 1889; Reuss, 1929). As noted in Section 2, the matrix of
electroelastic moduli G is not positive de®nite, and Voigt-Reuss estimations do not
provide upper and lower bounds on the electroelastic moduli. For the discussions
on the variational bounds for piezoelectric composite, readers are referred to
Bisegna and Luciano (1996), Hori and Nemat-Nasser (1998), and Li and Dunn
(1998a), in which di�erent independent ®eld variables are chosen. Recently Li et
al. (1999) showed that the uniform ®elds exist in piezoelectric polycrystals with
®ber texture under certain conditions, so that Voigt-Reuss estimations are exact
for some components of the electroelastic moduli. In general, however, the
uniform ®eld assumption is not realistic, especially in the case of strong grain
anisotropy, such as piezoelectric crystals. So a more elaborate micromechanics
scheme is needed to model the e�ective behaviors of piezoelectric polycrystals.

It is obvious that the estimation of concentration factor A is equivalent to the
estimation of the electroelastic ®elds in individual grains of polycrystal subjected
to external loading Z 0 at the boundary. To this end we turn to the Eshelby
solution on inclusion and inhomogeneity problems (Dunn and Taya, 1993;
Eshelby, 1957), and the self-consistent assumption (Dunn, 1995; Walpole, 1969;
Willis, 1977). We assume that the individual grains are embedded in an in®nite
matrix with yet to be determined e�ective electroelastic moduli G�, subjected to
the yet to be determined external loading Z1 at the boundary. It follows that

Z�y, j, f� � Adil�y, j, f�Z1 �10�
where Adil(y, j, f ) is determined from the solution of a single inhomogeneity
embedded in an in®nite matrix (Dunn and Taya, 1993)
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Adil�y, j, f� � fI� S�y, j, f�G �ÿ1�G�y, j, f� ÿ G ��gÿ1 �11�
where S(y, j, f ) is the piezoelectric Eshelby tensor for grain at orientation (y, j,
f ) expressed in the global coordinate system, which is a function of the e�ective
electroelastic moduli G� of the matrix and the grain shape. We will discuss the
evaluation of the piezoelectric Eshelby tensor in Appendix A. For an aligned
spheroidal inclusion in a transversely isotropic matrix, there are closed form
expressions for Eshelby tensor available (Dunn and Wienecke, 1997; Li and Dunn,
1998b). For the more general case, it is necessary to evaluate the Eshelby tensor
numerically. From the average ®eld theorem it follows from Eq. (10) that

Z1 � hAdil�y, j, f�iÿ1Z 0 �12�
And ®nally we obtain

A�y, j, f� � Adil�y, j, f�hAdil�y, j, f�iÿ1 �13�
and

G � � hG�y, j, f��Adil�y, j, f�ihAdil�y, j, f�iÿ1: �14�
Since G� is involved in both sides of equation, in general, Eq. (14) can only be

solved numerically by iteration. Eq. (14) is recognized as a self-consistent
approach, and regarded as an e�ective medium assumption. From our derivation,
however, it clearly also has the nature of an e�ective ®eld assumption besides the
e�ective medium origin (see also Li (1999) for more discussion). One of the
problems for the application of micromechanics models in multi-phase composites
is the violation of diagonal symmetry, as demonstrated by Benveniste et al. (1991).
The self-consistent model we developed here does not have such a problem. It
always returns a diagonally symmetric moduli matrix as veri®ed by our numerical
calculations. It will also be interesting to see if the e�ective moduli predicted by
Eq. (14) fall between variational bounds or not. However, since the Hashin-
Shtrikman type of bounds (Hashin and Shtrikman, 1962, 1963; Willis, 1977) for
piezoelectric polycrystals is still under development, such evaluation is not possible
at this moment, and will be reported later.

4. Orientation distribution function and orientational average

It is clear from Eqs. (8), (9), and (14) that the estimation of the e�ective
electroelastic moduli of piezoelectric polycrystals involves orientational volume
averages, no matter which micromechanics scheme is used. The orientation
distribution of grains in the polycrystal can be described by the orientation
distribution function (ODF) W(x, j, f ), which is the probability density function
for a grain at orientation (y, j, f ), where x=cosy, and (y, j, f ) are Euler angles
describing the grain's orientation with respect to a global sample coordinate
system (Roe, 1965), see Fig. 1. The orientational volume average of a single
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Fig. 2. Nonzero basis function Zlmn (x )e
ÿimjeÿinf.
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crystal tensorial property H weighted by ODF is then given by

hHi �
�2p
0

�2p
0

�1
ÿ1

H�x, j, f�W�x, j, f�dxdjdf �15�

where H(x, j, f ) is the single crystal value of H expressed in the global
coordinate system. To evaluate hHi, we expand W(x, j, f ) and H(x, j, f ) into
series of generalized associated Legendre functions

W�x, j, f� �
Xl�1
l�0

Xl
m�ÿl

Xl
n�ÿl

WlmnZlmn�x�eÿimjeÿinf �16�

H�x, j, f� �
Xl�1
l�0

Xm�l
m�ÿl

Xn�l
n�ÿl

HlmnZlmn�x�eÿimjeÿinf �17�

where Zlmn (x ) is the generalized associated Legendre function, and can be
expressed in terms of ordinary functions and the common Legendre function
Pmn

l �x� as (Bunge, 1982)

Zlmn�x� � inÿm
�������������
2l� 1

2

r
Pmn

l �x�

with

Pmn
l �x� �

�ÿ1�lÿminÿm
2l�lÿm�!

� �lÿm�!�l� n�!
�l�m�!�lÿ n�!

�1
2

� �1ÿ x�
ÿ�nÿm�

2

�1� x�
�n�m�

2

d lÿn

dxlÿn
��lÿ x�lÿm�l� x�l�m�

where i 2=ÿ1. Care should be taken to avoid confusion between electroelastic
®eld Z and generalized associated Legendre function Zlmn (x ), which should be
clear from the context. To help visualize, we plot some nonzero basis functions
Zlmn (x )e

ÿimjeÿinf in Fig. 2. Due to orthogonality, the expansion coe�cients can
be expressed as follows

Wlmn � 1

4p2

�2p
0

�2p
0

�1
ÿ1

W�x, j, f�Zlmn�x�eimjeinfdxdjdf �18�

Hlmn � 1

4p2

�2p
0

�2p
0

�1
ÿ1

H�x, j, f�Zlmn�x�eimjeinfdxdjdf �19�

The texture coe�cients Wlmn represent the orientation distribution of grains in the
polycrystalline aggregate. By the normalization condition for the ODF we can
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show that

W000 � 1

4
���
2
p

p2

Even-rank texture coe�cients can be determined from X-ray di�raction intensity,
which was discussed in detail by Roe (1965). Such a technique is not able to give
any information on odd-rank texture coe�cients, due to the inherent
centrosymmetry in X-ray di�raction. It is hoped that the present work can
provide a potential method to determine the odd-rank texture coe�cients inversely
from the measurement of odd-rank tensorial properties, such as piezoelectric
constants. Using Eqs. (16) and (17), and taking into account the orthogonal
property of Zlmn(x ), we can reduce Eq. (15) to

hHi � 4p2
XR
l�0

Xl
m�ÿl

Xl
n�ÿl

HlmnWlmn �20�

Where R is the rank of tensorial property H. Only the ®rst R terms in the series
expansion need to be considered in averaging a tensorial property of rank R
(Ferrari and Johnson, 1988).

We now consider the polycrystalline aggregates composed of 4 mm single
crystals, for example, BaTiO3. The independent single crystal moduli would be
elastic constants C11, C12, C13, C33, C44, and C66, piezoelectric constants e15, e31,
and e33, and dielectric constants k11, and k33. The resulting polycrystal is
transversely isotropic with

hC66i � hC11i ÿ hC12i
2

,

and the only non-zero texture coe�cients are W100, W200, W300, W400, and W404.
Unlike Roe's original treatment, we have nonzero odd-rank texture coe�cients
W100 and W300 due to lack of centrosymmetry in piezoelectric materials. From
Eqs. (18) and (19) it follows that the orientational averages for 4th, 3rd, and 2nd

rank tensorial properties can be deduced from the following tensor transformation
laws

hCijkl�x, j, f�i � hTimTjnTkoTlpCmnopi � hTimTjnTkoTlpiCmnop �21a�

heijk�x, j, f�i � hTimTjnTkoemnoi � hTimTjnTkoiemno �21b�

hkij�x, j, f�i � hTimTjnKmni � hTimTjniKmn �21c�

where Tmn is the element of tensor transformation matrix in terms of Euler angles,
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T ÿ1 �
24 cosjcosycosfÿ sinjsinf sinjcosycosf� cosjsinf ÿsinycosf
ÿcosjcosysinfÿ sinjsinf ÿsinjcosysinf� cosjcosc sinysinf
cosjsiny sinjsiny cosy

35
�22�

After expanding the h.i terms in Eqs. (21) into series, and determining their
coe�cients according to Eq. (19), we are able to obtain the following expressions
for the orientational averages for 4th, 3rd, and 2nd rank tensorial properties using
Eq. (20).

4.1. Fourth rank tensor: elastic constants

hC11i � C 0
11 � aW200 � 3bW400 � jW404

hC12i � C 0
12 � 2cW200 � bW400 � jW404

hC13i � C 0
12 ÿ cW200 ÿ 4bW400 ÿ 4jW404

hC33i � C 0
11 ÿ 2aW200 � 8bW400 � 8jW404

hC44i � C 0
11 ÿ C 0

12

2
ÿ aÿ 2c

4
W200 ÿ 4bW400 ÿ 4jW404

where

C 0
11 � �6C11 � 2C12 � 4C13 � 3C33 � 8C44 � 4C66�=15

C 0
12 � �2C11 � 4C12 � 8C13 � C33 ÿ 4C44 ÿ 2C66�=15

a � 8
�����
10
p

p2�3C11 � C12 ÿ C13 ÿ 3C33 ÿ 2C44 � 2C66�=105

b �
���
2
p

p2�3C11 � C12 ÿ 8C13 � 4C33 ÿ 16C44 � 2C66�=105

c � 4
�����
10
p

p2�C11 � 5C12 ÿ 5C13 ÿ C33 � 4C44 ÿ 4C66�=105

j � 2
�����
35
p

p2�C11 ÿ C12 ÿ 2C66�=105
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4.2. Third rank tensor: piezoelectric constants

he15i � 4
���
6
p

p2

15
�3e15 ÿ e31 � e33�W100 � 4

�����
14
p

p2

35
�2e15 � e31 ÿ e33�W300

he31i � 4
���
6
p

p2

15
�ÿ2e15 � 4e31 � e33�W100 � 4

�����
14
p

p2

35
�2e15 � e31 ÿ e33�W300

he33i � 4
���
6
p

p2

15
�4e15 � 2e31 � 3e33�W100 ÿ 8

�����
14
p

p2

35
�2e15 � e31 ÿ e33�W300

4.3. Second rank tensor: dielectric constants

hk11i � 2k11 � k33
3

� 4
�����
10
p

p2

15
�k11 ÿ k33�W200

hk33i � 2k11 � k33
3

ÿ 8
�����
10
p

p2

15
�k11 ÿ k33�W200

It is noted that the elastic constants only depend on W200, W400 and W404,
piezoelectric constants only depend on W100 and W300, and dielectric constants
only depend on W200. When all these texture coe�cients are zero, the material
becomes isotropic, and there is no piezoelectric e�ect. Materials with
centrosymmetry will also show no piezoelectricity, since their W100 and W300 are
zero.

The orientational averaging scheme presented is based on the fact that the
tensorial properties in di�erent grains at di�erent orientations are identical in their
own local coordinate systems, as is clear from Eq. (21). This is true for the
electroelastic moduli G and Gÿ1, so Voigt-Reuss estimations (8) and (9) can be
evaluated using this scheme. It is no longer true, however, for the concentration
factor A, because A is not a material property and varies between di�erent
orientations. Therefore, the orientational averaging scheme we presented can not
be applied to the concentration factor A and the self-consistent approach (14). In
general, the dependence of the concentration factor A on the orientation is very
complicated and no analytic solution is available, so Eqs. (19) and (20) are no
longer applicable, and we must turn to the original Eq. (15) for orientational
averaging of the concentration factor A and the self-consistent approach (14). The
disadvantage of Eq. (15) is that the ODF W(x, j, f ), unlike the texture
coe�cients Wlmn, is not experimental measurable. In principle, however, we can
determine Wlmn from experiment, and ®t the ODF W(x, j, f ) with the restrictions
of Eq. (18). The other problem is that unlike the algebraic Eq. (20), Eq. (15)
contains an integration involving the complicated function A(x, j, f ), which can
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only be evaluated numerically in general. Nevertheless, it can still be solved with
high accuracy, for example, by the Gaussian quadrature method (Press et al.,
1992).

5. Numerical results and discussion

To demonstrate the applicability of the theory, we will show some numerical
results in this Section. Since there is no experimental measurement on texture
available for piezoelectric polycrystals, to the best knowledge of the author, we
will adopt the Gaussian distribution function as ODF, which turns out to be a
reasonable approximation. Because the piezoelectric polycrystals are usually
transversely isotropic, we assume that the distribution only depends on Euler
angle y and is not a function of j and f

W�y, j, f� � 1

a
������
2p
p Exp

�
ÿ y2

2a2

�
�23�

where a is a parameter in Gaussian distribution function, and can be adjusted to
give di�erent texture. The shape of the Gaussian distribution function with
various a is shown in Fig. 3. The non-zero Wlmn as a function of a is shown in
Fig. 4. Since the ODF does not depend on f, W404 is also zero. Two extreme
cases immediately follow from the Gaussian distribution, where a polycrystal with
perfectly aligned grains such as a piezoelectric thin ®lm is realized by letting
a 4 0, and randomly oriented isotropic ceramics (unpoled) is realized by letting

Fig. 3. Gaussian distribution function with di�erent parameters a.
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a 41. Other texture can be realized by varying a in between. It can be imagined
that a is closely related to the processing conditions of piezoelectric polycrystals,
such as poling ®eld intensity. The ceramics are isotropic without poling ®eld
applied, and a approaches in®nity. When an electric ®eld is applied in poling,
some grains will reorient to minimize the free energy of the system, and a takes
some ®nite value, depending on the magnitude of the poling ®eld. At saturation
®eld all the grains are perfectly aligned with polarization along the poling ®eld
direction, and a approaches zero. By an appropriate experimentation the
relationship between a and processing conditions can be identi®ed, but that line of
inquiry will not be pursued here.

We apply the theory to BaTiO3 polycrystals, where the material constants are
listed in Table 1 (Berlincourt and Ja�e, 1958). The Gaussian quadrature method is
adopted for numerical integration (Press et al., 1992), where the integral of a

Fig. 4. Texture coe�cients Wlmn as functions of Gaussian distribution function parameter a.

Table 1

Electroelastic constants of tetragonal BaTiO3 single crystal

C11 (GPa) C12 (GPa) C13 (GPa) C33 (GPa) C44 (GPa) C66 (GPa)

275.1 178.9 151.55 164.8 54.3 113.1

e31(C/m
2) e33(C/m

2) e15(C/m
2) k11/k

0 k33/k
0

ÿ2.69 3.65 21.3 1970 109
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function is approximated by the sum of its function values at a set of points called
abscissas, multiplied by weighting coe�cients. The calculation is implemented in a
FORTRAN code, with the procedure outlined in Table 2, where the superscript i
is used to indicate the step in the iteration of the self-consistent approach, and
subscript j is used to indicate the step in the numerical integration, under the same
step i of the self-consistent approach. Three di�erent cases have been considered
under such a scheme.

5.1. Piezoelectric polycrystals with texture

We ®rst apply the theory to BaTiO3 polycrystal with texture described by
Gaussian distribution, with grains assumed to be spherical. Figs. 5±7 show the
e�ective elastic constants, piezoelectric constants, and dielectric constants of
BaTiO3 polycrystal as functions of a, where a is the parameter in Gaussian
distribution function. When a approaches zero, the grains in the polycrystal
become perfectly aligned. In such a case Li et al. (1999) showed that the elastic
constants C13, C33, and C44, and all piezoelectric and dielectric constants of
polycrystalline aggregate are exact and recover the corresponding single crystal
values. It is found in the ®gures that the Voigt-Reuss averages and self-consistent
approach agree with each other and recover the single crystal values for these
moduli. This observation supports the use of the self-consistent approach and the
Gaussian quadrature method. For elastic constants C11 and C66, where no exact

Fig. 5. E�ective elastic moduli of piezoelectric polycrystal as functions of Gaussian distribution

function parameter a. Solid line is the self-consistent approach, and the broken line is Voigt-Reuss

averages.
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Fig. 7. E�ective dielectric moduli of piezoelectric polycrystal as functions of Gaussian distribution

function parameter a. Solid line is the self-consistent approach, and the broken line is Voigt-Reuss

averages.

Fig. 6. E�ective piezoelectric moduli of piezoelectric polycrystal as functions of Gaussian distribution

function parameter a. Solid line is the self-consistent approach, and the broken line is Voigt-Reuss

averages.
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solution exists, the self-consistent approach lies between the Voigt-Reuss averages.
When a approaches in®nity, the ceramics become isotropic and non-piezoelectric.
It is found in the ®gures that all piezoelectric constants become zero, and C11 and
C33, C44 and C66, and k11 and k33 agree with each other, as speci®ed by isotropic
symmetry. Between these two extreme cases, the e�ective electroelastic moduli
show strong dependency on a, thus on texture, and poling ®eld. Two observations
deserve discussion. First, there are peaks in the piezoelectric constants e31 and e33
when a approaches 0.6±0.7, which show larger magnitude than their single crystal
values. This might be used to enhance the piezoelectric coupling in the ceramics.
Second, when a approaches 1.5, the elastic constant C33 becomes a little bit larger
than C11, so does the dielectric constant k33 compared with k11. This is in contrast
with the single crystal where C11 and C11 are signi®cantly larger. These
observations can be explained in the context of the orientational average. From
the Voigt average in Section 4, we know that

he31i � 4
���
6
p

p2

15
�ÿ2e15 � 4e31 � e33�W100 � 4

�����
14
p

p2

35
�2e15 � e31 ÿ e33�W300

he33i � 4
���
6
p

p2

15
�4e15 � 2e31 � 3e33�W100 ÿ 8

�����
14
p

p2

35
�2e15 � e31 ÿ e33�W300

Since the coe�cient of W300 for e33 is negative while the coe�cient of W100 for e33
is positive, and W300 decreases much faster than W100 with the increase of a (see

Fig. 8. E�ective elastic modulus C11 of piezoelectric polycrystal with perfectly aligned grains as

function of grain shape aspect ratio w.
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Fig. 4), there is a peak for e33. A similar argument explains the peak in e31. For
C33 and C11, from the Voigt average in Section 4, we know that

hC11 ÿ C33i � 3aW200 ÿ 5bW400

Where a is positive and b is negative, and a is much larger than b in magnitude.
Remember that W404 is zero under the Gaussian distribution. When a approaches
1.5, W200 becomes negative (see Fig. 4) and C33 becomes a little bit larger than
C11. A similar argument explains why k33 is larger than k11 when a approaches
1.5.

5.2. Piezoelectric polycrystal with perfect aligned grains

For polycrystals with all the BaTiO3 grains perfectly aligned in the x3 axis
(a=0), for example, BaTiO3 thin ®lms with columnar grains, Li et al. (1999) have
shown that the e�ective electroelastic moduli of polycrystals are exact, and recover
the single crystal values, except for C11 and C66. Our calculations con®rm this
observation and show that the self-consistent approach recovers the exact
solutions in this case. Figs. 8 and 9 show the e�ective elastic constants C11 and
C66 of a perfectly aligned BaTiO3 polycrystal as function of grain shape, where
spheroidal grains with aspect ratio w=a3/a1 are assumed. All other moduli recover
the single crystal values regardless of grain shapes. It is found that the C11 and
C66 are not very sensitive to grain shape, changing less than 10% with respect to

Fig. 9. E�ective elastic modulus C66 of piezoelectric polycrystal with perfectly aligned grains as

function of grain shape aspect ratio w.
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the change of grain from penny-shape to needle-shape. Both moduli are highest
for penny-shaped grains, and decrease monotonically with the increase of grain
shape aspect ratio, reaching a minimum when the grains become needle-shaped. It
is noted that Voigt-Reuss averages are unable to model the e�ect of grain shapes.

5.3. Isotropic piezoelectric polycrystals

Polycrystalline ceramics with randomly oriented BaTiO3 grains (a 4A) are
isotropic and non-piezoelectric. In this case, the independent overall properties
would be bulk modulus K, shear modulus G, and dielectric constant k. Dunn
(1995) analyzed this class of materials using an exact orientational averaging
scheme, taking advantage of isotropic symmetry. Our calculations, presented in
Figs. 10±12, agree with his results, which supports the use of the Gaussian
quadrature method in the orientational averaging. A larger range of grain aspect
ratio is considered here. Again, it is observed that the e�ective elastic constants
show weak dependency on the grain shape. The dielectric constant, however,
strongly depends on the grain shape, which is a minimum for penny-shaped
grains, increases monotonically with increment of grain aspect ratio, and reaches a
maximum for needle-shaped grains. The changes of bulk and shear moduli are not
monotonic, and reach a minimum when the grain aspect ratio is around 0.3±0.4.
The stronger dependence of dielectric constants on grain shape is believed to be
caused by the stronger grain anisotropy in the dielectric constants, as shown in
Table 1.

Fig. 10. E�ective bulk modulus K of piezoelectric polycrystal with randomly aligned grains as function

of grain shape aspect ratio w.
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Fig. 12. E�ective relative dielectric constant k of piezoelectric polycrystal with randomly aligned grains

as function of grain shape aspect ratio w.

Fig. 11. E�ective shear modulus G of piezoelectric polycrystal with randomly aligned grains as function

of grain shape aspect ratio w.
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6. Conclusion

The self-consistent approach and traditional Voigt-Reuss estimations have been
generalized to model electroelastic moduli of piezoelectric polycrystals with
texture. An orientational averaging scheme has been developed using the
orientation distribution function, which is approximated by a Gaussian
distribution function, enabling simulation of a wide range of textures in
polycrystals. Numerical results on BaTiO3 polycrystals have also been presented
using the Gaussian quadrature numerical integration method, which agree with
theoretical results in special cases. It is found that the electroelastic moduli of
piezoelectric polycrystalline aggregates show strong dependence on texture.
Piezoelectric constants higher than single crystal values can be achieved at certain
texture. And the dielectric constants are more sensitive to grain shape than the
elastic constants due to stronger grain anisotropy.
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Appendix A

Piezoelectric Eshelby tensor

Let us consider an ellipsoidal inclusion undergoing a uniform eigen®eld Z T
Mn,

embedded in an in®nite homogeneous piezoelectric solid. In the presence of the
eigen®eld, the constitutive equation for the inclusion is

SiJ � GiJKl�ZKl ÿ Z T
Kl� �A1�

It has been shown that in such a situation, the electroelastic ®elds in the inclusion
are uniform, and can be expressed as (Dunn and Taya, 1993)

ZMn � SMnAbZ
T
Ab �A2�

where SMnAb is the piezoelectric Eshelby tensor, whose components are functions
of the electroelastic moduli of the matrix, and the ellipsoidal shape of the
inclusion. For general inclusion shapes and material symmetries, Eshelby tensors
can be expressed as surface integrals over a unit sphere
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SMnAb � GiJAb

4p

8>>>><>>>>:
1

2

�1
ÿ1

�2p
0

�JmJin�z� � JnJim�z��dydx3 M � 1, 2, 3�1
ÿ1

�2p
0

J4Jin�z�dydx3 M � 4

�A3�

In Eq. (A3) zi=xi/ai (no sum on i), where ai is the dimension of the ellipsoidal
axis, and x1 and x2 can be expressed in terms of x3 and y by x1 �

�������������
1ÿ x23

q
cos y

and x1�
�������������
1ÿ x23

q
sin y: In addition, JMJin � ziznK

ÿ1
MJ�z� where K ÿ1MJ is the inverse of

KJR � ziznGiJRn: Dunn (1994) obtained the closed form expressions for elliptical
cylindrical inclusion or thin-disc inclusion embedded in a transversely isotropic
matrix. For more general inclusion shapes and material symmetries, Eq. (A3) can
be evaluated numerically as follows: (1) Compute x1 and x2 from x3 and y; (2)
compute z1, z2 and z3 from x1, x2 and x3; (3) compute JMJin; (4) evaluate the
integral to get SMnAb. Step (4) usually requires numerical integration.
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