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Abstract

The effective electroelastic moduli of textured piezoelectric polycrystalline aggregates have
been modeled by the self-consistent approach and traditional Voigt-Reuss averages. The
orientational averaging scheme in textured piezoelectric polycrystals has been developed
using the orientation distribution function (ODF), which can be done analytically with a
series of generalized associated Legendre functions, or numerically with the Gaussian
quadrature method. Gaussian distribution function has been adopted to simulate a wide
range of textures in piezoelectric polycrystals, and a key parameter o is identified to be
closely related to the processing conditions such as poling field intensity. Numerical results
are presented and discussed for poled and unpoled BaTiO;5 ceramics, and BaTiOj3 films with
perfectly aligned grains, which agree well with known theoretical results. It is found that
the electroelastic moduli of piezoelectric polycrystalline aggregates show strong dependence
on texture; piezoelectric constants higher than the corresponding single crystal values can
be achieved at certain texture; and dielectric constants are more sensitive to grain shape
than elastic constants. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Applications of piezoelectric materials have increased dramatically in recent
years, fueled largely by their many uses in smart materials and structural systems.
Their attractiveness stems from their inherent ability to convert electrical energy
to mechanical energy and vice versa. They are a natural choice for ultraprecise
displacement transducers and actuators. Their role in functional material systems
is rapidly increasing as a result of technological trends toward higher speed, less
driving power, and miniaturization of devices.

Among the piezoelectric materials, piezoelectric ceramics and thin films may
have received the most attention. For contemporary and future applications,
polycrystalline piezoelectric ceramics are more attractive than single crystals
because they are more versatile, their physical and mechanical properties can be
tailored to specific applications, they are less expensive to produce, and quality
control is more easily maintained. Piezoelectric thin films are widely recognized
for their potential applications in electronic and electro-optic devices. Because of
their high dielectric constant and breakdown voltage, BaTiO; thin films are the
best storage dielectrics for ultra-large-scale integrated memory devices.
Ferroelectric PZT films show superior piezoelectric and pyroelectric properties and
are used in nonvolatile memories, thermal or ultrasonic image sensors, and surface
acoustic wave filters.

Despite the difference in their processing, piezoelectric ceramics and thin films
can be classified as polycrystalline aggregates, with individual grains oriented with
a certain distribution. So they can be analyzed under the unified framework.
When a piezoelectric ceramic is fabricated by standard ceramic processing
techniques, it is an aggregate of randomly oriented piezoelectric grains. No net
macroscopic polarization is realized because the polarization directions are
randomly oriented, and the material is not macroscopically piezoelectric. If the
isotropic non-piezoelectric ceramic is subjected to a large electric field at high
temperature (a process termed poling), the directions of polarization in many of
the grains are permanently realigned resulting in a macroscopic spontancous
polarization and hence, piezoelectricity. The most prominent microstructural
characteristic of thin films is the so-called columnar grain, i.e., highly oriented
long needle-like grain. Sakashita et al. (1993) reported a fabrication of PZT thin
film with the tetragonal perovskite structure and [001] texture. Stemmer et al.
(1995) compared the domain configuration in epitaxial ferroelectric PbTiO; films,
where domains with x; axis parallel and normal to the substrate surface are
observed. A highly c-oriented Bismuth Titanate (BIT) film was obtained on a
silver foil by Lu et al. (1996). No evidence of grain orientations other than [001]
was observed for films with one- through ten-layer coating. When the number of
coating layers was greater than ten, the [200] orientation was dominant. The
preferential orientation in the [200] direction of BIT thin film is very attractive
because the largest value of spontancous polarization lies in the x;—x3 plane and
in the x; direction. In all the cases, the grain orientation distribution is very
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important in determining the macroscopic behaviors of the polycrystalline
aggregates.

From the above discussion on the microstructures of piezoelectric polycrystals,
it is clear that texture plays an important role in their effective behaviors, and its
influence can not be overemphasized. It will introduce piezoelectricity in the
otherwise isotropic ceramics, and provide the optimized performance to the
piezoelectric thin films. Therefore, an understanding of the effect of texture on the
overall properties is very important to the design, processing, and application of
piezoelectric polycrystals. Previous studies on piezoelectric ceramics have been
carried out by Marutake (1956), Olson and Avellaneda (1992), and Dunn (1995).
Marutake and Olson and Avellaneda were concerned with unpoled ceramics,
which consist of grains having randomly oriented polar axes, and thus are
isotropic and non-piezoelectric at the macroscopic level. They showed that the
piezoelectric interaction at grain level significantly affects the macroscopic
dielectric and elastic constants of the unpoled ceramics. Dunn considered the
effect of grain shape, porosity, and microcracks on the elastic and dielectric
constants of unpoled ceramics. He found that dielectric constant is more sensitive
to both grain shape and grain level piezoelectric coupling. All the work focused
on the elastic and dielectric moduli of unpoled and thus macroscopically non-
piezoelectric ceramics, and an account of effect of texture on the macroscopic
behaviors of piezoelectric ceramics is still lacking. The work on piezoelectric thin
films is even more limited. Benveniste (1994) obtained exact connections between
polycrystal and crystal properties in a two-dimensional piezoelectric polycrystal
composed of single crystals of class 2mm. Li et al. (1999) gave the conditions for
the existence of exact solutions for the effective thermal and electroelastic moduli
of polycrystals exhibiting fiber texture. No attempt has been made to estimate the
effective moduli of piezoelectric thin films for more general symmetries and
microstructures.

In this work, we will study the effect of polycrystalline microstructure, especially
the texture, on the effective behaviors of piezoelectric ceramics and thin films. As
a result of their similarity in polycrystalline microstructure, they are studied under
the same framework. The paper is organized in the following manner. Basic
equations and notation on piezoelectricity are introduced in Section 2. Various
micromechanics schemes are generalized to piezoelectric polycrystals in Section 3.
The orientation distribution and orientational average are then discussed in
Section 4. Finally, numerical results and discussion on BaTiO;3 polycrystals with
general texture, BaTiO; thin films with perfect aligned grains, and isotropic
BaTiOj; ceramics are presented in Section 5.

2. Basic equations and notation
We consider the piezoelectric, and thus inherently anisotropic, analog of the

uncoupled theory of elasticity, where the electric and elastic fields are fully
coupled. The field variables and material moduli are represented either by
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conventional indicial notation or by bold characters. The constitutive equation for
stationary linear response of a piezoelectric solid can be expressed as

0p = Cpe€q — epi B,

D; = ejjeq + Kix Ex (n

In Eq. (1) o, and ¢, are the elastic stress and strain, respectively; D; and E; are the
electric displacement and field, respectively. C,,, e;,, and ;. are the elastic stiffness
tensor (measured in a constant electric field), the piezoelectric tensor, and the
dielectric tensor (measured at a constant strain), respectively. The well known
contracted notation for tensors is adopted (Nye, 1957). We introduce the matrix

representation for these quantities

r-[] 2= o-[s ]

where £ and Z are 9 x 1 column vectors representing the electroelastic field
variables, G is 9 x 9 matrix representing the electroelastic moduli, and the
superscript 7 is used to denote the transpose of matrix. Electric field —F instead of
E is used as independent variable because it allows the construction of a
symmetric moduli matrix, which is proven advantageous. The constitutive Eq. (1)
can then be rewritten as

S =GZ (3)

It is noted that the constitutive Eq. (3) is only one of four representations
available for piezoelectricity. By choosing different independent field variables,
other representations can be realized. The current representation is proven
advantageous for the analysis of the inclusion and inhomogeneity problems,
because the independent variables ¢ and —FE are derivable from electric potential
and elastic displacement, which can be determined by the Green’s function
method (Dunn and Taya, 1993). This representation, however, leads to a non-
positive definite energy function, piezoelectric enthalpy, which is disadvantageous
in discussing the bounds on the effective moduli. In that situation, ¢ and E can be
chosen as independent variables, leading to a positive definite energy function, and
thus, upper and lower bounds on the effective moduli. Finally, we note that
transformation between different representations can be done easily through the
constitutive equations.

Assuming statistical homogeneity for a heterogeneous solid subjected to external
loading consistent with the uniform field 70 at the boundary, the effective
electroelastic moduli G* can be defined as

(X)) =G*(2), 4)

where (o) :j(o)dQ(H, @, ¢) denotes an orientational volume average, in which (6,
¢, ¢) are Euler angles describing the orientation of a grain O—X;X,X3 in a global



J.Yu Li|J. Mech. Phys. Solids 48 (2000) 529-552 533

coordinate system O—xx,x3 depicted in Fig. 1 (see, for example, Roe, 1965). Due
to linearity we have

Z(0, @, §) = A, ¢, $)Z° 5)

where A(0, ¢, ¢) is the concentration factor for grain at orientation (0, ¢, ¢),
which is a function of microstructure parameters, such as grain shape, orientation,
and interaction between different grains. From the average field theorem (Dunn
and Taya, 1993; Hori and Nemat-Nasser, 1998), i.e., (Z(0, ¢, ¢))=2Z° we can
show that

(400, ¢, ¢)) =1, (6)

where 7 is the 9 x 9 unit matrix. Inserting Eq. (5) into Eq. (4), combined with the
constitutive Eq. (3) for individual grains at different orientations, and after some
manipulation, we have

G* =(G(0, @, )0, @, ¢)), )

where G(0, ¢, ¢) are the electroelastic moduli of grain at orientation (0, ¢, ¢)
expressed in the global coordinate system. Eq. (7) is an exact expression that
rigorously connects the effective moduli of the polycrystal with electroelastic

Fig. 1. Euler angles (0, ¢, ¢) for a grain in a global coordinate system.
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moduli and concentration factors of individual grains. It is clear from Eq. (7) that
the estimation of effective electroelastic moduli depends on the estimation of the
concentration factor A(0, ¢, ¢), which is the starting point of various
micromechanics approximations.

3. Micromechanics schemes

The simplest assumption on the concentration factor is A(0, ¢, ¢)=1. This
corresponds to assuming uniform stress and electric field in the polycrystal
subjected to an external loading, and gives us

Analogously, by assuming 2(0, ¢, ¢)=B(0, ¢, ¢)X° and letting B, ¢, ¢)=1, a
uniform strain and electric displacement assumption, we obtain

G* = (G0, ¢, o)) ©)

Eqgs. (8) and (9) are the piezoelectric analogs of Voigt-Reuss averages in elastic
solids (Voigt, 1889; Reuss, 1929). As noted in Section 2, the matrix of
electroelastic moduli G is not positive definite, and Voigt-Reuss estimations do not
provide upper and lower bounds on the electroelastic moduli. For the discussions
on the variational bounds for piezoelectric composite, readers are referred to
Bisegna and Luciano (1996), Hori and Nemat-Nasser (1998), and Li and Dunn
(1998a), in which different independent field variables are chosen. Recently Li et
al. (1999) showed that the uniform fields exist in piezoelectric polycrystals with
fiber texture under certain conditions, so that Voigt-Reuss estimations are exact
for some components of the electroelastic moduli. In general, however, the
uniform field assumption is not realistic, especially in the case of strong grain
anisotropy, such as piezoelectric crystals. So a more elaborate micromechanics
scheme is needed to model the effective behaviors of piezoelectric polycrystals.

It is obvious that the estimation of concentration factor 4 is equivalent to the
estimation of the electroelastic fields in individual grains of polycrystal subjected
to external loading Z° at the boundary. To this end we turn to the Eshelby
solution on inclusion and inhomogeneity problems (Dunn and Taya, 1993,
Eshelby, 1957), and the self-consistent assumption (Dunn, 1995; Walpole, 1969;
Willis, 1977). We assume that the individual grains are embedded in an infinite
matrix with yet to be determined effective electroelastic moduli G*, subjected to
the yet to be determined external loading Z; at the boundary. It follows that

Z(Ga ®, ¢) = Adﬂ(99 @, ¢)Zl (10)

where 470, ¢, ¢) is determined from the solution of a single inhomogeneity

embedded in an infinite matrix (Dunn and Taya, 1993)
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A0, @, ) = {I+ 50, ¢, $)G*7'[G(0, ¢, ¢p) — G|}~ (11)

where S(0, ¢, ¢) is the piezoelectric Eshelby tensor for grain at orientation (0, ¢,
¢ ) expressed in the global coordinate system, which is a function of the effective
electroelastic moduli G* of the matrix and the grain shape. We will discuss the
evaluation of the piezoelectric Eshelby tensor in Appendix A. For an aligned
spheroidal inclusion in a transversely isotropic matrix, there are closed form
expressions for Eshelby tensor available (Dunn and Wienecke, 1997; Li and Dunn,
1998b). For the more general case, it is necessary to evaluate the Eshelby tensor
numerically. From the average field theorem it follows from Eq. (10) that

Zy = (4", 9, p))7'Z° (12)
And finally we obtain

A0, ¢, ¢p) = A0, . p)(A(0, ¢, ¢))" (13)

and

G* = (G0, @, YA, ¢, P))(AY(0, @, )" (14)

Since G™ is involved in both sides of equation, in general, Eq. (14) can only be
solved numerically by iteration. Eq. (14) is recognized as a self-consistent
approach, and regarded as an effective medium assumption. From our derivation,
however, it clearly also has the nature of an effective field assumption besides the
effective medium origin (see also Li (1999) for more discussion). One of the
problems for the application of micromechanics models in multi-phase composites
is the violation of diagonal symmetry, as demonstrated by Benveniste et al. (1991).
The self-consistent model we developed here does not have such a problem. It
always returns a diagonally symmetric moduli matrix as verified by our numerical
calculations. It will also be interesting to see if the effective moduli predicted by
Eq. (14) fall between variational bounds or not. However, since the Hashin-
Shtrikman type of bounds (Hashin and Shtrikman, 1962, 1963; Willis, 1977) for
piezoelectric polycrystals is still under development, such evaluation is not possible
at this moment, and will be reported later.

4. Orientation distribution function and orientational average

It is clear from Egs. (8), (9), and (14) that the estimation of the effective
electroelastic moduli of piezoelectric polycrystals involves orientational volume
averages, no matter which micromechanics scheme is used. The orientation
distribution of grains in the polycrystal can be described by the orientation
distribution function (ODF) W(&, ¢, ¢), which is the probability density function
for a grain at orientation (6, ¢, ¢ ), where £ =cos6, and (6, ¢, ¢) are Euler angles
describing the grain’s orientation with respect to a global sample coordinate
system (Roe, 1965), see Fig. 1. The orientational volume average of a single
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Fig. 2. Nonzero basis function Zj,,, (& )e ~™%¢ ~"?.
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crystal tensorial property H weighted by ODF is then given by

2n (2n ¢l
<H>=J J LH“’ 0. HWE, 0, P)dedodd (15)

0 Jo

where H(E, ¢, ¢) is the single crystal value of H expressed in the global
coordinate system. To evaluate (H), we expand W(&, ¢, ¢) and H(E, ¢, ¢) into
series of generalized associated Legendre functions

/ !

=00
W(éa ®, d)) = Z Z Z W/anlmn(é)eiimgoeiimb (16)

=0 m=—In=—1

I=00 m=Il n=|

HE 0. 9) =) D> Y HimZi(&)e 0™ (17)

1=0 m=—In=—1

where Z,,,,(£) is the generalized associated Legendre function, and can be
expressed in terms of ordinary functions and the common Legendre function
P7"(€) as (Bunge, 1982)

21+ 1
Zite) = 2L P

with
1
o= SE e
Q=0T d™
X ) df"”[(l_é) I+
1+ 2
where i>=—1. Care should be taken to avoid confusion between electroelastic

field Z and generalized associated Legendre function Z,,,(¢), which should be
clear from the context. To help visualize, we plot some nonzero basis functions
Zyun (E)e ~™Pe~"? in Fig. 2. Due to orthogonality, the expansion coefficients can
be expressed as follows

1 21 (2n ¢l ) )
Wlmn = _ZJ J J W(fs ®, d))Zlmn(é)emwemd)dqu)dd) (18)
dr Jo Jo Joi
1 2n 21 pl ) )
Hi = —2J j J HE, 0, 0)Zmnl O™ e didipd (19)
an Jo Jo Joi

The texture coefficients W, represent the orientation distribution of grains in the
polycrystalline aggregate. By the normalization condition for the ODF we can
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show that

1

Wooo aon

Even-rank texture coefficients can be determined from X-ray diffraction intensity,
which was discussed in detail by Roe (1965). Such a technique is not able to give
any information on odd-rank texture coefficients, due to the inherent
centrosymmetry in X-ray diffraction. It is hoped that the present work can
provide a potential method to determine the odd-rank texture coefficients inversely
from the measurement of odd-rank tensorial properties, such as piezoelectric
constants. Using Eqs. (16) and (17), and taking into account the orthogonal
property of Zjnn (&), we can reduce Eq. (15) to

R / /
(H) = 4n? Z Z ZHlmn Wi (20)

1=0 m=—In=—1

Where R is the rank of tensorial property H. Only the first R terms in the series
expansion need to be considered in averaging a tensorial property of rank R
(Ferrari and Johnson, 1988).

We now consider the polycrystalline aggregates composed of 4 mm single
crystals, for example, BaTiO;. The independent single crystal moduli would be
elastic constants C;j, Cpn, Ci3, C33, Cy4, and Cgg, piezoelectric constants ejs, sy,
and e33, and dielectric constants xq;, and x33. The resulting polycrystal is
transversely isotropic with

(Cog) = (C1) . (C12),

and the only non-zero texture coefficients are Wigg, Wo00, W300, Waoo, and Wa,.
Unlike Roe’s original treatment, we have nonzero odd-rank texture coefficients
Wioo and W3y due to lack of centrosymmetry in piezoelectric materials. From
Egs. (18) and (19) it follows that the orientational averages for 4™, 3™, and 2™
rank tensorial properties can be deduced from the following tensor transformation
laws

(Cijkl(éa ®, ¢)> = (Tim T}'n Tko Tlp Cmnap> = (Tim T}'n T/w Tlp> Cmm)p (213)
(eij/c(éa ?, ¢)> = (Tim T}n Tkaemna> = <T1m T}'n T/w)emna (Zlb)
(Kfj(éa ®, ¢)> = (Tim T}'nKmn) = (Tim Tin)Kmn (210)

where 7, is the element of tensor transformation matrix in terms of Euler angles,
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cospcosOcosd — sinpsing  sinpcosBcosd + cosesind —sinBcosd
T-! = | —cospcosbsing — sinpsing —sinpcosOsind + cospcosy  sindsind
cos@sinf sin@sin6 cos
(22)

After expanding the (e) terms in Eqgs. (21) into series, and determining their
coefficients according to Eq. (19), we are able to obtain the following expressions
for the orientational averages for 4™, 3™, and 2" rank tensorial properties using
Eq. (20).

4.1. Fourth rank tensor. elastic constants

(C11) = Cy 4+ aWagy + 3bWagy + jWaoa
(Ci2) = C Y+ 2¢Wago + bWago +jWaoa
(C13) = CY, — cWago — 4bWago — 4iWaos
(C33) = C9, — 2aWa + 8bWapo + 8jWaoa

C?I—C?z_a—Z

¢ .
3 ) Wago — 4bWago — 41 Waos

(Cy) =

where

CY = (6Cy; +2C1y +4C3 +3C33 + 8Cyy + 4Ce)/15
CY) = (2C1 +4C12 +8C13 + C33 — 4Cas — 2C6)/15
a=8V10m*(3C11 4 C1y — C13 — 3C33 — 2Ca4 4 2Ce4)/105
b =~2m*(3C) + C1y — 8C13 4 4C33 — 16C44 4 2Ce6)/105
¢ =4V 107%(C11 4 5C12 — 5C13 — C33 + 4Cyy — 4C)/105

J=23/351%(Cy; — C1p — 2Cg)/105
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4.2. Third rank tensor: piezoelectric constants

4./6n? 41472

(e15) = I (Bers — e31 +e33) Wigo + T(%ls + ez — e33) Wigo
4./6n* 4./14n2

(e31) = T(—2€15 +4des;r + e33)Wigo + 35 (2e15 + €31 — e33) Wi
4/6m2 81472

(e33) = G (4e1s + 2e31 + 3e33) Wigo — 35 (2e15 + €31 — e33) Wagp

4.3. Second rank tensor: dielectric constants

2k + K33 41072
“3 3 5 (k11 — x33) Wago

(K1) =

2K11 + K 84/1072
113 B 5 (11 — x33) Wano

(K33) =

It is noted that the elastic constants only depend on Wy, Wigo and Wiyga,
piezoelectric constants only depend on Wiy and W3q, and dielectric constants
only depend on W,y When all these texture coefficients are zero, the material
becomes isotropic, and there is no piezoelectric effect. Materials with
centrosymmetry will also show no piezoelectricity, since their Wio, and W3qq are
Zero.

The orientational averaging scheme presented is based on the fact that the
tensorial properties in different grains at different orientations are identical in their
own local coordinate systems, as is clear from Eq. (21). This is true for the
electroelastic moduli G and G ', so Voigt-Reuss estimations (8) and (9) can be
evaluated using this scheme. It is no longer true, however, for the concentration
factor A, because 4 is not a material property and varies between different
orientations. Therefore, the orientational averaging scheme we presented can not
be applied to the concentration factor 4 and the self-consistent approach (14). In
general, the dependence of the concentration factor 4 on the orientation is very
complicated and no analytic solution is available, so Egs. (19) and (20) are no
longer applicable, and we must turn to the original Eq. (15) for orientational
averaging of the concentration factor 4 and the self-consistent approach (14). The
disadvantage of Eq. (15) is that the ODF W(¢, ¢, ¢), unlike the texture
coefficients W,,,,, is not experimental measurable. In principle, however, we can
determine W, from experiment, and fit the ODF W(¢, ¢, ¢ ) with the restrictions
of Eq. (18). The other problem is that unlike the algebraic Eq. (20), Eq. (15)
contains an integration involving the complicated function A(¢, ¢, ¢ ), which can
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only be evaluated numerically in general. Nevertheless, it can still be solved with
high accuracy, for example, by the Gaussian quadrature method (Press et al.,
1992).

5. Numerical results and discussion

To demonstrate the applicability of the theory, we will show some numerical
results in this Section. Since there is no experimental measurement on texture
available for piezoelectric polycrystals, to the best knowledge of the author, we
will adopt the Gaussian distribution function as ODF, which turns out to be a
reasonable approximation. Because the piezoelectric polycrystals are usually
transversely isotropic, we assume that the distribution only depends on Euler
angle 6 and is not a function of ¢ and ¢

1 0 )
WO, 0. )= Exp( — 23)
where o is a parameter in Gaussian distribution function, and can be adjusted to
give different texture. The shape of the Gaussian distribution function with
various « is shown in Fig. 3. The non-zero W, as a function of « is shown in
Fig. 4. Since the ODF does not depend on ¢, Wy is also zero. Two extreme
cases immediately follow from the Gaussian distribution, where a polycrystal with
perfectly aligned grains such as a piezoelectric thin film is realized by letting
o — 0, and randomly oriented isotropic ceramics (unpoled) is realized by letting

0.8
07

0.5
0.6 .
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L B B B

o=1
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0.3
=2

T
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T

Orientational distribution function W(6,¢,0)

01 F

0:|Ax||1|||\||||||||x||||||1||
0 0.5 1 15

Euler angle 6

Fig. 3. Gaussian distribution function with different parameters o.
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Fig. 4. Texture coefficients W, as functions of Gaussian distribution function parameter a.

o — o0. Other texture can be realized by varying o in between. It can be imagined
that « is closely related to the processing conditions of piezoelectric polycrystals,
such as poling field intensity. The ceramics are isotropic without poling field
applied, and « approaches infinity. When an electric field is applied in poling,
some grains will reorient to minimize the free energy of the system, and « takes
some finite value, depending on the magnitude of the poling field. At saturation
field all the grains are perfectly aligned with polarization along the poling field
direction, and « approaches zero. By an appropriate experimentation the
relationship between o and processing conditions can be identified, but that line of
inquiry will not be pursued here.

We apply the theory to BaTiO; polycrystals, where the material constants are
listed in Table 1 (Berlincourt and Jaffe, 1958). The Gaussian quadrature method is
adopted for numerical integration (Press et al., 1992), where the integral of a

Table 1
Electroelastic constants of tetragonal BaTiO; single crystal

C, (GPa) Ci> (GPa) Ci3 (GPa) C33 (GPa) Cyq (GPa) Ces (GPa)
275.1 178.9 151.55 164.8 54.3 113.1
6’31(C/m2) e33(C/m2) els(c/mz) K/ 0 K33/K0

—2.69 3.65 21.3 1970 109
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function is approximated by the sum of its function values at a set of points called
abscissas, multiplied by weighting coeflicients. The calculation is implemented in a
FORTRAN code, with the procedure outlined in Table 2, where the superscript i
is used to indicate the step in the iteration of the self-consistent approach, and
subscript j is used to indicate the step in the numerical integration, under the same
step 1 of the self-consistent approach. Three different cases have been considered
under such a scheme.

5.1. Piezoelectric polycrystals with texture

We first apply the theory to BaTiOs polycrystal with texture described by
Gaussian distribution, with grains assumed to be spherical. Figs. 5-7 show the
effective elastic constants, piezoelectric constants, and dielectric constants of
BaTiO; polycrystal as functions of o, where o is the parameter in Gaussian
distribution function. When « approaches zero, the grains in the polycrystal
become perfectly aligned. In such a case Li et al. (1999) showed that the elastic
constants Cj3, Cz3, and Cy4, and all piezoelectric and dielectric constants of
polycrystalline aggregate are exact and recover the corresponding single crystal
values. It is found in the figures that the Voigt-Reuss averages and self-consistent
approach agree with each other and recover the single crystal values for these
moduli. This observation supports the use of the self-consistent approach and the
Gaussian quadrature method. For elastic constants C;; and Cg¢, Where no exact
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Fig. 5. Effective elastic moduli of piezoelectric polycrystal as functions of Gaussian distribution
function parameter o. Solid line is the self-consistent approach, and the broken line is Voigt-Reuss
averages.
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Fig. 6. Effective piezoelectric moduli of piezoelectric polycrystal as functions of Gaussian distribution
function parameter «. Solid line is the self-consistent approach, and the broken line is Voigt-Reuss
averages.

Relative dielectric constants of polycrystals

Fig. 7. Effective dielectric moduli of piezoelectric polycrystal as functions of Gaussian distribution
function parameter o. Solid line is the self-consistent approach, and the broken line is Voigt-Reuss
averages.
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solution exists, the self-consistent approach lies between the Voigt-Reuss averages.
When o approaches infinity, the ceramics become isotropic and non-piezoelectric.
It is found in the figures that all piezoelectric constants become zero, and C;; and
Cs3, Cy44 and Cgg, and k7 and k33 agree with each other, as specified by isotropic
symmetry. Between these two extreme cases, the effective electroelastic moduli
show strong dependency on o, thus on texture, and poling field. Two observations
deserve discussion. First, there are peaks in the piezoelectric constants ez and es3
when o approaches 0.6-0.7, which show larger magnitude than their single crystal
values. This might be used to enhance the piezoelectric coupling in the ceramics.
Second, when o approaches 1.5, the elastic constant Cs3 becomes a little bit larger
than C;;, so does the dielectric constant x33; compared with ;. This is in contrast
with the single crystal where C;; and C;; are significantly larger. These
observations can be explained in the context of the orientational average. From
the Voigt average in Section 4, we know that

4/67? 4/ 1472

T
(e31) = (—2eys5 +4es; + e33) Wigo + T(2€15 +e31 —e33)Wino

15
N 8/ Tan?
(e33) = 15 (4e1s + 2e31 + 3e33) Wigo — T(zels +e31 —e33)Wipo

Since the coefficient of W3 for es3 is negative while the coefficient of Wigq for e33
is positive, and W3, decreases much faster than Wy, with the increase of o (see
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Fig. 8. Effective elastic modulus Cj; of piezoelectric polycrystal with perfectly aligned grains as
function of grain shape aspect ratio y.
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Fig. 4), there is a peak for e3;. A similar argument explains the peak in e3;. For
Cs3 and Cyy, from the Voigt average in Section 4, we know that

(C11 — C33) = 3aWayy — 5D Wiy

Where a is positive and b is negative, and « is much larger than b in magnitude.
Remember that Wy, is zero under the Gaussian distribution. When o approaches
1.5, W5y becomes negative (see Fig. 4) and C;3 becomes a little bit larger than
C11. A similar argument explains why x33 is larger than x;; when o approaches
1.5.

5.2. Piezoelectric polycrystal with perfect aligned grains

For polycrystals with all the BaTiO5; grains perfectly aligned in the x3 axis
(x=0), for example, BaTiOj3 thin films with columnar grains, Li et al. (1999) have
shown that the effective electroelastic moduli of polycrystals are exact, and recover
the single crystal values, except for C;; and Cgs. Our calculations confirm this
observation and show that the self-consistent approach recovers the exact
solutions in this case. Figs. 8 and 9 show the effective elastic constants C;; and
Ces of a perfectly aligned BaTiOs polycrystal as function of grain shape, where
spheroidal grains with aspect ratio y =as/a; are assumed. All other moduli recover
the single crystal values regardless of grain shapes. It is found that the C;; and
Ces are not very sensitive to grain shape, changing less than 10% with respect to
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Fig. 9. Effective elastic modulus Cgs of piezoelectric polycrystal with perfectly aligned grains as
function of grain shape aspect ratio y.
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the change of grain from penny-shape to needle-shape. Both moduli are highest
for penny-shaped grains, and decrease monotonically with the increase of grain
shape aspect ratio, reaching a minimum when the grains become needle-shaped. It
is noted that Voigt-Reuss averages are unable to model the effect of grain shapes.

5.3. Isotropic piezoelectric polycrystals

Polycrystalline ceramics with randomly oriented BaTiO; grains (o — oc) are
isotropic and non-piezoelectric. In this case, the independent overall properties
would be bulk modulus K, shear modulus G, and dielectric constant x. Dunn
(1995) analyzed this class of materials using an exact orientational averaging
scheme, taking advantage of isotropic symmetry. Our calculations, presented in
Figs. 10-12, agree with his results, which supports the use of the Gaussian
quadrature method in the orientational averaging. A larger range of grain aspect
ratio is considered here. Again, it is observed that the effective elastic constants
show weak dependency on the grain shape. The dielectric constant, however,
strongly depends on the grain shape, which is a minimum for penny-shaped
grains, increases monotonically with increment of grain aspect ratio, and reaches a
maximum for needle-shaped grains. The changes of bulk and shear moduli are not
monotonic, and reach a minimum when the grain aspect ratio is around 0.3-0.4.
The stronger dependence of dielectric constants on grain shape is believed to be
caused by the stronger grain anisotropy in the dielectric constants, as shown in
Table 1.
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Fig. 10. Effective bulk modulus K of piezoelectric polycrystal with randomly aligned grains as function
of grain shape aspect ratio y.
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Fig. 11. Effective shear modulus G of piezoelectric polycrystal with randomly aligned grains as function
of grain shape aspect ratio y.
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6. Conclusion

The self-consistent approach and traditional Voigt-Reuss estimations have been
generalized to model electroelastic moduli of piezoelectric polycrystals with
texture. An orientational averaging scheme has been developed using the
orientation distribution function, which 1is approximated by a Gaussian
distribution function, enabling simulation of a wide range of textures in
polycrystals. Numerical results on BaTiO; polycrystals have also been presented
using the Gaussian quadrature numerical integration method, which agree with
theoretical results in special cases. It is found that the electroelastic moduli of
piezoelectric polycrystalline aggregates show strong dependence on texture.
Piezoelectric constants higher than single crystal values can be achieved at certain
texture. And the dielectric constants are more sensitive to grain shape than the
elastic constants due to stronger grain anisotropy.
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Appendix A

Piezoelectric Eshelby tensor

Let us consider an ellipsoidal inclusion undergoing a uniform eigenfield Z 1,
embedded in an infinite homogeneous piezoelectric solid. In the presence of the
eigenfield, the constitutive equation for the inclusion is

L= Guxl(Zxi— Z ) (A1)

It has been shown that in such a situation, the electroelastic fields in the inclusion
are uniform, and can be expressed as (Dunn and Taya, 1993)

Zwtn = SwnanZ %, (A2)

where Sys,.4p» 1S the piezoelectric Eshelby tensor, whose components are functions
of the electroelastic moduli of the matrix, and the ellipsoidal shape of the
inclusion. For general inclusion shapes and material symmetries, Eshelby tensors
can be expressed as surface integrals over a unit sphere
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1 1 21
G EJ J [JmJin(Z) + JnJim(Z)]deé.’x M = 1: 2,3
iJAb -1

0
Sutnap = y N (A3)
J J J4Jin(2)d0dé3 M=4
—1Jo
In Eq. (A3) z;=¢;/a; (no sum on i), where a; is the dimension of th ipsoidal
axis, and &> can be expressed in terms of &3 and 0 by & =,/1— «f% cos 0
and & =,/1— é% sin 0. In addition, Jy;, = zl-z,,K;jJ(z) where K 3, is the inverse of

Kjr = ziz,Gijre- Dunn (1994) obtained the closed form expressions for elliptical
cylindrical inclusion or thin-disc inclusion embedded in a transversely isotropic
matrix. For more general inclusion shapes and material symmetries, Eq. (A3) can
be evaluated numerically as follows: (1) Compute &; and &, from &3 and 6; (2)
compute z;, z, and z3 from &;, & and &35 (3) compute Jysy,; (4) evaluate the
integral to get Sys,45. Step (4) usually requires numerical integration.
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