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Abstract

It has been shown that for multi-phase composite materials, the Mori±Tanaka and self-consistent approaches may

give non-symmetric e�ective moduli, may violate some exact connections between the e�ective moduli, may violate the

Hashin±Shtrikman variational bounds, and may exhibit incorrect behavior at the unitary (100%) reinforcement con-

centration limit. An e�ective-medium-®eld micromechanics approximation using normalized concentration factors is

proposed and is shown to overcome these di�culties. Such a normalization is necessary to satisfy the consistency re-

lationship. Ó 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Over the last forty years or so, substantial
progress has been made in the micromechanics of
heterogeneous materials. By micromechanics, we
are referring to the analysis of mechanics at the
microstructure level. Typically, the objective of
such an analysis is to estimate the e�ective prop-
erties of heterogeneous materials in terms of the
properties of the constituents and their micro-
structure. The most common properties are the
elastic constants, usually anisotropic. Other prop-
erties of interest include the dielectric constants,
thermal properties, and more recently, the cou-
pling coe�cients between the elastic, electric, and
magnetic ®elds. The various micromechanics ap-
proaches for evaluating the e�ective moduli of

heterogeneous materials fall into three broad cat-
egories: (1) those that obtain internal-consistency
relationships between the e�ective moduli; (2)
those that obtain upper and lower bounds on the
e�ective moduli; and (3) those that obtain direct
estimates of the e�ective moduli. The advances in
this ®eld can be split into two categories: (1) de-
velopment of a rigorous theoretical framework for
the analysis and (2) development of simplifying
assumptions that are required for a tractable
analysis. The development of internal-consistency
relationships and upper and lower bounds for the
e�ective moduli fall into the ®rst category since
they are rigorous for the microstructure consid-
ered. The direct estimations of the e�ective moduli,
on the other hand, involve both rigorous devel-
opment and simplifying assumptions; the latter is
the topic of this work.

In the rigorous theoretical framework, the
well-known stress and strain concentration factors
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obtained through the fundamental solution of the
case of a single reinforcement embedded in an in-
®nite medium are used, and the e�ective moduli
are expressed rigorously in term of the concen-
tration factors. To this end, Eshelby's (Eshelby,
1957) solution for the stress and strain ®elds in an
ellipsoidal inclusion is usually used for three rea-
sons: (1) under a uniform eigenstrain, the stress
and strain in the ellipsoidal inclusion are uniform,
thus trivializing the otherwise complicated prob-
lem of determining the volume-averaged ®elds; (2)
under a uniform load, the stress and strain ®elds in
an ellipsoidal inhomogeneity can be obtained
using Eshelby's equivalent-inclusion concept; and
(3) the ellipsoidal shape enables the simulation of a
wide range of microstructural geometries, ranging
from thin ¯akes to continuous ®bers.

In the simplifying assumption, various micro-
mechanics models have been developed to estimate
the concentration factors and, thus, the e�ective
moduli of heterogeneous materials. In general,
these models are based on the assumption of sta-
tistical homogeneity, in which recourse is made to
the ergodic assumption that, in an ensemble of
specimens, local details occur in any single speci-
men with the same frequency that they occur in a
single neighborhood (solids with periodical mi-
crostructure will not be discussed here, and can be
referred to in Nemat-Nasser and Hori, 1993).
Subject to this assumption, ensemble averages are
replaced by volume averages over some represen-
tative volume that is small relative to the specimen
size but large relative to the microscale and, thus,
on average, is typical of the entire heterogeneous
material. Those micromechanics theories that have
received the most attention and use are the dilute,
self-consistent, Mori±Tanaka, and di�erential ap-
proaches. These methods have been applied with
great success to a number of problems in the un-
coupled mechanical and electrical behavior of
heterogeneous materials. The fundamentals of the
methods can be referred to in Mura (1987), Ne-
mat-Nasser and Hori (1993), and Taya and Ar-
senault (1989). More recently, they are applied
successfully to heterogeneous materials with cou-
pled behaviors between the elastic, electric, and
magnetic ®elds (Dunn and Taya, 1993; Hori and
Nemat-Nasser, 1998; and Li and Dunn, 1998a).

It is well known that the e�ective sti�ness and
compliance tensors of heterogeneous materials
must be diagonally symmetric from an energy ar-
gument. The various micromechanics approxima-
tions, however, do not guarantee the diagonal
symmetry of the estimated e�ective moduli. Ben-
veniste et al. (1991) showed that the Mori±Tanaka
and self-consistent approaches yield a diagonally
symmetric e�ective sti�ness tensor only for two-
phase composites or multi-phase composites where
the reinforcements have a similar shape and
alignment. They further showed that two equiva-
lent evaluations on the e�ective thermal-stress
tensor give di�erent values for multi-phase com-
posites with di�erently shaped reinforcements un-
der the Mori±Tanaka approach. Similar
observations on diagonal symmetry were made by
Qiu and Weng (1990). These observations cast
doubt on the theoretical rigor of these micro-
mechanics approximations in multi-phase com-
posites. Nemat-Nasser and Hori (1993) discussed
the symmetry of the e�ective sti�ness and com-
pliance tensors in detail. They showed that by the
energy-based de®nition, the e�ective moduli are
the symmetric part of the e�ective moduli de®ned
by the average stress and strain in the composites,
and thus, are always symmetric. However, as they
pointed out, the e�ective sti�ness and compliance
tensors estimated from the energy-based de®nition
may not be each other's inverse. Norris (1989) and
Qiu and Weng (1990) noticed that the Mori±
Tanaka approach in multi-phase composites may
violate Hashin-Shtrikman bounds (Hashin and
Shtrikman, 1962, 1963). Ferrari (1991) showed
that the e�ective moduli predicted by the Mori-
Tanaka approach may depend on the matrix
properties at the unitary (100%) reinforcement
concentration limit and, thus, is physically unac-
ceptable. Summarizing all these observations in
the literature, it can be concluded that ®ve criteria
should be satis®ed by all approximation schemes:
(1) the e�ective moduli should be diagonally
symmetric; (2) the internal-consistency relation-
ships between the e�ective moduli should be sat-
is®ed; (3) at a dilute reinforcement concentration
limit the e�ective moduli should recover Eshelby's
exact solution; (4) at the unitary reinforcement
concentration limit, the e�ective moduli should be
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independent of the properties of the matrix; and
(5) the e�ective moduli should comply with the
variational bounds. The requirement on internal
consistency implies that the e�ective sti�ness and
compliance tensors should be each other's inverse;
equivalent evaluations on the e�ective thermal
moduli should give identical results; and the exact
connections between di�erent components of the
e�ective moduli should be satis®ed. Actually the
self-consistent approach got its name because it
guarantees that the estimated sti�ness and com-
pliance tensors are each other's inverse, which is
self-consistent (Hill, 1965). Detailed discussions on
the diagonal symmetry, dilute behavior, internal
consistency, and variational bounds of the e�ective
moduli can be found in Nemat-Nasser and Hori
(1993). Norris (1989), Qiu and Weng (1990),
Benveniste et al. (1991), and Ferrari (1991) showed
that the application of the Mori-Tanaka approach
in multi-phase composites may violate require-
ments (1), (2), (4) and (5), and thus is questionable.
With the rapid development and increasing appli-
cation of multi-phase composites, especially the
short-®ber reinforced composites, a micromecha-
nics approximation which can overcome these
di�culties is highly desirable.

It should be pointed out that the original Mori
and Tanaka (1973) approach was proposed for
composites with reinforcement of similar shape,
based on the Tanaka and Mori (1972) observation
that the average disturbance in an annulus (be-
tween the inclusion and a larger similar surface)
vanishes. In such a case, the average ®eld in the
double inclusion is exactly known, and the only
approximation is using the e�ective properties of
the double inclusion to represent the e�ective
properties of the composite by ignoring the inter-
action between double inclusions; see Nemat-
Nasser and Hori (1993, pp. 340). All requirements
are satis®ed in this class of composites. This is also
true for composite materials consisting of coated
reinforcements embedded in a continuous matrix
(Benveniste et al., 1991 noticed that the Mori±
Tanaka approach returns a diagonally symmetric
e�ective sti�ness tensor for this class of compos-
ites). When reinforcements of di�erent shapes are
involved in the composite, such an approximation
is no longer possible (since ®elds in di�erent an-

nuluses around dissimilar inclusions are di�erent).
Therefore, it is the extension from two-phase
composites to multi-phase composites with di�er-
ently shaped reinforcements, not the original Mori
and Tanaka assumption, that produces con¯icting
results. Based on the Tanaka and Mori observa-
tion, an elegant double-inclusion method as well as
the multi-inclusion method were proposed by
Nemat-Nasser and Hori (1993), Hori and Nemat-
Nasser (1994) using the average ®eld in a multi
inclusion embedded in an in®nite medium with
arbitrary assigned elastic moduli. When the sti�-
ness tensor of the matrix is assigned to the in®nite
medium, the Mori±Tanaka approach is obtained;
if the unknown e�ective sti�ness tensor is assigned
instead, the self-consistent approach is obtained.
Thus the Mori±Tanaka and self-consistent ap-
proaches are under a uniform framework and are
special cases of the more general scheme. The
multi-inclusion method was also proven to comply
with variational bounds for a composite with
similar reinforcements. Its application to multi-
phase composites containing reinforcements with
di�erent shapes or alignments remains to be eval-
uated.

It is worth mentioning a closely related prob-
lem, the internal ®eld analysis of heterogeneous
materials. Kreher and Pompe (1989) and Li and
Dunn (1998b) showed that the Mori±Tanaka ap-
proach leads to zero ®eld variations in constituents
of two-phase elastic and piezoelectric composites,
which is unrealistic. A more reasonable approxi-
mation is also desirable to accurately model the
internal ®eld distribution in composite materials.

To overcome the theoretical di�culties of var-
ious micromechanics approaches, an e�ective-me-
dium-®eld approximation scheme is proposed,
which is based on both e�ective-medium and ef-
fective-®eld assumptions. The proposed approxi-
mation is especially designed for multi-phase
composite containing reinforcements of di�erent
shapes and alignments, where the conventional
approximations fail. At the unitary concentration
limit where the matrix phase disappears, the for-
malism of the self-consistent approach for poly-
crystalline aggregates is obtained (Walpole, 1969),
except that multi-phase grains are allowed in the
current formalism. It is shown that the proposed
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approximation satis®es the requirements (1), (2),
(3), and (4). Since no variational bounds for the
multi-phase composite containing reinforcements
of di�erent shapes and alignments exist yet, to the
best of the author's knowledge, requirement (5)
cannot be evaluated. The paper is organized in the
following manner: the rigorous framework is in-
troduced in Section 2, followed by an introduction
of various micromechanics approximations in
Section 3; the micromechanics approximations are
then examined and discussed in Section 4, along
with various requirements; ®nally, a conclusion is
drawn from the discussion.

2. The rigorously framework

We consider linear thermoelastic media. The
constitutive equations for the stationary linear
response can be expressed as

r � Ce� kh; �1a�
or in inverse form

e � Dr� ah; �1b�
where r, e, and h are the stress and strain tensors
and the temperature change with respect to a ref-
erence temperature, respectively; C and D are the
elastic sti�ness and compliance tensors, respec-
tively; they are each other's inverse; k and a are the
thermal stress and strain tensors, respectively; they
satisfy the relationship k � ÿCa.

Let us consider a piece-wise uniform material
described by moduli that vary as

C�x� �
X

r

CrUr�x� �2a�

and

k�x� �
X

r

krUr�x�; �2b�

where the subscript r is used to denote a quantity
of phase r which is regarded to be uniform over
phase r, and x is used to denote a position in the
heterogeneous material. Similar equations hold for
compliance tensor D and thermal strain tensor a.
Ur�x� is the characteristic function that describes
the topology of the microstructure of the hetero-
geneous material:

Ur�x� �
1; x 2 r;

0; x 62 r:

�
�3�

An important property of Ur�x� is the relationship

hUr�x�P �x�i � crPr; �4�
where h�i � 1=V

R
V ��� dV denotes the average

over the volume of a heterogeneous material V;
P�x� is any integrable material property varying
over the microstructure; and cr is the volume
fraction of phase r and satis®es

P
r cr � 1.

For the heterogeneous material considered
subjected to uniform linear displacement u � xe0

and temperature change h at the boundary, we
de®ne the e�ective thermoelastic constitutive
equation in terms of the average stress and strain
in a statistical sense, under the assumption of
macroscopic homogeneity:

hri � C�hei � k�h; �5�
where C� and k� are the e�ective sti�ness and
thermal stress tensors, respectively. Note that the
temperature, unlike the stress and strain ®elds, is
assumed to be uniform in the entire heterogeneous
material. Taking into account the average strain
theorem (see, e.g., Nemat-Nasser and Hori, 1993)

hei � e0 �6�
and the constitutive equations for phase r

rr � Crer � krh; �7�
the e�ective sti�ness and thermal stress tensor can
be expressed as

C� �
X

r

crCrAr �8�

and

k� �
X

r

cr�Crar � kr�; �9�

respectively, where the elastic and thermal strain
concentration factors Ar and ar are de®ned by

er � Are
0 � arh; �10�

based on linearity. From the average strain
theorem, it can be veri®ed that

P
r crAr � I andP

r crar � 0, where I is the fourth-order unit tensor.
An analogous development for the applied

uniform stress boundary conditions, t � nr0,
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yields the e�ective compliance and thermal strain
tensors

D� �
X

r

crDrBr �11�

and

a� �
X

r

cr�Drbr � ar�; �12�

respectively, where the elastic and thermal stress
concentration factors Br and br are de®ned by

rr � Brr
0 � brh �13�

and satisfy
P

r crBr � I and
P

r crbr � 0:
Up to this point the development is completely

rigorous and the expressions for the e�ective the-
rmoelastic moduli Eqs. (8)±(12) are exact. In order
to estimate the e�ective thermoelastic moduli of
heterogeneous materials, assumptions must be
made for the concentration factors Ar and ar, or Br

and br, which have been the focus of various
micromechanics approximations. It is those as-
sumptions that lead to the violation of require-
ments (1) to (5) in certain cases, as discussed in the
introduction. The objective of this work is to
propose an e�ective-medium-®eld approximation
that satis®es the various requirements of the ap-
proximation schemes.

The estimate of the e�ective thermal stress ten-
sor deserves more discussion. Levin (1967) and
Rosen and Hashin (1970) found that the e�ective
thermal stress tensor can be expressed rigorously as

k� �
X

r

crAT
r kr; �14�

where the superscript T is used to denote the ten-
sor transpose. On the other hand, Benveniste and
Dvorak (1990) have recently established an exact
relationship between the concentration factors Ar

and ar (r ¹ 1),

ar � �I ÿ Ar��C1 ÿ Cr�ÿ1�kr ÿ k1�; �15�
where the superscript )1 is used to denote the
tensor inversion. Therefore, the e�ective thermal
stress tensor can be evaluated by two di�erent but
equivalent methods. One method would employ
the estimated Ar in Eq. (14). Alternatively, ar can
be found directly from the estimated Ar, and then
utilized in Eq. (9). Since Eqs. (14), (9) and (15) are

rigorous, a valid micromechanics approximation
should give identical results. Benveniste et al.
(1991) showed, however, that the Mori±Tanaka
approach gives di�erent results for the e�ective
thermal stress tensor, using Eqs. (14) and (9) for
multi-phase composite with di�erently shaped re-
inforcements. This observation casts doubt on the
application of the Mori±Tanaka approach to
multi-phase composites.

3. Micromechanics approximations

From the rigorous framework, it is clear that
both the estimate of the e�ective sti�ness tensor
and the estimate of the e�ective thermal stress
tensor depend on the estimate of concentration
factor Ar, directly or indirectly. Various micro-
mechanics approximations have been proposed to
estimate Ar in composite materials, among them,
the most popular ones are perhaps the Mori±
Tanaka mean-®eld approach and the self-consis-
tent e�ective-medium approach. The basic as-
sumptions and equations of these two approaches
will be reviewed here. An e�ective-medium-®eld
approximation will also be proposed to overcome
the theoretical di�culties faced by the two ap-
proaches in multi-phase composites. We restrict
ourselves to the matrix-based composites, where
phase 1 is reserved for the matrix, while phases 2 to
n are for the reinforcements.

3.1. Mori±Tanaka mean-®eld approach

The basic assumption of the Mori±Tanaka ap-
proach is that the average strain in reinforcement r
equals the strain in a single reinforcement with
elastic sti�ness tensor Cr embedded in an in®nite
matrix with elastic sti�ness tensor C1, and sub-
jected to a uniform strain at the boundary, which
equals the yet unknown average strain e1 in the
matrix (Mori and Tanaka, 1973; Benveniste,
1987). In light of this assumption, the average
strain in phase r is

er � Adil
r e1 � arh; �16�

where Adil
r can be obtained from Eshelby's (1957)

solution for reinforcements 2 to n,
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Adil
r � �I � SrCÿ1

1 �Cr ÿ C1��ÿ1
; �17�

this is the unit tensor for matrix. Sr is the Eshelby
tensor, which is a function of the sti�ness tensor C1

of the matrix and the shape of reinforcement r.
From the average strain theorem and the de®ni-
tion of the concentration factor, it can be shown
that

AMT
r � Adil

r �c1I �
Xn

r�2

crAdil
r �ÿ1

: �18�

The Mori±Tanaka approach has been applied
successfully to two-phase composite materials. Its
application to multi-phase composites containing
reinforcements of di�erent shapes or alignments,
however, is questionable, since several criteria are
violated, as shown by Benveniste et al. (1991),
Norris (1989), Qiu and Weng (1990), and Ferrari
(1991).

3.2. Self-consistent e�ective-medium approach

The basic assumption of the self-consistent ap-
proach is that the average strain in reinforcement r
equals the strain in a single reinforcement with
elastic sti�ness tensor Cr embedded in an in®nite
matrix with the yet to be determined e�ective
sti�ness tensor C�, and subjected to an applied
uniform strain e0 at the boundary. In light of this
assumption, the strain concentration factor can be
expressed as

Asc
r � �I � SrC�ÿ1�Cr ÿ C���ÿ1: �19�

Now Eshelby's tensor Sr is a function of the ef-
fective sti�ness tensor C� instead of C1 of the
matrix. Since the e�ective sti�ness tensor C� ap-
pears on both sides, Eq. (8) must be solved nu-
merically, in general. The self-consistent approach
is usually regarded unsuitable for a matrix-based
composite when the reinforcement volume fraction
is high.

3.3. The e�ective-medium-®eld approximation

To overcome several theoretical di�culties of
the Mori±Tanaka and the self-consistent ap-
proaches in multi-phase composites, we propose
an e�ective-medium-®eld approximation here. For

the applied uniform strain boundary condition, we
assume that the average strain in reinforcement r
equals the strain in a single reinforcement with
elastic sti�ness tensor Cr embedded in an in®nite
matrix with the yet to be determined e�ective
elastic sti�ness tensor C� (e�ective medium as-
sumption), and subjected to a uniform strain at the
boundary, which equals the yet unknown average
strain e1 in the matrix (e�ective ®eld assumption).
In light of this assumption, the average strain in
phase r is

er � Asc
r e1 � arh; �20�

where Asc
r is given by Eq. (19) for reinforcements 2

to n, and is the unit tensor for the matrix. Taking
into account the average strain theorem and the
de®nition of the concentration factor, the elastic
strain concentration factor of the proposed ap-
proximation can be written as

Aemf
r � Asc

r �c1I �
Xn

r�2

crAsc
r �ÿ1: �21�

The thermal strain concentration factor can be
obtained by the combination of Eqs. (21) and (15).
Again, since the e�ective sti�ness tensor C� and the
e�ective thermal stress tensor k� appear on both
sides, Eqs. (8) and (9) must be solved numerically,
in general.

Analogously, when the uniform stress is applied
at the boundary, we assume that the average stress
in phase r equals the stress in a single reinforce-
ment with elastic sti�ness tensor Cr embedded in
an in®nite matrix with the yet to be determined
e�ective elastic sti�ness tensor C�, and subjected to
a uniform stress at the boundary, which equals the
yet unknown average stress r1 in the matrix. In
light of this assumption, the average stress in phase
r is

rr � Bsc
r r1 � brh; �22�

where

Bsc
r � �I � C��I ÿ Sr��Cÿ1

r ÿ C�ÿ1��ÿ1 �23�
for reinforcements 2 to n according to the solution
of the auxiliary inhomogeneity problem; it is the
unit tensor for the matrix. Taking into account
the average stress theorem and the de®nition of the
concentration factor, the stress concentration
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factor of the proposed approximation can be
written as

Bemf
r � Bsc

r �c1I �
Xn

r�2

crBsc
r �ÿ1

: �24�

From the derivation, it is clear that the pro-
posed approximation has both e�ective medium
and e�ective-®eld assumptions. Actually this work
is motivated by the success of the self-consistent
approach in polycrystalline aggregates (Walpole,
1969). To demonstrate this, let us consider a two-
phase composite with a certain reinforcement ori-
entation distribution. In such a case, the volume
averages over all reinforcements reduce to the
orientational averages. At the unitary reinforce-
ment concentration limit where the volume frac-
tion of the matrix goes to zero, Eq. (21) becomes
Aemf

r � Asc
r hAsc

r iÿ1
, which corresponds to Walpole's

original equation for polycrystals. Interestingly,
Walpole proposed such a normalization to guar-
antee that the consistency relationship hAri � I is
satis®ed. Such a requirement is not satis®ed by
Eq. (19) when the grains cannot be taken on av-
erage as spheres or aligned ellipsoids. Iwakuma
and Nemat-Nasser (1984) and Nemat-Nasser and
Obata (1986) examined di�erent normalization
schemes in their studies of elasto-plastic deforma-
tion of polycrystals, and they found that Walpole's
normalization leads to a more suitable numerical
iterative calculation. It was concluded by Nemat-
Nasser and Agah-Tehrani (1992) from a pertur-
bation argument that normalization of the con-
centration tensor is an integral part of the self-
consistent approach, otherwise the consistency
relationship may be violated. Although their work
focused on polycrystals, the observation is also
enlightening when dealing with multi-phase com-
posites. In composite materials, only the concen-
tration factors of the reinforcements are calculated
directly, and the concentration factor of the matrix
is calculated from

P
r crAr � I ; thus the consis-

tency constraint is satis®ed automatically. How-
ever, imagine that at the unitary reinforcement
limit where the matrix phase disappears, the con-
sistency relationship will be no longer satis®ed by
Eq. (19) for a multi-phase composite with general
geometry, following a similar argument of Nemat-
Nasser and Agah-Tehrani. It can then be con-

cluded that the normalization of the concentration
factor is also necessary for composite materials.
Unfortunately, such a normalization has long been
ignored, probably because most of the work in this
area concerns two-phase materials with aligned
reinforcements, and

P
r crAr � I is always satis®ed

in such cases. Interestingly, such a normalization
can be derived directly from the e�ective-medium-
®eld approximation instead of being a constraint
imposed by the consistency relationship.

With the elastic strain and stress concentration
factors given by Eqs. (21) and (24), the e�ective
sti�ness and compliance tensors can be estimated
by Eqs. (8) and (11), while the e�ective thermal
stress tensors can be estimated by Eqs. (9) and
(14). The question remaining is whether or not
such estimates are self-consistent, i.e., whether or
not the estimated sti�ness and compliance tensors
are each other's inverse, and the estimated thermal
stress tensors given by Eqs. (9) and (14) are iden-
tical. Also important is whether the estimated ef-
fective moduli are diagonally symmetric. These
issues are discussed in the next section. The cor-
respondence with the self-consistent approach of
polycrystalline aggregates has already ensured the
correct behavior at the unitary reinforcement
concentration limit.

4. Discussion

As we discussed, all micromechanics ap-
proaches should satisfy certain criteria. In this
section, we examine the Mori±Tanaka, the self-
consistent, and the proposed approach under
various criteria.

4.1. The diagonal symmetry of the e�ective sti�ness
tensor

Benveniste et al. (1991) have examined the ap-
plication of the Mori±Tanaka and the self-consis-
tent approach in a three-phase composite
consisting of a Ti3Al matrix (phase 1), a carbon
circular disc (phase 2) with the normal of the plane
face of the disc in the direction of x3 of a Cartesian
coordinate system, and continuous SiC ®bers
(phase 3) of circular cross section aligned with x3.
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The phase moduli and volume fractions they used
are listed in Table 1, where E, G, and a are the
Young modulus, shear modulus, and thermal ex-
pansion coe�cients, respectively. They found that
these two approaches yield a non-symmetric
sti�ness tensor. We have calculated the e�ective
sti�ness tensor of the composite using the Mori±
Tanaka, the self-consistent, and the proposed ap-
proach. The results are listed in Table 2. It is found
that the Mori±Tanaka and the self-consistent
approaches give di�erent values for C13 and C31,
violating criterion (1). The proposed approach,
however, gives identical C13 and C31, so that the
estimated e�ective sti�ness tensor is diagonally
symmetric. As we show later, the estimated e�ec-
tive sti�ness and compliance tensors are each
other's inverse in the proposed approximation, so
that the estimated e�ective compliance tensor is
also diagonally symmetric. It is also found that the
numerical di�erence between the Mori±Tanaka
and the proposed approach is small. It is clear that
this calculation favors the proposed approach over
the Mori±Tanaka approach in multi-phase
composites with di�erently shaped reinforcements.
Our calculated values by the Mori±Tanaka and the
self-consistent approaches are slightly di�erent
from those of Benveniste et al. (1991), which is
believed to be due to numerical error.

4.2. The equivalence of the e�ective thermal stress
tensors

In the same paper, Benveniste et al. (1991) also
showed that the Mori±Tanaka approach gives

di�erent values for the e�ective thermal stress
tensor of the three-phase composite via two dif-
ferent, but equivalent methods. Both methods are
rigorous except for the Mori±Tanaka mean-®eld
assumption. This observation also casts some
doubt on the application of the Mori±Tanaka
approach to multi-phase composites. We have
calculated the e�ective thermal stress tensor from
Eqs. (14) and (9), respectively, using the Mori±
Tanaka, the self-consistent, and the proposed ap-
proach. The results are listed in Table 3. It is
found that both the Mori±Tanaka and the self-
consistent approach give di�erent values for the
e�ective thermal stress tensor using the two
methods, violating criterion (2). The proposed
approach, however, gives identical values of the
e�ective thermal stress tensor by these two meth-
ods, and thus is self-consistent. The numerical
di�erence between the Mori±Tanaka and the
proposed approach is small. Again, the calculation
favors the proposed approach over the Mori±
Tanaka approach in multi-phase composites with
di�erently shaped reinforcements.

4.3. Internal-consistency relationships between the
e�ective moduli

For the internal consistency relationship, it is
noted that for a ®nite sample the e�ective sti�ness
and compliance tensors predicted by Eqs. (8) and
(11) need not be each other's inverse, since di�er-
ent boundary conditions are imposed. Such a
consistency, however, should be retained under
statistical homogeneity. Weng (1990) showed that

Table 1

Phase moduli and volume fraction of constituents in a three-phase composite

Material E (GPa) G (GPa) a( ´ 10ÿ6/°C) c

Ti3Al 95.6 37.1 9.25 0.55

C 34.4 14.3 3.33 0.25

SiC 431.0 172 4.86 0.2

Table 2

The e�ective sti�ness moduli (GPa) of a three-phase composite by di�erent approaches

Approach C11 C12 C13 C31 C33 C44 C66

Mori±Tanaka 123.7 43.98 36.14 22.20 124.22 32.99 39.88

Self-consistent 124.0 44.25 36.22 22.34 124.26 32.69 39.86

Proposed 128.1 47.24 35.10 35.10 125.47 33.32 40.45
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this is the case for the Mori±Tanaka approach.
The self-consistent approach also satis®es this re-
quirement; the energy-based de®nition may not
(see Nemat-Nasser and Hori, 1993). For the pro-
posed approximation, it can be deduced from
Eqs. (20) and (22) that

CrAsc
r � Bsc

r C1 �25a�
and

DrBsc
r � Asc

r D1; �25b�
so that the e�ective sti�ness and compliance ten-
sors can be written as

C� � �c1I �
Xn

r�2

crBsc
r �C1�c1I �

Xn

r�2

crAsc
r �ÿ1 �26a�

and

D� � �c1I �
Xn

r�2

crAsc
r �D1�c1I �

Xn

r�2

crBsc
r �ÿ1

; �26b�

respectively, according Eqs. (8) and (11). Then it is
easy to verify that C� and D� are indeed each
other's inverse.

Hill (1964) obtained two exact connections be-
tween di�erent components of the e�ective sti�ness
tensor of a two-phase composite, expressed as

k ÿ k1

lÿ l1

� k ÿ k2

lÿ l2

� lÿ c1l1 ÿ c2l2

nÿ c1n1 ÿ c2n2

� k1 ÿ k1

l2 ÿ l2

�27�

and

1=k ÿ =k1

mÿ m1

� 1=k ÿ =k2

mÿ m2

� mÿ c1m1 ÿ c2m2

ÿ�E ÿ c1E1 ÿ c2E2�=4
� 1=k1 ÿ 1=k2

m1 ÿ m2

; �28�
where k is the plane-strain bulk modulus for lat-
eral dilation without longitudinal extension; n is
the modulus for longitudinal uniaxial straining,
and l is the associated cross-modulus; and m and E
are the Poisson ratio and Young's modulus under

the longitudinal loading, respectively (Hill, 1964).
We have examined the Mori±Tanaka, the self-
consistent, and the proposed approach in a SiC
®ber-reinforced Ti3Al composite using these exact
connections. The results are listed in Table 4. It is
found that all three approaches satisfy these exact
connections.

4.4. Dilute and unitary reinforcement concentration
limits

Ferrari (1991) pointed out that micromechanics
approximations should have correct behaviors at
dilute and unitary concentration limits. At the di-
lute limit, Eshelby's (Eshelby, 1957) exact solution
should be obtained, while at the unitary limit, the
estimated e�ective moduli should not depend on
the matrix properties. He further showed that the
Mori±Tanaka approach does not have the correct
behavior at the unitary limit, where the e�ective
sti�ness tensor becomes

C� � hCrAdil
r ihAdil

r iÿ1
: �29�

Since the concentration factor Adil
r is a function of

the sti�ness tensor of the matrix, in general, the
e�ective sti�ness tensor given by Eq. (29) is a
function of the sti�ness tensor of the matrix even at
the unitary reinforcement concentration unless the
reinforcements are isotropic or aligned. The pro-
posed approach, however, avoids such an undesir-
able behavior by the e�ective-medium assumption,
in which the e�ective sti�ness tensor becomes

C� � hCrAsc
r ihAsc

r iÿ1 �30�
at the unitary limit. Now the concentration factor
Asc

r is a function of the e�ective sti�ness tensor of
the composite instead of the matrix, and it will not
depend on the matrix properties. This observation
favors the application of the proposed approach
over the Mori±Tanaka approach in multi-phase

Table 3

The e�ective thermal stress tensor (10ÿ2 GPa/°C) of a three-phase composite by di�erent approaches. (Method I is by Eq. (14), method

II is by Eq. (9))

Approach k11 (I) k33 (I) k11 (II) k33 (II)

Mori±Tanaka )0.1422 )0.1293 )0.1501 )0.0824

Self-consistent )0.1425 )0.1294 )0.1502 )0.0823

Proposed )0.1588 )0.1304 )0.1588 )0.1304
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composites with di�erent alignments. At the dilute
limit, the concentration factor recovers that of the
self-consistent approach to the ®rst degree of ap-
proximation,

Aemf
r � Asc

r ; �31�
and it is known that the self-consistent approach
recovers Eshelby's exact solution to the ®rst degree
of approximation at the dilute concentration limit.
So criterion (3) is also satis®ed by the proposed
approach.

5. Conclusions

An e�ective-medium-®eld approximation based
on normalized concentration factors is proposed
to estimate the e�ective thermoelastic moduli of
multi-phase composites. Such normalization is
necessary to ensure the satisfaction of the consis-
tency relationship. It is shown that the proposed
approach gives a diagonally symmetric sti�ness
tensor, gives identical thermal stress tensors using
two equivalent methods, satis®es the internal-
consistency relationships between the e�ective
moduli, and exhibits the correct behaviors at dilute
and unitary concentration limits. These observa-
tions favor the application of the proposed ap-
proach over the Mori±Tanaka approach to multi-
phase composites with di�erently shaped and
aligned reinforcements.
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