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Abstract

The cluster morphology in a water-swollen Na®on per¯uorinated membrane is studied using a micromechanics

approach. The cluster size is determined from the minimization of the free energy as a function of the equivalent weight

of Na®on, the volume fraction of water, and the temperature, taking into account the electrostatic dipole interaction

energy, the elastic polymer chain reorganization energy, and the cluster surface energy, leading to results which are in

accord with experimental observations. By minimizing the sum of: (1) the electro-elastic interaction energy between an

ionic cluster and the ¯uorocarbon matrix, and (2) the cluster surface energy, it is concluded that the e�ective cluster

shape is spherical in the absence of an electric ®eld, and becoming an oblate spheroid when an electric ®eld is applied.

The e�ect of cluster morphology on the e�ective electro-elastic moduli and the e�ective ionic conductivity is then

studied by a micromechanical multi-inclusion model. The result seems to describe the available empirical relation when

a spherical cluster shape is assumed. It correctly predicts the insulator-to-conductor transition which occurs in Na®on,

as the water volume fraction is increased. Ó 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Na®on, a per¯uorinated membrane, is a co-
polymer of tetra¯uoroethylene and sulfonyl ¯uo-
ride vinyl ether, produced by DuPont de Nemours.
It has the following chemical structure:

This linear ¯uorocarbon polymer, having some
(no more than 10 mol%) pending acid groups, is
strongly a�ected by water content and cations,
because it combines two incompatible compo-
nents, i.e., the hydrophobic ¯uorocarbon with the
hydrophilic ionic phase, and has the phase-sepa-
ration morphology of discrete hydrophobic and
hydrophilic regions. The polytetra¯uoroethylene
in this material provides the three-dimensionally
structured backbone system, having regularly
spaced long per¯uorovinyl ether pendant side
chains which terminate in ionic sulfonate groups.
The membrane is permeable to water and cations,
while it is impermeable to anions.

It is widely accepted that the ionic groups
tend to aggregate to form tightly packed regions
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referred to as clusters (Eisenberg, 1970; Gierke et
al., 1981) which are fully interconnected and are
readily saturated by water, and have a marked
e�ect on the elastic and transport properties of
Na®on. The validity of such a structure has been
supported by both theoretical (Eisenberg, 1970;
Hsu and Gierke, 1982) and experimental (Gierke
et al., 1981; Xue et al., 1989; Lee et al., 1992) ob-
servations. Readers are referred to review articles
by Mauritz (1988) and Heitner-Wirguin (1996) for
more information. It is believed that the ionic
clustering is due to the electrostatic interaction
among dipoles attached to the ¯uorocarbon
polymer chains (Eisenberg, 1970). This results in
an increase in the mean radius of gyration of the
polymer chains (Forsman, 1982, 1986) and thus,
an increase in the elastic energy associated with
their extension. Hsu and Gierke (1982) have de-
veloped an elastic theory for the ionic clustering in
Na®on, which describes the experimental data
well. Their model ignores the electrostatic dipole
interaction which can be the driving force for the
clustering, and the elastic energy term which is
considered is the interaction energy of the ionic
cluster and the ¯uorocarbon matrix, rather than
the elastic energy associated with the polymer
chain reorganization during clustering. The valid-
ity of the assumption that the number of ion ex-
change sites per cluster is constant during Na®on
swelling and cluster growth in Na®on, is also
questioned by Gierke et al. (1981). The electro-
static and elastic forces acting on the pendant ionic
groups and their neutralizing counterions are
shown by Datye et al. (1984) to produce a dipole
layer at the surface of an ionic cluster, using a
computer simulation. Datye and Taylor (1985)
have performed a Monte Carlo simulation to de-
termine the electrostatic energy of an ionic cluster
in an ionomer, as a function of the cluster size and
temperature. It is found that the energy is not very
sensitive to the variation of the cluster shape.

In the present work, we will ®rst determine the
cluster size and shape from the minimization of the
free energy, taking into account the electrostatic
dipole interaction energy, the elastic energy of the
polymer chain reorganization during clustering,
the surface energy of a cluster, and the electro-
elastic interaction energy of an ionic cluster and

the ¯uorocarbon polymer matrix. The e�ect of the
cluster morphology on the macroscopic electro-
elastic and transport properties is then studied,
using a micromechanical multi-inclusion model
(Nemat-Nasser and Hori, 1993, 1999). Good
agreement with experimental data is observed for
both cluster morphology and the e�ective prop-
erties of Na®on.

2. Cluster morphology in Na®on: a micromechanical

model

2.1. Cluster size in Na®on

We ®rst consider the cluster size in a water-
swollen Na®on membrane, which is assumed to be
determined by the electrostatic dipole interaction
energy of the ions, the elastic energy of the poly-
meric chain reorganization, and the surface energy
of the cluster. The electro-elastic interaction be-
tween a cluster and the ¯uorocarbon matrix is ig-
nored, since it does not seem to depend on the
cluster size, as we will show later on. The electro-
static energy of the clusters arises principally from
the interaction between ion pairs. This is modeled
as point dipoles in the present calculation. The
electrostatic energy, Uij, of a pair of dipoles, mi

and mj, is given by (Cheston, 1964)

Uij � 1

4pj�
mi �mj

jri ÿ rjj3
(

ÿ 3�mi � �ri ÿ rj���mj � �ri ÿ rj��
jri ÿ rjj5

)
; �1�

where j� is the e�ective dielectric constant of the
water-swollen Na®on, and ri is the position vector
of dipole mi. The electrostatic energy of a cluster
composed of N dipoles of a common magnitude m,
which are situated on its surface, then is

Uele � 1

4pj�
1

2

XN

i�1

XN

j�1

mi �mj

jri ÿ rjj3
(

ÿ 3�mi � �ri ÿ rj���mj � �ri ÿ rj��
jri ÿ rjj5

)
: �2�
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For a given cluster of ®xed radius and number
of dipoles, the con®guration of dipoles on the
cluster surface is such that the free energy of
the cluster is minimized. In such a situation, the
magnitude of ri ÿ rj will be proportional to the
cluster radius, while its orientation will be inde-
pendent of the cluster radius. Thus, we can always
rewrite Eq. (2) as

Uele � ÿg
N 2

4pj�
m2

r3
c

� ÿ N 2

4pj�
m�2

r3
c

; �3�

where g is the geometric factor, depending only on
the detailed arrangement of the dipoles on the
cluster surface, rc the radius of the cluster, and
m� � ���

g
p

m is the e�ective dipole moment.
The elastic energy per cluster associated with

ionic clustering, is obtained by Datye et al. (1984),
using a simple model of rubber elasticity. It is
given by

Uela � 3NkT
4hh2i d2

0

ÿ � Dd2
�
; �4�

where k is BoltzmannÕs constant, T the absolute
temperature, hh2i the mean square end-to-end
chain length, d0 the nearest-neighbor distance be-
tween dipoles on the cluster, and Dd is the average
end-to-end separation of the chains belonging to
di�erent clusters, given by

Dd � 2�Rÿ rc�; �5�
where R is the length of the edge of the cubic
volume occupied by the N dipoles before cluster-
ing; it is given by

R3 � NMe

q�NA

; �6�

where Me is the equivalent weight of Na®on (i.e.,
the weight in grams of dry polymer per mole of ion
exchange sites), q� the e�ective density of the wa-
ter-swollen Na®on membrane, and NA is Avoga-
droÕs constant. Inserting Eqs. (5) and (6) into Eq.
(4), and taking into account that d0 � Dd, we
obtain

Uela � 3NkT
hh2i

�����������
NMe

q�NA

3

s 
ÿ rc

!2

: �7�

In deriving Eq. (4), the assumption has been
made that half of the chains starting from the
pendant ions terminate on the same cluster while
the remaining chains terminate on a nearest-
neighbor cluster (Datye et al., 1984); see Fig. 1.

Introducing the surface energy density c, the
surface energy of the cluster is simply given by

Usur � 4pr2
cc: �8�

The surface energy is composed of the hydro-
philic energy between the water and the ion pairs,
and the hydrophobic energy between the water
and the ¯uorocarbon matrix. A small decrease in
the surface energy density c with an increase in the
volume fraction of water is expected, since it de-
creases the in¯uence of the ions.

The energy density of the Na®on membrane
due to the ionic clustering is then given by the
product of the total energy per cluster due to the
ionic clustering (i.e., the sum of the electrostatic
dipole interaction energy, the elastic energy of the
polymer chain reorganization, and the cluster
surface energy) and n, the number of clusters per
unit volume,

n � 3�cw � ci�
4pr3

c

; �9�

where cw and ci are the volume fractions of the
water and the ion exchange sites in the membrane,

Fig. 1. Schematic illustration of the deformation of polymer

chains due to clustering of the pendant ions.
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respectively. The energy density of the membrane
is then given by

U �
24ÿ 3N 2

16p2j�
m�2

r6
c

� 9NkT
4pr3

chh2i

�
�����������
NMe

q�NA

3

s 
ÿ rc

!2

� 3c
rc

35�cw � ci�: �10�

The number of dipoles per cluster, N, can be ob-
tained directly from the density and the equivalent
weight of the membrane (Gierke et al., 1981),

N � NAqd

Me�1� DV � L
3; �11�

where qd is the density of the dry membrane, DV
the fractional volume change of the membrane due
to water absorption, and

L �
��������������������

4p
3�cw � ci�

3

s
rc

is the mean distance between clusters. Eq. (10) can
then be rewritten as

U �
8<:ÿ 1

3j�
NAqdm�

Me�1� DV ��cw � ci�
� �2

� 3kT
hh2i

NAqd

Me�1� DV ��cw � ci�

�
�������������������������������������������

4pqd

3q��1� DV ��cw � ci�
3

s"
ÿ 1

#2

r2
c �

3c
rc

9=;
� �cw � ci�: �10a�

Di�erentiating Eq. (10a) with respect to rc, and
setting the result equal to zero, we obtain

6kT
hh2i

NAqd

Me�1� DV ��cw � ci�

�
�������������������������������������������

4pqd

3q��1� DV ��cw � ci�
3

s"
ÿ 1

#2

rc ÿ 3c
r2

c

� 0;

�12�

so that

r3
c �

chh2iMe

2NAkT
�DV � DV 0�

qd

� 1

"
ÿ

�������������������������������
4pqd

3q��DV � DV 0�
3

s #ÿ2

; �13�

where

cw � DV
1� DV

and ci � DV 0

1� DV

have been used; here

DV 0 � NAVi

Me=qd

is the volume fraction of the ion exchange sites in
the dry membrane, with Vi being the volume of a
single ion exchange site, and

q� � qd � DV qw

1� DV

is the e�ective density. Assuming hh2i � bMe

(Forsman, 1986), Eq. (13) suggests that a plot of r3
c

versus

U � M2
e DV � DV 0
ÿ �

qd

1

"
ÿ

�������������������������������
4pqd

3q��DV � DV 0�
3

s #ÿ2

should be a straight line crossing the origin for all
membranes of di�erent equivalent weight, di�erent
cations, or water intake, with the slope given by
cb=2NAkT . Typical value for U=M2

e is 0.19 for
DV � 0:443.

To verify the theory, we have compared the
model result with the experimentally determined
cluster diameters (dc) of Na®ons with di�erent
amounts of water contents, di�erent equivalent
weights, and di�erent cation forms, obtained by
Gierke et al. (1981), using small-angle X-ray
scanning. Their results are summarized in Tables
1±3, and the functional dependence of d3

c on U is
plotted in Figs. 2±4, for Na®on with di�erent
water absorption, di�erent equivalent weights, and
di�erent cation forms, respectively. To calculate U,
we have used Vi � 68� 10ÿ24 cm3 (Gierke et al.,
1981). It is found that Eq. (13) which predicts a
linear relation between d3

c and U, describes the
experimental data very well. The straight lines
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cross the origin for Na®ons with di�erent water
contents or equivalent weights, as predicted, but
not for Na®ons with di�erent cations. This is
probably due to the fact that di�erent cations have
di�erent volumes of ion exchange sites, Vi , and in
some cases the di�erences are quite large, e.g., in

the case of Li� versus Cs�. It is also observed that
the slope decreases slightly with an increase in U,
which is believed to be due to the decrease of the
surface energy density c, with an increase in the
volume fraction of water, decreasing the in¯uence
of the ions.

Fig. 2. Cluster size in Na®on membranes with di�erent water

content.

Fig. 3. Cluster size in Na®on membranes with di�erent equiv-

alent weights.

Table 1

Cluster size of 1200 equivalent weight Na®ons with di�erent water content

Cation H� Li� Li� H� Li� Li� H� Li�

Dry density (g/cm3) 2.075 2.078 2.078 2.075 2.078 2.078 2.075 2.078

Volume gain (%) 41 39.1 32.3 27.2 25.3 18.2 13.3 11.4

Cluster diameter (nm) 4.08 3.94 3.70 3.38 3.27 2.97 2.52 2.52

Table 3

Cluster size of 1200 equivalent weight Na®ons with di�erent cations

Cation H� Li� Na� K� Rb� Cs�

Dry density (g/cm3) 2.075 2.078 2.113 2.141 2.221 2.304

Volume gain (%) 69.7 61.7 44.3 18.7 17.9 13.6

Cluster diameter (nm) 4.74 4.49 4.21 3.45 3.56 3.50

Table 2

Cluster size of Na®ons in Na� form with di�erent equivalent weights

Equivalent weight 944 971 1100 1200 1600 1790

Dry density (g/cm3) 2.088 2.093 2.103 2.113 2.135 2.144

Volume gain (%) 87.4 78.2 49.8 37.5 17.2 13.3

Cluster diameter (nm) 5.09 4.97 4.31 3.88 3.03 2.74
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2.2. Cluster shape in Na®on

Next, let us consider the cluster shape in Naf-
ion, which is assumed to be determined by the
electro-elastic interaction energy between the ionic
clusters and the ¯uorocarbon matrix, and the
surface energy of the cluster. It is assumed that on
the average, the electrostatic dipole interaction
energy and the elastic energy of the polymer chain
reorganization do not depend on the cluster shape.
In other words, these energies can be represented
by the energy of an e�ective spherical cluster,
discussed in the preceding subsection. The insen-
sitivity of the electrostatic dipole energy to the
variation of the cluster geometry has been dem-
onstrated by Datye and Taylor (1985). In order to
treat the elastic and electric variables on equal
footing, we introduce the following notation
originally proposed by Barnett and Lothe (1975)
for piezoelectricity: both lower-case and upper-
case subscripts are used, with the upper-case sub-
script ranging from 1 to 4, where 1 to 3 are for the
elastic variables and 4 is for the electric variables;
the repeated upper-case subscripts are summed
from 1 to 4. Using this notation, the electro-elastic
variables can be written as

RiJ �
rij

Di

� �
; ZKl �

ekl

El

� �
;

GiJKl �
Cijkl 0

0 jil

� �
; �14�

where rij and Rkl are the stress and strain tensors,
respectively; Di and El are the electric displace-
ment and the electric ®eld, respectively; Cijkl and
jil are the elastic sti�ness tensor and the dielectric
constants of the polymer in the absence of any
clusters, respectively.

We consider the interaction between the ionic
clusters and the ¯uorocarbon matrix arising from
an eigen®eld in the cluster. Adopting MuraÕs
(1987) terminology, we refer to a cluster as an in-
clusion, with eigen®eld

ZT
Kl �

eT
kl

ET
l

24 35;
so that the constitutive equation for the cluster can
be written as

RiJ � GiJKl ZKl

ÿ ÿ ZT
Kl

�
; �15�

where eT
kl and ET

l are the eigen®eld in the cluster,
necessary for homogenization; see Nemat-Nasser
and Hori (1993, 1999). Note that, with the intro-
duction of an eigen®eld within the inclusion, a
homogeneous medium with the matrix properties,
is used to obtain the actual ®elds within the orig-
inal heterogeneous material. The interaction en-
ergy between the cluster and the matrix due to the
presence of an eigen®eld is then given by

Uint � ÿ 1

2
RiJ ZT

Ji

� ÿ 1

2
GiJKlZT

Ji�SKlMn ÿ IKlMn�ZT
Mn; �16a�

where ZKl � SKlMnZT
Mn is the resulting ®eld when the

transformation ®eld is introduced in the inclusion
in the presence of the surrounding elastic matrix
(Eshelby, 1957),

IKlMn � I4
klmn 0
0 i2

ln

� �
;

with I4
klmn and i2

ln being the fourth- and second-
order unit tensors, and SKlMn is the Eshelby tensor
which is a function of the electro-elastic moduli of
the matrix and the aspect ratios of the ellipsoidal
cluster. The closed-form expressions for Eshelby
tensor for a spheroid in an isotropic medium are
tabulated in Mura (1987) for fourth-order tensors,

Fig. 4. Cluster size in Na®on membranes with di�erent cation

forms.
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and in Taya and Arsenault (1989) for second-order
tensors.

Eq. (16a) can be used to determine the electro-
elastic interaction energy between an ionic cluster
and the ¯uorocarbon matrix, as a function of the
cluster shape which is de®ned by its aspect ratios.
It is found that when the eigen®eld of an inclusion
embedded in an isotropic medium is such that only
eT

11 � eT
22 � eT

33 � es, and ET
3 � Es are non-zero, the

interaction energy is given by

Uint � 2Y e2
s

1ÿ m
� jE2

s �1ÿ S4343�; �16b�

where Y, m, and j are YoungÕs modulus, Poisson
ratio, and dielectric constant, respectively; S4343 is
the component of the dielectric Eshelby tensor,
which is a function of inclusion aspect ratio b. Eq.
(16b) suggests that the interaction energy is inde-
pendent of the cluster aspect ratio, b, when Es is
zero. This is because for an isotropic medium, we
have Siijj � �1� m�=�1ÿ m� for all aspect ratios. In
such a situation, a spherical cluster produces the
minimum surface energy. However, when Es is also
non-zero (besides the volumetric eigenstrain), it is
found that the interaction energy is minimum for
penny-shaped clusters, and maximum for cylin-
drical clusters. The actual aspect ratio of a cluster
therefore will depend on a balance between the
surface energy and the interaction energy, the de-
termination of which requires a knowledge of both
the surface energy density and the magnitude of
the eigen®eld. An illustration is given in Fig. 5, for
spheroids of revolution with aspect ratio b, de®ned
as

b � l3

l1

� l3

l2

;

where l1, l2, and l3 are the principal axes of the
ellipsoidal cluster. In the calculation, the matrix
material constants that were used are: dielectric
constant j � 4j0, YoungÕs modulus Y � 275 MPa,
and the Poisson ratio, m � 0:487; the eigen®eld are
es � 10ÿ3 and P s

3 � jEs � 10ÿ4 C=m2, where P s
3 is

the spontaneous polarization in the cluster which
may be induced by ion redistribution. For com-
parison, the spontaneous polarization in a ferro-
electric BaTiO3 crystal is in the order of 10ÿ2 C/m2.

It is hoped that the analysis here provides some
insight into the response of ionic polymer metal
composites (IPMC) under an applied voltage
(Shahinpoor, 1992; Oguro et al., 1993; Nemat-
Nasser and Li, 1999) which induces an e�ective
dipole in the clusters, due to the redistribution of
ions. Such an induced dipole, according to our
calculations, will change the cluster shape, and
may cause the bending of the IPMC under an
electric ®eld. This could be one possible mecha-
nism de®ning the instantaneous response of an
IPMC to a suddenly applied electric ®eld.

3. The e�ective properties of Na®on: a homogeni-

zation approach

3.1. The e�ective electro-elastic moduli

With the phase-separation morphology of the
discrete hydrophobic ¯uorocarbon matrix and the
hydrophilic ionic clusters, we can regard a water-
swollen Na®on as a two-phase composite material,
with the constitutive equation given by

hRiJ i � �GiJKlhZkLi; �17�

where h�i is used to denote the volume average,
and �GiJKl is the e�ective electro-elastic modulus
tensor of Na®on. This e�ective modulus tensor can
be rigorously expressed as

Fig. 5. Electro-elastic interaction energy between ionic cluster

and ¯uorocarbon matrix.
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�GiJKl �
Xn

r�1

crG
�r�
iJMnA�r�MnKl; �18�

where cr and A�r�MnKl are the volume fraction and the
concentration tensor of phase r, respectively, with
A�r�MnKl de®ned by hZ�r�Mni � A�r�MnKlhZKli. In the fol-
lowing discussion, we reserve the superscript 1 for
the matrix, and the superscripts from 2 to n for the
inclusions (i.e., clusters). In order to determine the
e�ective moduli of this composite, we need to de-
termine the average ®eld in a typical phase r.
Various micromechanics models have been pro-
posed for estimating the e�ective moduli of het-
erogeneous materials. These include the dilute
model, the self-consistent approach (Kr�oner, 1958;
Hill, 1965; Budiansky, 1965), the Mori±Tanaka
approach (Mori and Tanaka, 1973; Benveniste,
1987), and the multi-inclusion model (Nemat-
Nasser and Hori, 1993, 1999). Here we use the
multi-inclusion model which includes the Mori±
Tanaka approach and the self-consistent approach
as special cases. In this model, it is assumed that
the average ®elds in the inclusions are the same as
the ®elds in a multi-inclusion embedded in an in-
®nite homogeneous medium with electroelastic
moduli GiJKl, so that the e�ective overall moduli
are given by

�GiJKl � GiJMn�IMnAb � �SMnCd ÿ IMnCd�KCdAb�
� �IKlAb � SKlEf KEfAb�ÿ1

; �19�

where the superscript )1 is used to denote the in-
verse, and

KKlMn �
Xn

r�1

cr K�r�MnKl

�
ÿ SMnKl

�ÿ1

; �20�

with K�r�KlMn � �GiJKl ÿ G�r�iJKl�ÿ1GiJMn. It is seen from
Eqs. (19) and (20) that the e�ective moduli of the
multi-inclusion model depend on the choice of the
moduli of the in®nite medium, GiJMn. By assigning
G�1�iJMn, the moduli of the matrix, to be those of the
in®nite medium, the results of the multi-inclusion
model coincide with those obtained by the Mori±
Tanaka approach which assumes that the average
®eld in a phase is equal to the ®eld in a single in-
clusion embedded in the in®nite matrix, and sub-

jected at in®nity to the yet unknown ®eld hZ�1�Mni.
The concentration tensor is then given by

A�r�MT
MnKl � A�r� dil

MnJi

Xn

r�1

crA
�r� dil
KlJi

 !ÿ1

; �21�

where the concentration tensor A�r� dil
MnJi is for the

dilute model; it is determined using EshelbyÕs
(1959) equivalent inclusion concept as follows (see
Nemat±Nasser and Hori, 1993, 1999):

A�r� dil
MnKl � IKlMn

�
� S�r�KlJi G�1�aBJi

� �ÿ1

G�r�aBMn

�
ÿ G�1�aBMn

��ÿ1

:

�22�
Eqs. (19)±(22) can then be used to study the e�ects
of the water volume fraction and the cluster shape
on the e�ective moduli of the water-swollen Naf-
ion.

The theoretical model can be compared with the
available experimental data. The tensile modulus
of the water-swollen Na®on has been reported
(Grot et al., 1972; Hsu and Gierke, 1982) to obey
the following empirical relation:

Y �f � � Y0 Exp

�
ÿ a f
�
� 1200ÿMe

20

��
�23�

with Y0 � 275 MPa, and a � 0:0294, and where
f � 100Dm is grams of water per 100 grams of dry
membrane, Dm being the fractional weight change
of the Na®on due to swelling. The fractional vol-
ume change of the Na®on due to swelling can be
written as

DV � qdDm
qw

; �24�

and the water volume fraction cw in the Na®on can
be expressed as

cw � DV
1� DV

� qdf
100qw � qdf

; �25�

so that

Y �cw� � Y0 Exp

�
ÿ a

100cwqw

�1ÿ cw�qd

�
� 1200ÿMe

20

��
:

�26�
Eq. (26) gives an empirical relation for the tensile
modulus of Na®on as a function of its water vol-
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ume fraction. We use Eq. (26) to represent the
experimental data, and compare the results with
those of the multi-inclusion and the Mori±Tanaka
models, as presented in Figs. 6±11 for Na®on with
indicated equivalent weight. In the micromechan-
ical calculation, three cluster aspect ratios, 0.1, 1,
and 10, are used. The Young modulus of the dry
Na®on is determined from Eq. (23) for di�erent
equivalent weights, and the Poisson ratio is as-
sumed to be 0.487 for all equivalent weights. The
bulk modulus of water is taken to be 2.55 Gpa,
and its shear modulus is assumed to be zero. It is

observed that for Na®ons with di�erent equivalent
weights, the calculation using spherical cluster
shape, best ®ts the empirical relations. This pro-
vides another piece of evidence to show that,
without an applied electric ®eld, the clusters in
Na®on are more or less spherical.

3.2. The e�ective conductivity

The e�ective conductivity, �kij, can be de®ned in
a similar manner as the e�ective electro-elastic
moduli,

Fig. 6. E�ective tensile modulus of 944 equivalent weight

Na®on membrane.

Fig. 7. E�ective tensile modulus of 971 equivalent weight

Na®on membrane.

Fig. 8. E�ective tensile modulus of 1100 equivalent weight

Na®on membrane.

Fig. 9. E�ective tensile modulus of 1200 equivalent weight

Na®on membrane.
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hJii � �kij
oC
oxj

� �
; �27�

where Ji is the ionic ¯ux, and C is the ion density.
It can be expressed rigorously as

�kij �
Xn

r�1

crk
�r�
ik a�r�kj �28�

with the concentration factor a�r�ij de®ned by

oC�r�

oxi

� �
� a�r�ij

oC
oxj

� �
:

To estimate the e�ective conductivity of Na®on,
we use the multi-inclusion model, as given by Eqs.
(19) and (20) for the electro-elastic moduli, though
we need to be careful in choosing the modulus for
the in®nite medium. Because of the great di�erence
in the ionic conductivity between water and the
¯uorocarbon matrix, assigning the matrix modu-
lus to the in®ntie medium, which results in the
Mori±Tanaka model, does not produce a good
estimate of the e�ective conductivity of the water-
swollen Na®on. To predict the e�ective conduc-
tivity of the water-swollen Na®on, we set the
conductivity of the in®nite medium to be the yet
unknown overall e�ective conductivity of the
Na®on, as is done in the self-consistent model.
This gives

a�r� sc
kl � i2

lk

h
� s�r�lm

�kÿ1
mn k�r�nk

�
ÿ �knk

�iÿ1

; �29�

where s�r�lm is Eshelby tensor (second-order) for
phase r. In the self-consistent model, s�r�lm is a
function of the e�ective conductivity of Na®on
and the aspect ratios of the cluster. The closed-
form expression of this tensor for a spheroid em-
bedded in an isotropic medium is tabulated in
Taya and Arsenault (1989). Eqs. (28) and (29) can
be used to study the e�ects of the water volume
fraction and the cluster shape on the e�ective
conductivity. For a spherical cluster, the e�ective
conductivity is determined as

�k � 1

4
�2
�
ÿ 3cw�kp � �3cw ÿ 1�kw

�
���������������������������������������������������������������������������
8kpkw � ��3cw ÿ 2�kp � �1ÿ 3cw�kw�2

q �
;

�30�

where kw and kp are the conductivity of water and
dry Na®on, respectively.

An empirical relation for the e�ective conduc-
tivity has been reported for Na®on by Hsu et al.
(1980). This experimental result exhibits an insu-
lator-to-conductor transition. The empirical rela-
tion is

Fig. 10. E�ective tensile modulus of 1600 equivalent weight

Na®on membrane.

Fig. 11. E�ective tensile modulus of 1790 equivalent weight

Na®on membrane.
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�k � k0�cw ÿ c0�g; �31�

with c0 � 0:08±0:1, and g � 1:53� 0:1. We have
compared the results of this empirical relation with
those predicted by the multi-inclusion model in
Fig. 12. It is seen that the self-consistent assump-
tion describes the empirical relation well, and
predicts the phenomenon of the insulator-to-con-
ductor transition.

4. Conclusion

We have studied the cluster morphology in the
water-swollen Na®on per¯uorinated membrane by
minimization of the free energy. In this manner,
the cluster size is determined by assuming the free
energy is a function of the equivalent weight of
Na®on, the volume fraction of the water, and the
temperature. The results are in good accord with
the experimental data. The cluster shape is pre-
dicted to favor a sphere in the absence of an
electric ®eld, and an oblate spheroid when an
electric ®eld is applied. The e�ect of the cluster
morphology on the e�ective electro-elastic moduli
and on the e�ective ionic conductivity is studied
using a micromechanical multi-inclusion model.
The results describe the available empirical rela-
tions well for the spherical cluster shape. They
correctly predict the insulator-to-conductor tran-

sition which occurs in Na®on with an increased
water volume fraction.

Acknowledgements

The work reported here has been supported in
part by Defense Advanced Projects Agency
(DARPA, Dr. Steve Wax, Program Manager) and
in part by the UCSD endowed John Dove Isaacs
Chair in Natural Philosophy.

References

Barnett, D.M., Lothe, J., 1975. Dislocations and line charges in

anisotropic piezoelectric insulators. Phys. Status Sol. (B) 67,

105±111.

Benveniste, Y., 1987. A new approach to the application of

Mori±TanakaÕs theory in composite materials. Mech. Mat-

er. 6, 147±157.

Budiansky, B., 1965. On the elastic moduli of some heteroge-

neous materials. J. Mech. Phys. Solids 3, 223±227.

Cheston, W.B., 1964. Elementary Theory of Electric and

Magnetic Fields. Wiley, New York.

Datye, V.K., Taylor, P.L., Hop®nger, A.J., 1984. Simple model

for clustering and ionic transport in ionomer membranes.

Macromolecules 17, 1704±1708.

Datye, V.K., Taylor, P.L., 1985. Electrostatic constributions to

the free energy of clustering of an ionomer. Macromolecules

18, 1479±1482.

Eisenberg, A., 1970. Clustering of ions in organic polymers, a

theoretical approach. Macromolecules 3, 147±154.

Eshelby, J.D., 1957. The determination of the elastic ®eld of an

ellipsoidal inclusion, and related problems. Proc. R. Soc.

London. Ser. A. 241, 376±396.

Forsman, W.A., 1982. E�ect of segment±segment association

on chain dimensions. Macromolecules 15, 1032±1040.

Forsman, W.A., 1986. Statistical mechanics of ion-pair associ-

ation in ionomers. In: Proceedings of the NATO Advanced

Workshop on Structure and Properties of Ionomers, pp. 39±

50.

Gierke, T.D., Munn, G.E., Wilson, F.G., 1981. The morphol-

ogy in na®on per¯uorinated membrane products, as deter-

mined by wide- and small-angle X-ray studies. J. Polym.

Sci., Polym. Phys. Ed. 19, 1687±1704.

Grot, W.G.F., Munn, C.E., Walmsley, P.N., 1972. In: 141st

Meeting of the Electrochemical Society, Houston, Texas,

May, 1972.

Heitner-Wirguin, C., 1996. Recent advances in per¯uorinated

ionmer membranes: structure, properties and applications.

J. Membrane Sci. 120, 1±33.

Hill, R., 1965. A self-consistent mechanics of composites

materials. J. Mech. Phys. Solids 13, 213±222.

Fig. 12. E�ective conductivity of Na®on membrane.

J.Y. Li, S. Nemat-Nasser / Mechanics of Materials 32 (2000) 303±314 313



Hsu, W.Y., Barkley, J.R., Meakin, P., 1980. Ion percolation

and insulator-to-conductor transition in na®on per¯uoro-

sulfonic acid membranes. Macromolecules 13, 198±200.

Hsu, W.Y., Gierke, T.D., 1982. Elastic theory for ionic

clustering in per¯uorinated ionomers. Macromolecules 15,

101±105.

Kr�oner, E., 1958. Berechnung der elastischen Konstanten des

Vielkristalls aus den Konstanten des Einkristalls. Z. Phys.

151, 504±518.

Lee, E.M., Thomas, R.K., Burgess, A.N., Barnes, D.Y., Soper,

A.K., Rennil, A.R., 1992. Local and long range structure of

water in per¯uorinated ionomer membrane. Macromole-

cules 25, 3106±3109.

Mauritz, K.A., 1988. Review and critical analysis of theories of

aggregation in ionomers. J. Macromol. Sci., Rev. Macro-

mol. Chem. Phys. 28 (1), 65±98.

Mori, T., Tanaka, K., 1973. Average stress in matrix and

average elastic energy of materials with mis®tting inclusions.

Acta Mettall. 21, 571±574.

Mura, T., 1987. Micromechanics of Defects in Solids, second

ed. Martinus Nijho�, Dordrecht.

Nemat-Nasser, S., Hori, M., 1993. Micromechanics: Overall

Properties of Heterogeneous Materials, second ed. Elsevier,

Amsterdam (®rst ed., North-Holland, Amsterdam, 1993).

Nemat-Nasser, S., Li, J.Y., 1999. Electromechanical response of

ionic polymer±metal composites, J. Appl. Phys., to appear.

Oguro, K., Asaka, K., Takenaka, H., 1993. Polymer ®lm

actuator driven by low voltage. In: Proceedings of the

Fourth International Symposium on Micro Machine and

Human Science, Nagoya, pp. 39±40.

Shahinpoor, M., 1992. Conceptual design, kinematics and

dynamics of swimming robotic structures using ioinc

polymeric gel muscles. Smart Mater. Struct. 1, 91±94.

Taya, M., Arsenault, R.J., 1989. Metal Matrix Composites,

Thermomechanical Behavior. Pergamon, New York.

Xue, T., Trent, J.S., Osseo-Asare, K., 1989. Characterization of

Na®on membranes by transmission electron microscopy.

J. Membr. Sci. 45, 261±271.

314 J.Y. Li, S. Nemat-Nasser / Mechanics of Materials 32 (2000) 303±314


