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Abstract

We present a micromechanical analysis on the effective pyroelectric and thermal expansion coefficients of ferro-

electric ceramics in terms of their microstructural information. The overall behaviors of ferroelectric ceramics are

profoundly influenced by the microstructural phenomena, where the macroscopic pyroelectric effect can be induced in

an originally isotropic, thus non-pyroelectric ceramic composed of randomly oriented ferroelectric grains through

poling, during which the polar axes of grains are switched by the applied electric field or mechanical stress. To analyze

these complicated phenomena, we will first establish an exact connection between the effective thermal moduli and the

effective electroelastic moduli of ferroelectric ceramics, and then combine the exact connection with the effective

medium approximation to provide an estimate on the effective pyroelectric and thermal expansion coefficients of fer-

roelectric ceramics in terms of the orientation distribution of grains and poling conditions, where the texture evolution

as a result of domain switching during poling has been taken into account. Numerical results are presented and good

agreements with known theoretical results and some experimental data are observed.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The crystals having a spontaneous polarization

along a unique polar axis are called pyroelectric

(Jona and Shirane, 1993), where the spontaneous

polarization is dependent on the temperature, and

electric charges can be induced on the crystal

surface by temperature change. Pyroelectric de-

vices relying on the temperature sensitivity of
polarization have received increasing interest in
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recent years, and have been utilized for various
application such as infrared detection, imaging

systems, and thermal-medical diagnostics (Cross,

1993).

A ceramic made of pyroelectric grains does not

necessarily possess overall pyroelectric effect, be-

cause the center-symmetry of randomly oriented

ceramics prevents pyroelectric effect at macro-

scopic scale. If the grains are also ferroelectric, i.e.,
if the polar axis can be switched by the applied

electric field or mechanical stress, then macro-

scopic pyroelectric effect can be induced in the

ceramics through poling, where a high electric

field is applied to the ceramic at an elevated
ed.
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temperature. The microstructural evolution during

poling is very complex and involves polarization

switching, domain wall movement, intergranular

constraint, and microstress generation. The com-

plicated microstructural phenomena obviously

have profound influence on the macroscopic
pyroelectricity of ceramics, and this work will

study the effects of microstructural phenomena at

domain and grain levels, including orientation

distribution of domains and grains, on the effective

pyroelectric and thermal expansion coefficients of

ferroelectric ceramics. The texture evolution in

ferroelectric ceramics during poling will be taken

into account.
Although much effort has been made to under-

stand the effective piezoelectric moduli of ferroelec-

tric ceramics (Dunn, 1995; Nan and Clarke, 1996;

R€odel and Kreher, 1999; Li, 2000a), little work has

been done to predict the effective thermal moduli of

ferroelectric ceramics in terms of their microstruc-

ture. Instead, quite a few micromechanical analysis

on the effective thermal moduli of piezoelectric
composites have been developed (Dunn, 1993a,b;

Benveniste, 1994; Chen, 1994a; Qin et al., 1998; Li

and Dunn, 1998; Levin et al., 1999; Aboudi, 2001).

This is probably because the microstructural phe-

nomena in ferroelectric ceramics are more in-

volved. In this work, we extend the self-consistent

approach originally developed for electroelastic

moduli (Li, 2000a) to predict the effective pyro-
electric and thermal expansion coefficients of fer-

roelectric ceramics. The analysis shares the same

spirit as many works in elastic polycrystals, where

an exact connection between the effective thermal

moduli and the effective electroelastic moduli is

established first (Levin, 1967; Rosen and Hashin,

1970; Hashin, 1984; Schulgasser, 1987; Kreher,

1988; Li, 2000b), and the effective medium ap-
proximation is then applied to analyze the local

electromechanical fields in ceramics (Walpole,

1969; Willis, 1977; Qiu and Weng, 1991). The re-

cent results on the equilibrium domain configura-

tion in a saturated ferroelectric ceramics have been

employed to estimate the effective texture of poled

ferroelectric ceramics (Bhattacharya and Li, 2001;

Li and Bhattacharya, 2002).
We introduce the basic equation and notation

in Section 2, followed by the exact relationships
governing the effective constitutive moduli in Sec-

tion 3. Micromechanics approximation will be

introduced in Section 4, and microstructural fea-

tures such as texture and orientation distribution

function (ODF) under various poling conditions

are discussed in Section 5. We will then present
some numerical results and discussion on the

effective pyroelectric and thermal expansion coef-

ficients of ferroelectric ceramics in Section 6. It is

demonstrated that the microstructure has impor-

tant effect on the overall pyroelectric and thermal

expansion coefficients of ceramics, and good

agreements between numerical results and known

theoretical results and some experimental data are
observed.
2. Basic equations and notation

We consider the piezoelectric analog of the

uncoupled theory of thermoelasticity, where the

constitutive equations are given by

rij ¼ LE
ijklekl þ eijkð�EkÞ � kE

ijh;

Di ¼ eiklekl � je
ikð�EkÞ � pe

ih
ð1Þ

or its inverse

eij ¼ MD
ijklrkl þ gijkDk þ aD

ijh;

� Ei ¼ giklrkl � trikDk þ cr
i h:

ð2Þ

In the equations, rij and ekl are stress and strain

tensors, respectively; Di and Ek are electric dis-

placement and electric field, respectively; h is the
temperature change with respect to a reference

temperature. The meanings of elastic moduli LE
ijkl

and MD
ijkl, piezoelectric coefficients eijk and gijk,

dielectric constants je
ik and trik, thermoelastic con-

stants kE
ij and aD

ij , and thermoelectric constants pe
i

and cr
i are clear from the constitutive equations.

We notice that �Ei rather than Ei is used as

dependent variable, because it gives us the sym-
metric moduli matrix which proves to be conve-

nient. We also notice that by choosing different

sets of independent variables, other sets of con-

stitutive equations can be obtained. For example,

it is easier to measure thermal expansion coeffi-

cients aE
ij ¼

oeij
oh jrmn;Em and pyroelectric coefficients
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pr
i ¼ oDi

oh jrmn;En
, and they are related to current

moduli by

aD
ij ¼ aE

ij � gijkpr
k ; cr

i ¼ trijp
r
j : ð3Þ

Notice that cr
i is the figure of merit used by a de-

signer to assess the performance of a pyroelectric

material for a typical device (Newnham et al.,

1978).
To proceed, we adopt the notation introduced

by Barnett and Lothe (1975) that treats the elastic

and electric variables on an equal footing. It is

similar to the conventional indicial notation with

the exception that both lowercase and uppercase

subscripts are used as indices, where lowercase

ones take on the range 1–3, and uppercase ones

take on the range 1–4, and repeated uppercase
subscripts are summed over 1–4. With this nota-

tion, the field variables are expressed as

RiJ ¼
rij; J ¼ 1; 2; 3;

Di; J ¼ 4;

�

ZKl ¼
ekl; K ¼ 1; 2; 3;

�El; K ¼ 4;

� ð4Þ

the electroelastic moduli are expressed as

GiJKl ¼

LE
ijkl; J ;K ¼ 1; 2; 3;

eijl; J ¼ 1; 2; 3; K ¼ 4;

eikl; J ¼ 4; K ¼ 1; 2; 3;

�je
il; J ;K ¼ 4;

8>>><
>>>:

HJilK ¼

MD
ijkl; J ;K ¼ 1; 2; 3;

gijl; J ¼ 1; 2; 3; K ¼ 4;

gikl; J ¼ 4; K ¼ 1; 2; 3;

�tril; J ;K ¼ 4

8>>><
>>>:

ð5Þ

and the thermal moduli are expressed as

KiJ ¼
kE
ij; J ¼ 1; 2; 3;

pe
i ; J ¼ 4;

(

CJi ¼
aD
ij ; J ¼ 1; 2; 3;

cr
i ; J ¼ 4:

( ð6Þ

As a result, the constitutive equations (1) and (2)
can be rewritten as

RiJ ¼ GiJKlZKl � KiJh; ZJi ¼ HJilKRlK þ CJih; ð7Þ

where
HJilK ¼ G�1
lKJi; CJi ¼ HJilKKlK : ð8Þ

Finally, we notice the differential constraints on

the field variables in terms of the equilibrium

equation

RiJ ;i ¼ 0; ð9Þ
and gradient equation

ZJi ¼ UJ ;i; ð10Þ
with

UJ ¼
uj; J ¼ 1; 2; 3;

/; J ¼ 4;

�
ð11Þ

where ui and / are displacement and electric po-

tential, respectively.
3. The effective moduli

Let us now consider a ferroelectric polycrys-

talline ceramic subjected to a uniform temperature

change h, with linear displacement and electric

potential Z0
Klxl, or uniform traction and electric

displacement R0
kLnk applied at the boundary, where

xl is the position vector and nk is the outward

normal. The polycrystal is composed of grains
with certain orientation distribution, each having

distinct constitutive moduli in the global coordi-

nate system due to the variation in grains� orien-
tation and grain anisotropy. The constitutive

moduli of polycrystalline aggregate, as a result, is

heterogenous at microscopic level. This leads to a

heterogeneous local electromechanical field in

polycrystal at grain level, which depends on X, the
orientation of individual grains. However, at the

macroscopic level the effective constitutive moduli

can be defined through the effective constitutive

equation if the polycrystal is statistically homo-

geneous (Nemat-Nasser and Hori, 1999),

hRiJ ðXÞi ¼ G	
iJKlhZKlðXÞi � K	

iJh;

hZKlðXÞi ¼ H 	
KliJ hRiJ ðXÞi þ C	

Klh;
ð12Þ

where h
i is used to denote the orientation-aver-

aged quantities in polycrystal, weighted by the

orientation distribution function (ODF), which

describes the probability of a grain falling into
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certain range of orientation. From the averaging

theorem (Dunn and Taya, 1993), we have

hZKlðXÞi ¼ Z0
Kl or hRiJ ðXÞi ¼ R0

iJ ; ð13Þ
for specified linear displacement and electric po-

tential or uniform traction and electric displace-

ment at the boundary.

In order to derive the effective constitutive

moduli of ferroelectric polycrystals, it is conve-

nient to decompose the electroelastic field in the

polycrystal into two parts, one is due to the elec-

tromechanical loading (the applied linear dis-
placement and potential Z0

Jixi or the applied

uniform traction and electric displacement R0
iJ ni at

the boundary), the loading field I, and the other is

due to the temperature change h, the thermal field

II. This decomposition is possible because of the

linearity of the constitutive relationships. In light

of this decomposition, the effective constitutive

equation for loading field and thermal field can be
written as

hRI
iJ ðXÞi ¼ G	

iJKlZ
0
Kl or hZI

JiðXÞi ¼ H 	
JilKR0

lK

ð14Þ
and

hRII
iJ ðXÞi ¼ �K	

iJh; hZII
Ij ðXÞi ¼ C	

Ijh; ð15Þ

whereas the constitutive equations for individual

grains can be written as

RI
iJ ðXÞ ¼ GiJKlðXÞZI

KlðXÞ;

ZI
JiðXÞ ¼ HJilKðXÞRI

lKðXÞ
ð16Þ

and

RII
iJ ðXÞ ¼ GiJKlðXÞZII

KlðXÞ � CiJ ðXÞh;

ZII
Ji ðXÞ ¼ HJilKðXÞRII

lKðXÞ þ KJiðXÞh:
ð17Þ

It is noted that at the microscopic level, the ther-

mal field RII
iJ ðXÞ or ZII

Ji ðXÞ has contribution from

both electroelastic field and temperature change,

due to the interaction between grains in polycrys-

tals. Because of the linearity, we can introduce the

field concentration factors AJiKlðXÞ and BkLmN ðXÞ
defined by

ZI
JiðXÞ ¼ AJiKlðXÞZ0

Kl or

RI ðXÞ ¼ BiJlKðXÞR0 ; ð18Þ
iJ lK
and thermal concentration factors aJiðXÞ and

biJ ðXÞ defined by

ZII
Ji ðXÞ ¼ aJiðXÞh; RII

iJ ðXÞ ¼ biJ ðXÞh; ð19Þ
which leads to

G	
iJKl ¼ hGiJNmðXÞANmKlðXÞi;

H 	
JilK ¼ hHJimN ðXÞBmNlKðXÞi

ð20Þ

and

K	
iJ ¼ h�GiJNmðXÞaNmðXÞ þ KiJ ðXÞi;

C	
Ji ¼ hHJimN ðXÞbmN ðXÞ þ CJiðXÞi:

ð21Þ

The determination of the effective constitutive

moduli of polycrystal is thus dependent on the

determination of field and thermal concentration
factors as functions of grains� orientation, and

their orientational averaging. We also notice from

the averaging theorem that

hAiJlKðXÞi ¼ IiJlK ; hBJiKlðXÞi ¼ IJiKl ð22Þ
and

haJiðXÞi ¼ 0; hbiJ ðXÞi ¼ 0; ð23Þ
with

IiJlK ¼ IJiKl ¼

iijkl; J ;K ¼ 1; 2; 3;

0; J ¼ 1; 2; 3;K ¼ 4;

0; J ¼ 4;K ¼ 1; 2; 3;

dil; J ;K ¼ 4;

8>><
>>: ð24Þ

where iijkl is the forth-order unit tensor, and dkm is

the Kronecker delta.

It is also possible to determine the effective

thermal moduli of polycrystals using field con-
centration factors instead of thermal concentra-

tion factors. To this end, we recall the generalized

Hill condition for piezoelectric solids (Li and

Dunn, 1999),

hRiJ ðXÞZJiðXÞi ¼ hRiJ ðXÞihZJiðXÞi; ð25Þ
which is valid for uniform traction and electric
displacement or linear displacement and electrical

potential boundary condition. The electrome-

chanical fields RiJ and ZJi do not need to be con-

nected by certain constitutive equations. Now

consider the loading field ZI
Ji due to the linear

elastic displacement and potential boundary con-

dition, and thermal field RII
iJ due to the tempera-

ture change, we have
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RII
iJ ðXÞZI

JiðXÞ
� �

¼ RII
iJ ðXÞ

� �
Z0
Ji ¼ �K	

iJhZ
0
Ji ð26Þ

due to the generalized Hill condition. The left

hand side of Eq. (26) can be written as

RII
iJ ðXÞZI

JiðXÞ
� �

¼ ðGiJKlðXÞZII
KlðXÞ

�
� KiJ ðXÞhÞZI

JiðXÞ
�

¼ RI
lKðXÞZII

KlðXÞ
� �
� KiJ ðXÞZI

JiðXÞh
� �

¼ � KiJ ðXÞZI
JiðXÞh

� �
¼ � KiJ ðXÞAJiKlðXÞZ0

Klh
� �

: ð27Þ

In the derivation, we have used the symmetry of

GiJKl and the fact that hZII
Ji i ¼ 0 under the specified

boundary condition. Combining Eqs. (26) and

(27), we obtain

K	
iJ ¼ hAKlJiðXÞKlKðXÞi: ð28Þ

A similar manipulation for the applied traction

and electric displacement boundary condition

yields

C	
Ji ¼ hBlKiJ ðXÞCKlðXÞi: ð29Þ

Thus the effective thermal moduli can be deter-
mined from either thermal concentration factors

or field concentration factors. Notice that in gen-

eral the concentration factors AJiKl and BiJlK do not

have diagonal symmetry.
4. The micromechanics approximations

Up to Eq. (29) the derivation is rigorous under

the assumption of macroscopic homogeneity. To

carry out the analysis further, we need to make

approximations regarding the microstructural field

distribution in the polycrystal, and micromechan-

ics approach is appropriate. In this paper we rely

the determination of the effective thermal moduli

on the field concentration factors, i.e., Eqs. (28)
and (29). The key step in the prediction of the

effective moduli thus is the determination of the

field concentration factor AJiKl and BiJlK . To this

end we adopt a self-consistent approach suitable

for piezoelectric polycrystals. The essence of self-

consistent approach is using the electromechanical

field in a single grain embedded in a matrix with
yet to be determined uniform effective moduli to

simulate the electromechanical field in a grain at a

particular orientation in a ceramic. This approxi-

mation leads to

AJiKlðXÞ ¼ Adil
JiNmðXÞhAdil

KlNmðXÞi�1 ð30Þ

with

Adil
JiKlðXÞ¼ ½IKlJiþSKlMnðXÞH 	

MnoP ðGoPJiðXÞ�G	
oPJiÞ�

�1
;

ð31Þ
derived from the single inclusion solution, where
SKlMn are the piezoelectric Eshelby tensors which

are functions of grain shape, orientation, and the

electromechanical moduli of matrix (Dunn and

Taya, 1993). In general, Eq. (30) need to be solved

numerically by iteration, which usually converges

pretty fast. Notice that the interaction between

grains is taken into account in the self-consistent

approach through the effective medium approxi-
mation, and the normalization condition (22) is

automatically satisfied. A simpler approximation

would assume

AJiKl ¼ IJiKl; BiJlK ¼ IiJlK ; ð32Þ

which is analog of Voigt and Reuss averages for

elastic materials. The Voigt and Reuss aver-
ages usually do not predict the effective moduli

of polycrystal accurately when the crystalline

anisotropy is strong.
5. Orientation distribution function and texture

The issue remains on how to characterize the
microstructure of ferroelectric ceramics. The ori-

entation of grains in a ferroelectric ceramic could

be described by hg, the angle between the

global poling axis of ceramic and the local crys-

tallographical axis of grains. Within each grains

there are numerous domains whose orientation

can be described by hdðhgÞ, the angle between the

polarization direction of domains and the poling
direction of ceramic, which depends on the grain�s
orientation hg through crystallographic con-

straints. The number of possible domain orienta-

tions within a particular grain is governed

by crystallography. For example, in tetragonal
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system, six orientations are available while for

rhombohedral system, there are eight possible

domain orientations in each grain. The statistical

distribution of hg and hd are then described by the

orientation distribution function (ODF) W gðhgÞ
and W dðhdÞ, which gives the probability of finding
a grain or a domain in a particular orientation. In

the as-processed states, individual grains are ran-

domly oriented in ceramics, so that W gðhgÞ and

W dðhdÞ are uniform throughout the ceramics and

independent on hg and hd, and the ceramic is iso-

tropic and non-pyroelectric. The poling process,

where a high electric field is applied to ceramics at

elevated temperature, tends to realign the polari-
zation directions of domains as closely as possible

to the applied field, thus effectively changes the

orientation distribution of domains, W dðhdÞ, but
does not change the orientation distribution of

grains, W gðhgÞ. For ceramics composed of ran-

domly oriented tetragonal grains, if all domains

are switched to be as closely as possible to the

poling direction in a �fully poled� state, W dðhdÞ
would be uniform for hd 2 ½0; p=4� and zero else-

where. If all 180� domains are switched and none

of the 90� domains are switched in a �partially
poled� state, the corresponding ODF for domains

is uniform for hd 2 ½0; p=2� and zero elsewhere.

The actual orientation distribution of domains in a

poled ferroelectric ceramic is rather difficult to

determine, but can be fairly well approximated by
Taylor texture derived from Taylor estimate (Li

and Bhattacharya, 2002),

W ðhdÞ ¼
1þ cos hd

2
: ð33Þ

This expression is derived based on the assumption

that strain and polarization caused by the domain

switching is uniform in polycrystal, which leads to

accurate predictions on the saturation strain and

polarization in ferroelectric ceramics. In the Tay-

lor estimate, none of 90� domains are switched,
Table 1

Orientation distribution function of polycrystals with different textur

Texture Random Random

Poling Full Partial

W ðhÞ 1 ðh 2 ½0;p=4�Þ 1 ðh 2 ½0;p=2�
and only part of 180� domains are switched. As a

result, the �fully poled� ceramics have most domain

switched, and Taylor estimated ceramics have least

domain switched. The change in orientation dis-

tribution of domains leads to macroscopic pyro-
electricity in ceramics, which we analyze here.

In addition to the texture evolution due to the

domain switching induced by poling, the pre-pol-

ing texture of ceramics also have important influ-

ences on the overall behaviors of ceramics. To

analyze this effect we adopt Gaussian distribution

function as ODF of grains for pre-poling texture,

W ðhgÞ ¼
1

l
ffiffiffiffiffiffi
2p

p exp

 
�

h2
g

2l2

!
; ð34Þ

which can be used to simulate a wide range of

texture in piezoelectric polycrystals by adjusting

the parameter l. For example l ! 1 represents

random texture in unpoled isotropic ceramics, and

l ! 0 represents fiber texture in thin films. The

ODF for various textures in ferroelectric ceramics
are summarized in Table 1. They need to be nor-

malized to be used in the orientational averaging

of any physical quantities of polycrystals.
6. Numerical results and discussion

With ODF given, we developed a numerical
algorithm to carry out the orientational averaging

in Eqs. (28) and (29) by numerical integration

using Gaussian quadrature method (Press et al.,

1992), where the integral is approximated by the

sum of its integrand values at a set of points called

abscissas weighted by weighting coefficients. We

carried out the numerical calculations for tetrag-

onal barium titanate ceramics, with materials data
of single domain single crystal listed in Table 2.

The electroelastic moduli are obtained from

Zgonik et al. (1994), and the thermal moduli are
es and poling conditions

Gaussian Taylor

Partial Partial

Þ 1

l
ffiffiffiffi
2p

p exp � h2

2l2

� 
1þcos h

2



Table 2

The thermoelectroelastic moduli of barium titanate single crystal (Zgonik et al., 1994; Jona and Shirane, 1993)

LE
11 LE

12 LE
13 LE

33 LE
44 LE

66 e31 e33 e15 je
11 je

33 aE
11 aE

33 pr
3

222 108 111 151 61 134 )0.7 6.7 34.2 2200 56 11.8 )18.5 5.53

L: GPA, e: C/m2, j: j0, a: �10�6, p: �10�4 C/m2 K.
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estimated from figures in (Jona and Shirane, 1993).

In the calculation, the grain is assumed to be

spherical.
We first demonstrate the effect of poling on the

effective thermal moduli. The effective pyroelectric

and thermal expansion coefficients are given in

Figs. 1 and 2 in terms of various degree of poling,

and are compared with experiment measurement.

It is clear that domain switching tends to increase

the effective pyroelectric coefficient, and Taylor

estimate on pyroelectric coefficient agrees with
experiment measurement well, which suggests that

only some 180� domains and few of 90� domains

are switched during poling. This is consistent with

well known observation that 90� domain switching

is much harder than 180� domain switching, which

does not involve transformation strain as 90� do-

main switching does. It is also observed that �fully
poled� ceramic has highest aD

11, while �partially
poled� ceramic has highest aD

33. It suggests that 90�
Fig. 1. The effective pyroelectric coefficient for various extents

of poling; experiment data are from Dunn (1993a,b).
domain switching tends to decrease aD
33 and in-

crease aD
11, consistent with the anisotropy of ther-

mal expansion coefficients of single crystals. Poor
agreement with experiment measurement on ther-

mal expansion coefficients are observed. This is at

least partly due to the lacking of accurate single

crystal data.

We then demonstrate the effect of textures on

the effective pyroelectric and thermal expansion

coefficients using Gaussian distribution function as

ODF. The effective pyroelectric and thermal
expansion coefficients in terms of Gaussian distri-

bution parameter l predicted by the self-consistent

approach and Voigt–Reuss averages are given in

Figs. 3 and 4. We also give the effective piezo-

electric coefficients in Fig. 5 as a comparison.

When l approaches zero, which implies that the

ceramics posses fiber texture, the predictions of

pyroelectric coefficients, piezoelectric coefficients,
and thermal expansion coefficients given by the
Fig. 2. The effective thermal expansion coefficients for various

extents of poling; experiment data are from Dunn (1993a,b).
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self-consistent approach and Voigt–Reuss aver-

ages all converge to the single crystal values, con-

sistent with the exact relationship obtained by Li

et al. (1999). When l approach infinity, which
implies that the ceramic is isotropic, the effective
pyroelectric and piezoelectric coefficients become

zero, and a33 converges to a11, as expected. The
effective pyroelectric coefficient decreases with the

increase of l monotonically, while the variations

of thermal expansion coefficients and piezoelectric

constants are not monotonic. It is also observed

that the predictions between the self-consistent

approach and Voigt average (A ¼ I) are close to

each other. Reasonably good agreement with

experiment measurement is observed near l ¼ 0:8
for the effective piezoelectric, pyroelectric, and

thermal expansion coefficients, which suggests that

the ODF of poled barium titanate ceramics can be

approximated by the Gaussian distribution func-

tion with l ¼ 0:8.
Finally we would like to point out that for a pure

elastic polycrystal, there are exact relationships

between the effective thermal expansion coefficients
and the effective elastic moduli (Schulgasser, 1987).

We are unable to establish similar relationships for

ferroelectric ceramics, except in some special situ-

ations. For example, the exact relationships have

been established by Benveniste (1994) and Li et al.

(1999) for piezoelectric polycrystals with fiber tex-

ture, and by Chen (1994b) for certain specific

crystal symmetries.
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7. Concluding remarks

We have applied the self-consistent approach to

predict the effective pyroelectric and thermal

expansion coefficients of ferroelectric ceramics,
taking into account the texture change due to

domain switching during poling. The variations of

thermal moduli with respect to the poling and

texture have been demonstrated, and good agree-

ments with theoretical results and experiment

measurements have been observed.
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