
PHILOSOPHICAL MAGAZINE A, 2001, VOL. 81, NO. 4, 903± 926

Variational bounds for the eVective moduli of
heterogeneous piezoelectric solids

Jiang Yu Li{ and Martin L. Dunn{

Center for Acoustics, Mechanics, and Materials, Department of Mechanical
Engineering, University of Colorado, Boulder, Colorado 80309-0427, USA

[Received 17 August 1998 and accepted in revised form 13 July 2000]

Abstract
Variational bounds for the eŒective moduli of heterogeneous piezoelectric

solids are developed by generalizing the Hashin± Shtrikman variational
principles. Narrower bounds than Voigt± Reuss-type bounds are obtained by
taking into account both the inclusion shape and the volume fraction. The
proposed bounds for the eŒective electroelastic moduli are applicable to
statistically homogeneous multiphase composites of any microgeometry and
anisotropy and are self-consistent. A prescription for the calculation of the
bounds is presented that takes advantage of existing, often closed-form
expressions for the piezoelectric Eshelby tensor for ellipsoidal inclusions.
Numerical results are presented and compared with measurements for four
composite materials with diŒerent microstructures. The Hashin± Shtrikman-type
bounds are much narrower than the Voigt± Reuss-type bounds. In many but not
all cases they are su� ciently narrow to serve as good estimates of various elastic,
dielectric and piezoelectric moduli, as assessed by comparison with
measurements. Furthermore, the average of the Voigt- and Reuss-type bounds
(which is often used for elastic polycrystals and composites) does not in general
accurately describe the eŒective moduli of the heterogeneous solid either
quantitatively or qualitatively.

} 1. Introduction
Piezoelectric solids have at least two features that distinguish them from most

elastic solids; electric and elastic ® elds in the solid are fully coupled, and they are

inherently anisotropic. A further property of most piezoelectric materials is that of

heterogeneity; heterogeneity that exists on multiple length scales. Piezoelectric crys-
tals often contain complicated domain con® gurations, which are regions of diŒerent

electrical polarizations. The permissible con® gurations are dictated by the symmetry

of the crystal. This results in a variation in the elastic, piezoelectric and dielectric

constants throughout the crystal; their values at a certain location depend on the

orientation of the domain at that location. When a piezoelectric polycrystal is fab-
ricated by standard ceramic processing techniques, the situation is even more com-

plicated. Now, not only does each grain itself have a domain structure, but also the

arrangement of the grains in the polycrystal leads to heterogeneity. Furthermore,
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upon processing, the elastic, electric and thermal anisotropy of the grains can lead to

complicated internal electroelastic ® elds. These can include appreciable internal

microstructural stresses. In order to relieve these stresses, domain reorientation
and microcracking can occur and these in turn can substantially in¯ uence the overall

response of the polycrystal. Furthermore, porosity often exists owing to sintering

and this too aŒects the overall behaviour of the ceramic. On an even larger length

scale, polycrystalline ceramic ® bres are often embedded in a polymer matrix to form

a piezoelectric composite. On this scale, it is really the eŒective properties of the
ceramic ® bres that in¯ uence the overall response of the composite. The distribution

of the internal electroelastic ® elds in the composite microstructure of course deter-

mines the overall response. In this case, both internal electrical and mechanical ® elds

couple.

The overall linear constitutive response of heterogeneous piezoelectric solids is of
obvious technological importance. Recent eŒorts in this area can be categorized as

obtaining either direct estimates of the eŒective moduli in terms of microstructural

details (Newnham et al. 1978, Chan and Unsworth 1989, Grekov et al. 1989, Cao et

al. 1992a,b, Dunn and Taya 1993a,b, Chen 1994, 1996), or exact connections

between internal ® elds and various components of the eŒective moduli (Benveniste

and Dvorak 1992, Chen 1993, Benveniste 1993a,b,c, 1994, Li and Dunn 1999). A
third avenue of approach, which has only very recently been pursued, involves

obtaining variational bounds on the eŒective moduli in terms of microstructural

data. Such bounds not only provide estimates of the eŒective moduli (if they are

su� ciently narrow) but also provide a rigorous means to validate micromechanics

approximations. Since Hill (1952) ® rst observed that Voigt (1889) and Reuss (1929)
estimates provide bounds for eŒective elastic moduli, signi® cant progress has been

made in obtaining narrower bounds for uncoupled elastic moduli. Hashin and

Shtrikman (1962, 1963) obtained bounds for an isotropic multiphase composite

consisting of isotropic constituents using (what were then) new variational principles

that they derived. Subsequently, Hill (1964) obtained bounds for the ® ve eŒective
moduli of a transversely isotropic ® bre-reinforced composite with arbitrary trans-

verse microgeometry. Walpole (1966,a,b, 1969) derived these bounds in a uni® ed

fashion, where the cases of disc-reinforced composites and anisotropic constituents

were also included. Willis (1977, 1981) introduced the two-point correlation function

into the Hashin± Shtrikman variational principle to represent a broader class of

microstructures. When the two-point correlation function possesses radial, cylindri-
cal or disc symmetry, the three results cited above are readily recovered. Weng (1992)

explicitly evaluated the integral involved in the Willis bounds when the correlation

function possesses ellipsoidal symmetry. He observed that, for matrix-based compo-

sites with aligned and identically shaped reinforcement, the eŒective moduli of the

Mori± Tanaka (1973) mean-® eld approach correspond to the Willis upper (lower)
bounds, when the matrix is the stiŒest (most compliant) phase; otherwise it always

lies between the Willis bounds. There are no variational bounds reported in the

literature for multiphase composites with misaligned or diŒerently shaped reinforce-

ments, to the best knowledge of the present authors.

Despite the success of bounding approaches in uncoupled heterogeneous elasti-
city, only very recently have such approaches been applied to heterogeneous piezo-

electric solids. Olson and Avellaneda (1992) obtained bounds for piezoelectric

polycrystals with overall isotropic symmetry. As such, the overall solid is not piezo-

electric. Bisegna and Luciano (1996) derived variational bounds for piezoelectric
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composites with periodic microgeometry. Hori and Nemat-Nasser (1998) have

recently obtained universal bounds for eŒective piezoelectric moduli by generalizing

the Hashin± Shtrikman variational principle and universal theorems that they estab-
lished for uncoupled mechanical problems to piezoelectricity problems. To date, how-

ever, variational bounds have yet to be obtained explicitly for the eŒective electroelastic

moduli of piezoelectric composites with general microgeometry. The present study

intends to do just this. We ® rst obtain a variational principle for heterogeneous piezo-

electric solids with piecewise homogeneity. It is then used to bound the eŒective elec-
troelastic moduli of matrix-based multiphase composites containing ellipsoidal

reinforcement. The proposed bounds are applicable to statistically homogeneous

multiphase composites of any microgeometry and anisotropy, with no statistical

correlation function introduced. A procedure for calculation of the bounds for

composites with ellipsoidal reinforcements is outlined that relies heavily on a new
expression for the electroelastic Eshelby tensor for ellipsoidal inclusions, which takes

advantage of existing expressions for the Eshelby tensor in the literature. Finally,

numerical results are presented for four composite microgeometries and these are

discussed in the context of measurements of the eŒective moduli.

} 2. Basic equations and notation
We consider linear electroelastic and, thus, inherently anisotropic media where

electric and elastic ® elds are fully coupled. The ® eld variables and material moduli

are represented either by conventional indicial notation or by bold symbols. The

constitutive equations for stationary linear response can be expressed as

"ij ˆ Sijkl¼kl ‡ dijkEk ;

Di ˆ dikl¼kl ‡ ½ikEk ;
…1 a†

or

¼ij ˆ C ijkl"kl ¡ hijkDk ;

E i ˆ ¡hikl"kl ‡  ikDk:
…1 b†

Here ¼ij and "ij are the elastic stress and strain respectively; Di and Ei are the electric

displacement and ® eld respectively; Sijkl ; dijk and ½ik are the elastic compliance tensor

(measured in a constant electric ® eld), the piezoelectric tensor and the dielectric

tensor (measured at a constant stress) respectively; Cijkl; hijk and  ik are the elastic

stiŒness tensor (measured in a constant electric displacement), the piezoelectric ten-
sor and the dielectric tensor (measured at a constant strain) respectively. Note that

diŒerent but equivalent constitutive equations can be written by making alternative

choices of the dependent variables. We use this form because it leads to both a

positive de® nite moduli matrix and a positive energy function.

To proceed, we adopt the shorthand notation of Barnett and Lothe (1975) that
treats the elastic and electric variables on equal footing. It is similar to conventional

indicial notation with the exception that both lower-case and upper-case subscripts

are used as indices. Lower-case subscripts take the range 1± 3, while upper-case

subscripts take the range 1± 4, and repeated upper-case subscripts are summed

over 1 ! 4. With this notation, the ® eld quantities are expressed as:

XiJ ˆ
"ij; J ˆ 1; 2; 3;

Di; J ˆ 4;
YJi ˆ

¼ji; J ˆ 1; 2; 3;

Ei; J ˆ 4:

»»
…2†
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The electroelastic moduli are expressed as

P iJKl ˆ

Sijkl; J ; K ˆ 1; 2; 3;

dijl; J ˆ 1; 2; 3; K ˆ 4;

dikl ; J ˆ 4; K ˆ 1; 2; 3;

½il; J ; K ˆ 4;

8
>>><

>>>:
…3†

The inverse of P iJKl is denoted as QAbiJ . It contains the tensors C ijkl ; ¡hijk and  ik.

With this shorthand notation, we can rewrite equations (1) as

XiJ ˆ P iJKlYKl; YKl ˆ QKliJ XiJ : …4†

Note that both P iJKl and QKliJ are positive de® nite.

For the heterogeneous materials considered here, we de® ne the eŒective electro-
elastic constitutive equation in a statistical sense, under the assumption of macro-

scopic homogeneity:

hXiJ i ˆ P*
iJKlhYKli; hYKli ˆ Q*

KliJ hXiJ i: …5†

Here h i ˆ …1=V†
„
V… † dV denotes the average of a quantity, over the volume of the

heterogeneous solid. In equations (5), P*
iJKl and Q*

KliJ are the eŒective electroelastic

moduli. It is understood that, in general, all the properties of the heterogeneous
solid, except for the eŒective properties, are functions of the position x; however,

to simplify notation such a dependence is indicated only when necessary.

} 3. Variational principles: bounds for effective electroelastic moduli

3.1. Minimum energy theorem

Let V denote the volume of a heterogeneous solid bounded by a surface denoted

by S. Consider the mixed uniform boundary conditions de® ned by

ui ˆ u0
i ; x 2 Sm1; ¼ij ˆ ¼0

ij; x 2 Sm2; …6 a†

Di ˆ D0
i ; x 2 Se1; ¿ ˆ ¿0; x 2 Se2; …6 b†

where ui and ¿ are the elastic displacement and electric potential respectively, and

Sm1; Sm2; Se1 and Se2 are subregions of S that satisfy the following requirements:

Sm1 [ Sm2 ˆ S; Sm1 \ Sm2 ˆ 1; Se1 [ Se2 ˆ S; Se1 \ Se2 ˆ 1:

Let us de® ne two potentials F and C as

F… ~YJ i† ˆ 1
2

…

V

~YJ iP iJKl
~YKl dV ¡

…

Sm1

…~¼ijnj†u0
i dS ‡

…

Se1

…D0
i ni† ~¿ dS; …7 a†

C… ~XiJ † ˆ 1
2

…

V

~XiJ QJ ikL
~XkL dV ¡

…

Sm2

…¼0
ijnj†~ui dS ‡

…

Se2

… ~Dini†¿0 dS ; …7 b†

where ni is the normal to the surface. For F… ~YJi) in equation (7 a), ~Ykl is a trial ® eld
that satis® es the speci® ed boundary conditions, equilibrium equations and gradient

equations on YKl…x), but the resulting ~XiJ ˆ P iJKl
~YKl may not satisfy the boundary

conditions, equilibrium equations and gradient equations on XiJ …x†. On the other

hand, for C… ~XiJ † in equation (7 b), ~XiJ is a trial ® eld that satis® es the boundary

conditions, equilibrium equations and gradient equations on XiJ …x†, but the resulting
~YKl ˆ QKliJ

~XiJ may not satisfy the speci® ed boundary conditions, equilibrium
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equations and gradient equations on YKl…x†. We can prove two minimum potential

theorems that state that the actual ® elds YJ i…x† and XiJ …x† in the heterogeneous solid

minimize the potentials F and C respectively. To this end, we de® ne ~YJ i ˆ YJ i ‡ Y 0
J i,

substitute it into equation (7 a) and perform the following calculation:

F… ~YJi† ¡ F…YJ i† ˆ 1
2

…

V
Y 0

J iP iJKlY
0

Kl dV ‡
…

V
Y 0

J iP iJKlYKl dV ¡
…

Sm1

…¼ 0
ijnj†u0

i dS

‡
…

Se1

…D0
i ni†¿ 0 dS

ˆ 1
2

…

V
Y 0

J iP iJKlY
0

Kl dV ‡
…

V
¼ 0

ij"ij dV ‡
…

V
E 0

i D i dV

¡
…

Sm1

…¼ 0
ijnj†u0

i dS ‡
…

Se1

…D0
i ni†¿ 0 dS

ˆ 1
2

…

V
Y 0

J iP iJKlY
0

Kl dV ‡
…

S

¼ 0
ijuinj dS ¡

…

S
¿ 0Dini dS

¡
…

Sm1

…¼ 0
ijnj†u0

i dS ‡
…

Se1

…D0
i ni†¿ 0 dS

ˆ 1
2

…

V
Y 0

J iP iJKlY
0

Kl dV ‡
…

Sm2

…¼ 0
ijnj†ui dS ¡

…

Se2

¿ 0Dini dS

ˆ 1
2

…

V
Y 0

J iP iJKlY
0

Kl dV

5 0:

The last inequality comes from the positive de® niteness of P iJKl . This proves that the

actual ® eld YJ i…x† minimizes the potential F. A similar calculation can be performed

to prove that XiJ …x) minimizes the potential C. Note that, in the derivation, the
elastic and electrostatic equilibrium equations have been used.

Now let us consider applied traction and electric potential boundary conditions

on the surface S of the heterogeneous solid, consistent with a uniform stress and

electric ® eld Y 0
J i; that is

YJi…x† ˆ Y 0
Ji; x 2 S:

Making use of relevant averaging theorems for heterogeneous electroelastic solids

(Dunn and Taya 1993a), we have hYJ ii ˆ Y 0
J i. The resulting internal energy density

in the heterogeneous solid is

U ˆ 1
2
hYJ iP iJKlYKli ˆ 1

2
hYJ iiP*

iJKlhYKli: …8†

These boundary conditions correspond to

Sm2 ˆ S ; Sm1 ˆ 1; Se2 ˆ S ; Se1 ˆ 1;

so that U ˆ 1
2
hYJ iP iJKlYKli ˆ Fmin=V . According to the minimum-potential theo-

rem, the internal energy density is minimized by the actual ® eld YJ i…x†:

2U 4 h ~YJ iP iJKl
~YKli: …9†
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Substituting equation (8) into equation (9) yields

…hYJ iiP*iJKlhYKli† 4 …h ~YJ iP iJKl
~YKli†: …10 a†

A similar result can be obtained for applied elastic and electric displacement bound-
ary conditions:

…hXiJ iQ*
JikLhXkL i† 4 …h ~XiJ QJ ikL

~XkLi†: …11 a†

By Legendre transformation, we can also derive

…hYJiiP*iJKlhYKli† 5 …h ~XiJ …2Y0
J i ¡ QJ ikL

~XkL†i† …10 b†

and

…hXiJ iQ*
J ikLhXkLi† 5 …h ~YJ i…2X0

iJ ¡ P iJMn
~YMn†i†: …11 b†

Equations (10) and (11) show that, by choosing appropriate trial ® elds, we can give

the bounds for the eŒective electroelastic moduli P*
iJKl and Q*

JikL .

3.2. Voigt± Reuss-type bounds

From now on we shall consider the traction± electric potential boundary condi-
tions and elastic displacement± electric displacement boundary conditions in a

parallel manner. The simplest trial ® eld is the uniform ® eld compatible with the

boundary conditions:

~YKl ˆ Y 0
Kl or ~XiJ ˆ X0

iJ : …12†

Substituting equations (l2) into equations (10) and (11) yields

P*
iJKl 4 hP iJKli or Q*

JikL 4 hQJikLi: …13†

Recall that both P iJKl and QJikL are positive de® nite. Also note that the inequality in

equation (13) is used to indicate the positive or negative de® niteness between

matrices. Equations (13) provide upper bounds for the eŒective electroelastic moduli

P*
iJKl and Q*

JikL of a heterogeneous electroelastic solid. Inverting equations (13) then
yields

Q*
JikL 5 hQ¡1

J ikLi¡1; P*
iJKl 5 hP¡1

iJKli¡1: …14†

Equations (14) provide lower bounds for the eŒective electroelastic moduli Q*
J ikL and

P*
iJKl of a heterogeneous electroelastic solid. It is clear that the upper bounds of P*

iJKl
and Q*JikL correspond to the inverses of the lower bounds of Q*JikL and P*iJKl.

Equations (13) and (14) correspond to the classical Voigt (1889) and Reuss (1929)

bounds in heterogeneous elastic solids.

3.3. Hashin± Shtrikman-type bounds

The Voigt± Reuss bounds are known to provide an accurate estimate of the

eŒective elastic moduli of heterogeneous solids when the elastic mismatch between

the diŒerent phases in a multiphase composite is small, or when the elastic aniso-
tropy in a polycrystalline material is weak. In the case of large property mismatch or

strong anisotropy, as is usually the case with piezoelectric composites, the Voigt±

Reuss bounds are too wide for practical applications (we shall show and discuss this

later). The objective of this section is to obtain narrower bounds for the eŒective

electroelastic moduli of heterogeneous piezoelectric solids. The work is motivated by
the original work of Hashin and Shtrikman (1962, 1963) and Walpole (1966a,b,
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1969) in uncoupled heterogeneous elasticity. Hashin and Shtrikman derived a varia-

tional principle and used it to bound the eŒective elastic moduli of spherical-particle-

reinforced composites. Walpole used a diŒerent but equivalent formalism to obtain
bounds for composites reinforced by spherical particles, cylindrical ® bres and thin

discs in a uni® ed fashion. Willis (1977) introduced the two-point correlation function

into the Hashin± Shtrikman variational principle to represent a broader class of

microgeometries. Weng (1992) evaluated the Willis bounds explicitly for the case

when the reinforcement was ellipsoidal. It is clear from the Walpole formalism that
the evaluation of the Hashin± Shtrikman-type bounds depends on the availability of

the solution to the auxiliary problem of a single inclusion in an in® nite solid. Such a

realization allows the extension from isotropic to anisotropic solids, and from sphe-

rical to ellipsoidal inclusion shapes. For this reason we follow the Walpole approach,

generalize the uncoupled elastic Hashin± Shtrikman principle to coupled piezoelectric
solids and use it to bound the eŒective electroelastic moduli of heterogeneous piezo-

electric solids with ellipsoidal reinforcement. As we shall show later, the variational

bounds that we developed are applicable to statistically homogeneous multiphase

composites with any microgeometry and anisotropy, such as composites with mis-

aligned or diŒerently shaped reinforcements, and do not require a particular statis-

tical correlation function.
It is well known that the introduction of a convenient comparison material

together with an arbitrarily assignable eigen® eld facilitates the analysis of the bound-

ary-value problems for heterogeneous media. To this end let us introduce a compar-

ison material of homogeneous electroelastic moduli P 0
iJKl and Q0

JikL with an

arbitrarily assignable eigen® eld YT
Kl…x† and XT

iJ …x†, subjected to the same boundary
conditions as the heterogeneous material, that is h ~YKli ˆ Y 0

Kl or h ~XiJ i ˆ X0
iJ . Note

that now ~YKl and ~XiJ denote the actual electroelastic ® elds in the comparison mate-

rial. They will also be used as the trial ® elds in equations (10) and (11) to bound the

eŒective moduli P*iJKl and Q*JikL since they satisfy all the requirements of trial ® elds.

The electroelastic ® elds in the comparison material are then connected by the con-
stitutive equations

~XiJ ˆ P 0
iJKl… ~YKl ¡ YT

Kl†; ~YJi ˆ Q0
J iKl… ~XKl ¡ XT

Kl†: …15†

The eigen® eld YT
Kl is introduced to make ~"ij ˆ ~ui;j and ~Di;i ˆ 0, and XT

iJ is introduced

to make ~¼ij;i ˆ 0 and ~E i ˆ ¡~’i, so that ~YKl and ~XiJ satisfy the equilibrium and

gradient equations. Their in¯ uence may be imagined to be due to a certain distribu-
tion of body force and electric charge, as is well known from Eshelby’ s (1957, 1959)

work on elastic inclusions. The choice of YT
Kl and XT

iJ will generate ~XiJ and ~YKl,

which are approximations to the actual ® elds in the considered region of the hetero-

geneous solid.

At this point, no assumptions have been made regarding the speci® c microstruc-

ture of the heterogeneous solid, and the derivation is general. To apply the analysis,
we focus on piecewise uniform heterogeneous materials with n distinct phases. Such

materials can be described by electroelastic moduli of the form

P iJKl ˆ
X

r

Yr…x†P iJKL jr ; QJ ikL ˆ
X

r

Yr…x†QJ ikL jr ; …16†

where jr denotes a quantity of phase r, and Yr…x† is a characteristic function that
describes the topology of the microstructure, that is
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Yr…x† ˆ
1; x 2 r ;

0; x =2 r:

»
…17†

Note that both multiphase composites and polycrystals can be represented by this

notation. An important property of Yr…x† is that hG…x†Yr…x†i ˆ crhG…x†jri where
G…x† is any material property that varies throughout the microstructure and cr is the

volume fraction of phase r.

To bound the electroelastic moduli P*iJKl and Q*J ikL , the crucial step is to choose

appropriate trial ® elds ~YKl and ~XiJ , which in turn imply YT
Kl and XT

iJ . For piecewise
uniform heterogeneous materials, a piecewise uniform eigen® eld is the most general

that permits calculation of the required average values solely in terms of the given

information. To this end we choose

YT
Kl…x† ˆ

X

r

Yr…x†YT
Kl jr ; XT

iJ …x† ˆ
X

r

Yr…x†XT
iJ jr ; …18†

with

YT
Kljr ˆ Q0

KliJ …P 0
iJAb ¡ P iJAbjr† ·YAbjr ; XT

iJ jr ˆ P0
iJKl…Q0

KlbA ¡ QKlbAjr† ·XbAjr : …19†

Here ·YAbjr ˆ h ~YAbjri and ·XbAjr ˆ h ~XbAjri are the volume averages of ~YAb and ~XbA

over phase r in the homogeneous comparison materials. Equation (15) can then be
rewritten as

~XiJ jr ˆ P iJKljr ·YKljr ‡ P0
iJKlY

0
Kljr ; ~YKljr ˆ QKliJ jr ·XiJ jr ‡ Q0

KliJ X 0
iJ jr ; …20†

with
Y 0

Kl jr ˆ ~YKljr ¡ ·YKljr ; X 0
iJ jr ˆ ~XiJ jr ¡ ·XiJ jr : …21†

The generalized Hill condition (for example Kreher and Pompe (1989) and Li

and Dunn (1999)) for heterogeneous piezoelectric solids subjected to uniform bound-

ary conditions can be written as

hXiJ YJii ˆ hXiJ ihYJii: …22†
The generalized Hill condition is valid for

(i) statistical homogeneous materials,

(ii) where no body force or free charge exists so that equilibrium is satis® ed and

(iii) where the strain and electric ® eld are derivable from the elastic displacement

and electric potential.

XiJ and YJ i need not be connected by any certain constitutive equation. Applying the

generalized Hill condition to ~YJ i and ~XiJ yields

h ~XiJ …Y 0
J i ¡ ~YJi†i ˆ 0; h ~YJi…X0

iJ ¡ ~XiJ †i ˆ 0: …23†

Adding the left-hand sides of equations (23) to the right-hand sides of equations (10)

and (11) respectively, followed by the substitution of ~YJ ijr and ~XiJ jr from equations

(20), the inequalities of the minimum-energy theorems can be written as

2U 4
X

r

crY
0
J iP iJKljr ·YKljr ¡ hY 0

J ijr…P
0
iJKl ¡ P iJKl jr†Y

0
Kljri; …24 a†

2U 4
X

r

crX
0
iJ QJikL jr ·XkL jr ¡ hX 0

iJ jr…Q
0
JikL ¡ QJ ikL jr†X

0
kL jri: …24 b†

Equations (24) are the piezoelectric analogue of the Hashin± Shtrikman (1962, 1963)

variational principle. In order to bound the eŒective electroelastic moduli of hetero-
geneous piezoelectric solids using equations (24), we introduce the concentration
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factors ·AAbMnjr and ·BiJkL jr that are de® ned by ·YAbjr ˆ ·AAbMnjrY
0
Mn and ·XiJ jr ˆ

·BiJkL jrX
0
kL . Equations (24) can then be rewritten as

2U 4
X

r

crY
0
JiP iJKljr ·AKlAbjrY

0
Ab ¡ hY 0

J ijr…P
0
iJKl ¡ P iJKljr†Y

0
Kljri; …25 a†

2U 4
X

r

crX
0
iJ QJ ikL jr ·BkLmN jrX

0
mN ¡ hX 0

iJ jr…Q
0
J ikL ¡ QJ ikL jr†X

0
kL jri: …25 b†

These can be written as

Y0
Ji…P*

iJKl ¡ ·P iJKl†Y 0
Kl 4 ¡

X

r

hY 0
Jijr…P

0
iJKl ¡ P iJKljr†Y

0
Kl jri; …26 a†

X0
iJ …Q*

J ikL ¡ ·QJ ikL†X0
kL 4 ¡

X

r

hX 0
J ijr…Q

0
J ikL ¡ QJ ikL jr†X

0
kL jri; …26 b†

with the de® nitions

·P iJAb ˆ
X

r

crP iJKljr ·AKlAbjr ; ·Q JimN ˆ
X

r

crQJikL jr ·BkLmN jr : …27†

A similar derivation following from equations (10 b) and (11 b) gives us

Y 0
J i…P*

iJKl ¡ ·P iJKl†Y0
Kl 5

X

r

hY 0
J ijrP

0
iJKl…Q0

KlmN ¡ QKlmN jr†P
0
mNOpY 0

Opjri; …26 c†

X0
iJ …Q*

JikL ¡ ·QJikL†X0
kL 5

X

r

hX 0
iJ jrQ

0
J ikL…P 0

kLMn ¡ P kLMnjr†Q
0
MnoP X 0

oP jri: …26 d†

Hence from equations (26) it follows that the eŒective electroelastic moduli are

bounded by the two following theorems.

(a) If P 0
iJKl ¡ P iJKljr is positive (negative) semide® nite, so is ·P iJKl ¡ P*

iJKl.

(b) If Q0
JikL ¡ QJikL jr is positive (negative) semide® nite, so is ·QJ ikL ¡ Q*JikL .

By choosing comparison materials more positive or negative de® nite than the

constituent materials, we can obtain upper or lower bounds for P*
iJKl and Q*

JikL
represented by ·P iJKl and QJ ikL . Hashin and Shtrikman (1962, 1963) ® rst obtained

such bounds for heterogeneous elastic solids. It is noted that it is the exact average

® elds ·YAbjr and ·XiJ jr in the inclusion, rather than the exact ® eld distribution ~YAbjr…x†
and ~XiJ jr…x†, that determine the variational bounds on the eŒective electroelastic

moduli. This observation enables us to determine the bounds rigorously for multi-
phase composites with a wide range of microgeometries, as we show later.

3.4. Computation of the approximate electroelastic Welds

The only assumptions made in the derivation so far are those of statistical and

piecewise homogeneity. Otherwise we have retained complete generality concerning

the details of the heterogeneous microstructure. Now we apply the general theory to

a matrix-based composite consisting of n phases, where phase 1 denotes the matrix
and phases 2 to n are inhomogeneities, not necessarily ellipsoidal. It is understood

that inhomogeneities of diŒerent shapes or diŒerent alignments relative to a sample

coordinate system are considered diŒerent phases. Note that the general results can

also be applied to a piezoelectric polycrystal where we regard grains of diŒerent

orientations as diŒerent phases; however, we shall not pursue that line of inquiry.
To obtain the upper and lower bounds on the eŒective electroelastic moduli, we need
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(a)

(b)

(c)

Figure 1. Piezoelectric inclusion problem: (a) original problem with eigen® eld Y
T
Kl jr in inclu-

sion and Y
T
Kl j1 in matrix; (b) a single inclusion problem with eigen® eld Y

T
Kl jr ¡ Y

T
Kl j1; (c)

identical with (a), with the exception that in one inclusion the eigen® eld is changed to
YT

Kl j1, the same as that in the matrix.



to determine ·AAbMnjr and ·BiJkL jr in equations (27). It is clear from the de® nition of
·AAbMnjr and ·BiJ kL jr that this is an inclusion problem, where we need to solve for the

average electroelastic ® elds inside the inclusion that are caused by both the eigen-
® elds YT

Kl or XT
iJ in the inclusion and the applied external loading Y0

Kl or X 0
iJ at the

boundary. The problem is demonstrated in ® gure 1. We are considering a matrix of

electrostatic moduli P 0
kLMn and eigen® eld YT

Klj1, and n ¡ 1 diŒerent phases of inclu-

sions, which have the identical electrostatic moduli with the matrix, but diŒerent

eigen® elds YT
Kljr…r ˆ 2 ! n† (see ® gure 1 (a)). The shapes and alignments of the

inclusions may also be diŒerent. We are interested in the average ® eld in the inclu-

sion highlighted in ® gure 1 (a). By statistical homogeneity, this average ® eld is also

equal to the average ® eld in phase r. Owing to the linearity, the problem can be

decomposed into two problems: one is a single inclusion with eigen® eld YT
Kljr ¡ YT

Kl j1
embedded in the matrix without an eigen® eld and subjected to no external loading
(see ® gure 1 (b)); the other is identical with the original problem, with the exception

that the eigen® eld in the considered inclusion highlighted in ® gure 1 (a) is changed to

YT
Klj1 (see ® gure 1 (c)). So the average ® eld in the considered inclusion can be

expressed as

·YJ ijr ˆ ·YJij1r ‡ ·YJ ij2r ; ·XiJ jr ˆ ·XiJ j1r ‡ ·XiJ j2r ; …28 a†

where the subscripts 1r and 2r are used to denote the average ® eld in the considered

inclusion shown in ® gure 1 (b) and (c) respectively. Let us ® rst consider YJ ij1r , the

average ® eld in a single inclusion shown in ® gure 2 (b). Owing to linearity, we have

·YJ ij1r ˆ SY
JiKljr…Y

T
Kljr ¡ YT

Klj1†; ·XiJ j1r ˆ SX
iJkL jr…X

T
kL jr ¡ XT

kL j1†; …28 b†

where SY
JiKl jr and SX

iJkL jr are functions of electroelastic moduli of matrix, and the

inclusion shape. It is noted that equation (28 b) can be applied not only to ellipsoidal

inclusion but also to any inclusion with arbitrary shape, as long as its average ® eld
can be evaluated. The matrix, however, still needs to be in® nite, to keep the transla-

tional invariance assured by the property of the in® nite-body Green’s function. The

fact that a uniform ® eld exists in an ellipsoidal inclusion embedded in an in® nite

matrix provides a convenient way to evaluate the average ® eld, but this feature is not

essential from a theoretical point of view. Only in the case of ellipsoidal inclusion

embedded in an in® nite matrix do SY
JiKljr and SX

iJkL jr correspond to the piezoelectric
Eshelby tensor. In all other cases, they are tensors connecting the eigen® eld in the

inclusion and the resulting average ® eld; its validity is assured by the linear piezo-

electricity. For the inclusion in ® gure 2 (c), it should be noted that it is actually not an

inclusion problem, since it has the same electroelastic moduli P 0
kLMn and eigen® eld

YT
Klj1 as the matrix. In fact, it is just a part of the matrix. From the assumption of

statistical homogeneity, its average ® eld should be equal to the average ® eld of the

matrix, which is denoted as Y I
Ji. Since the only diŒerence between ® gures 1 (a) and (c)

is the eigen® eld in a single inclusion, the average ® eld in matrix in these two situa-

tions should be identical (a single inclusion will not change the average ® eld in the

matrix, since its volume fraction is zero). Thus, the solution of the electroelastic
inclusion problem shown in ® gure 1 (a) can be expressed as

·YJijr ˆ SY
JiKljr…Y

T
Kl jr ¡ YT

Kl j1† ‡ Y I
J i; ·XiJ jr ˆ SX

iJkL jr…X
T
kL jr ¡ XT

kL j1† ‡ X I
iJ …28 c†

for phases 2 ¡ n, and

·YJij1 ˆ Y I
Ji; ·XiJ j1 ˆ X I

iJ …28 d†
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for the matrix. Equations (28 c) and (28 d) are the exact solution for inclusion with

arbitrary shape embedded in an in® nite matrix, as long as the resulting composite is

statistically homogeneous. Note that SY
J iKljr and SX

iJkL jr are functions of the electro-
elastic moduli P0

iJMn of comparison material and the shape of the constituent phase r.

They are related to the Eshelby tensor SJiKl for piezoelectric solids de® ned by Dunn

and Taya (1993a) in the case of an ellipsoidal inclusion. Complete details regarding

this connection and its use are given in Appendix A. SY
JiKljr…Y

T
Kljr ¡ YT

Klj1) and

SX
iJkL jr…X

T
kL jr ¡ XT

kL j1† are the electroelastic ® elds in the inclusion caused by the eigen-
® elds YT

Kl and XT
kL , and Y I

Kl and X I
kL are image ® elds that account for the applied

external loading and interactions among inclusions. Substituting equations (19) into

equation (28 c) yields

·YJ ijr ˆ SY
J iKl jr ‰Q

0
KlmN …P 0

mNAb ¡ P mNAbjr† ·YAbjr ¡ Q0
KlmN …P 0

mNAb ¡ P mNAbj1†Y I
AbŠ ‡ Y I

Ji;

…29 a†

·XiJ jr ˆ SX
iJkL jr ‰P

0
kLAb…Q0

AbmN ¡ QAbmN jr† ·XmN jr ¡ P 0
kLAb…Q0

AbmN ¡ QAbmN j1†X
I
mN Š ‡ X I

iJ :

…29 b†

Rearranging the terms in equations (29) yields

·YAbjr ˆ AAbJijrA
¡1
J iKlj1rY

I
Kl; ·XbAjr ˆ BbAiJ jrB

¡1
iJ kL j1rX

I
kL ; r ˆ 2 ¡ n; …30†

where

AJiAbjr ˆ ‰IJ iAb ‡ SY
J iKljr Q0

KlmN …P mNAbjr ¡ P 0
mNAb†Š¡1

; r ˆ 2 ¡ n; …31 a†

BiJmN jr ˆ ‰IiJmN ‡ SX
iJkL jr P 0

kLAb…QAbmN jr ¡ Q0
AbmN †Š¡1; r ˆ 2 ¡ n; …31 b†

AJ iAbj1r ˆ ‰IJ iAb ‡ SY
J iKljr Q0

KlmN …P mNAbj1 ¡ P 0
mNAb†Š¡1; r ˆ 2 ¡ n; …31 c†

BiJmN j1r ˆ ‰IiJmN ‡ SX
iJkL jr P 0

kLAb…QAbmN j1 ¡ Q0
AbmN †Š¡1; r ˆ 2 ¡ n; …31 d†

where IJ iAb is a group of second- and fourth-rank unitary tensors. Since §rcr
·YJ ijr ˆ

Y 0
Ji and §rcr

·XiJ jr ˆ X 0
iJ , we have

Y I
J i ˆ

Xn

rˆ2

crAJiMnjr A¡1
MnAbj1r ‡ c1IJiAb

Á !¡1

Y 0
Ab; …32 a†

X I
iJ ˆ

Xn

rˆ2

crBiJmN jr B¡1
mNaBj1r ‡ c1IiJ aB

Á !¡1

X0
aB: …32 b†

Substituting equations (32) into equations (30) yields

·YKljr ˆ AKlCd jr
Xn

rˆ2

crAJiMnjr A¡1
MnAbj1r

Á !
ACdJij1r ‡ c1ACdAbj1r

" #¡1

Y 0
Ab; …33 a†

·XkL jr ˆ BkLcD jr
Xn

rˆ2

crBiJmN jr B¡1
mNaBj1r

Á !
BcDiJ j1r ‡ c1BcDaBj1r

" #¡1

X 0
aB; …33 b†

which then leads to:
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·AKlAbjr ˆ AKlCd jr
Xn

rˆ2

crAJiMnjr A¡1
MnAbj1r

Á !
ACdJ j1r ‡ c1ACdAbj1r

" #¡1

;

r ˆ 2 ¡ n; …34 a†

·BkLaBjr ˆ BkLcD jr
Xn

rˆ2

crBiJmN jr B¡1
mNaBj1r

Á !

BcDiJ j1r ‡ c1BcDaBj1r

" #¡1

;

r ˆ 2 ¡ n: …34 b†

For the matrix we obtain from equations (28 d) and (32) that

·AJ iAbj1 ˆ
Xn

rˆ2

crAJ iMnjr A¡1
MnAbj1r ‡ c1IJiAb

Á !¡1

; r ˆ 1 …34 c†

·BkLaBj1 ˆ
Xn

rˆ2

crBiJmN jr B¡1
mNaBj1r ‡ c1IiJ aB

Á !¡1

; r ˆ 1: …34 d†

Again, since the derivation from equations (28) to equations (34) is rigorous, equa-

tions (34) are exact solutions valid for statistically homogeneous multiphase compo-
sites with arbitrary microgeometry. The expressions are simpli® ed for composites

with aligned reinforcements of identical shapes, where the Eshelby tensors for all

reinforcements are identical and

AJiAbj1 ˆ AJiAbj1r ˆ ‰IJ iAb ‡ SY
J iKlQ

0
KlmN …P mNAbj1 ¡ P0

mNAb†Š¡1; r ˆ 2 ¡ n; …35 a†

BiJmN j1 ˆ BiJmN j1r ˆ ‰IiJmN ‡ SX
iJkLP 0

kLAb…QAbmN j1 ¡ Q0
AbmN †Š¡1; r ˆ 2 ¡ n; …35 b†

so that

·AKlAbjr ˆ AKlCd jr
Xn

rˆ1

crACdAbjr

Á !¡1

; r ˆ 1 ¡ n; …36 a†

·BkLaBjr ˆ BkLcD jr
Xn

rˆ1

crBcDaBjr

Á !¡1

; r ˆ 1 ¡ n: …36 b†

Finally we can write

·P kLAb ˆ
X

r

crP kLAbjr AAbJ ijr
X

r

crAJ iMnjr

Á !¡1

; …37 a†

·QKlmN ˆ
X

r

crQKlbAjr BbAiJ jr
X

r

crBiJmN jr

Á !¡1

: …37 b†

In the case of composites with reinforcements of diŒerent shapes or alignments,

equations (34) combined with equations (27) provide the bounds. If we ignore piezo-

electricity, the elastic part of equations (37 a) and (37 b) agrees with the results of

Walpole (1966a,b, 1969) and Willis (1977). The variational bounds for composites

with misaligned or diŒerently shaped reinforcements, however, have yet to be
reported for elastic composites.
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Since P iJKl and QJ ikL are positive de® nite and inverses of each other, when

P 0
iJKl ¡ P iJKljr is positive (negative) semide® nite, Q0

JikL ¡ QJikL jr is negative (positive)

semide® nite. It can be proven that these Hashin± Shtrikman-type bounds are self-
consistent, which means that the upper bound on P*iJKl and the lower bound on Q*J ikL
are inverses of each other, as are the lower bound on P*iJKl and the upper bound on

Q*J ikL . To show that ·P iJKl and ·QJikL are indeed inverses of each other, we examine

equations (30). Left multiplying equation (30 a) by P iJKljr and comparing the result

with equation (30 b) yields

P iJKljr AKlMnjr ˆ BiJlK jr B¡1
lKcD j1r P cDEf j1 AEfMnj1r : …38†

Meanwhile, left multiplying equation (30 b) by QJilK jr and comparing the result with

equation (30 a) yield

QJilK jr BlKnM jr ˆ AJiKljr A¡1
KlEf j1r QEfaBj1BaBnM j1r : …39†

By substituting equations (38) and (39) into equation (37), we can verify that ·P iJKl
and ·Q JikL are indeed inverses of each other, and so the derivation of bounds for one

of them also provides bounds for the other.

It is well known that, for composites with aligned reinforcements of identical

shape in uncoupled elasticity, the Hashin-Shtrikman upper or lower bounds corre-
spond to the eŒective moduli of the Mori± Tanaka (1973) mean-® eld approach, if the

matrix is stiŒest or most compliant phase in the composite (Weng 1992). It can be

shown that it is also the case for the piezoelectric composites considered here. In such

a case, the electroelastic moduli P iJKlj1 and QJ ikL j1 are chosen as P 0
iJKl and Q0

J ikL , and

it is easy to verify that equations (37 a) and (37 b) are exactly the same as the

expression for the eŒective moduli as given by the Mori± Tanaka mean-® eld
approach (Dunn and Taya 1993b). It is noted that the Hashin± Shtrikman-type

bounds for multiphase composites with reinforcements of diŒerent shapes or align-

ment have not been reported for pure elastic cases before, to the best knowledge of

the present authors. So the current formalism can also be applied to elastic compo-

sites by ignoring piezoelectricity.

} 4. Discussion
We have derived the upper and lower bounds on the eŒective moduli in the sense

of positive de® niteness of the moduli tensors. Such bounds are physically meaningful

for a subset of individual elements of the moduli tensors; most prominent are the

diagonal elements which are bounded in magnitude by the corresponding elements

of upper and lower bound tensors. The oŒ-diagonal elements are not directly
bounded by the corresponding elements of upper and lower bound tensors; in this

case the bounds at best provide estimates of the eŒective moduli. At this point, one

can apply the bounds to a wide range of composite microstructural geometries. To

demonstrate, in this section we shall compute bounds for two-phase composites with

four diŒerent microstructural geometries: continuous PbTiO3- PbZrO3 (PZT)-7A
® bres embedded in an epoxy matrix, PZT-5A particles embedded in an epoxy matrix,

a porous PZT± Pb (Ni0:33Nb0:67†O3 (PNN) ceramic and a PZT-5A/epoxy layered

composite. The material properties of the constituent materials are listed in table 1

and are taken from the papers by Chan and Unsworth (1989), Bast and Wersing

(1989) and Dunn and Taya (1993c). In the calculations using PZT-7A, however, the
value d33 ˆ 167 £ 10¡12 m V¡1 as measured by Chan and Unsworth (1989) is

916 J. Y. Li and M. L. Dunn
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used. Because of its importance in the calculations, it is worthwhile to discuss the

choice of the comparison material. Since the piezoelectric ceramics are elastically

stiVer, but electrically softer than the polymer matrix, we cannot directly choose the

epoxy or the ceramic as a comparison material. We can, however, keep the elastic

constants of the ceramic or polymer and increase or decrease their dielectric con-

stants slightly to guarantee that it is the most or least positive de® nite of the con-
stituent phases. The positive de® niteness is verifed by computing the eigenvalues.

With the comparison material so chosen, the calculation of the bounds is carried out

as outlined in table 2.

4.1. Fibrous composites

Here we consider a composite consisting of continuous PZT-7A ® bres embedded

in an epoxy matrix. The ® bres are aligned along the x3 axis. This is also the unique

axis for both the transversely isotropic PZT-7A ® bres and the composite. Figures 2± 5
show both the Voigt± Reuss- and the Hashin± Shtrikman-type bounds (or estimates)

918 J. Y. Li and M. L. Dunn

Table 2. Outline of the procedure for calculating the bounds of piezoelectric composites.

(1) Choose the appropriate comparison material, making sure that its moduli matrix is more
or less positive de® nite than those of constituents by checking the eigenvalues

(2) Input the electroelastic moduli of the matrix, reinforcement and comparison material in
positive de® nite form, together with the volume fraction and shape of the reinforcement

(3) Transform the positive de® nite form of the electroelastic moduli of the comparison
material to the non-positive de® nite form used by Dunn and Taya (1993a); use it and the
shape of the reinforcement as input to evaluate the Eshelby tensors SZ

(4) Transform SZ to SY according to equation (A 12)
(5) Evaluate the concentration factor for reinforcement using equations (31) and (35)
(6) Evaluate the bounds according to equations (37)

Figure 2. Bounds on the longitudinal velocity V3 of the PZT-7A ® bre-reinforced polymer
composite versus the volume fraction of PZT-7A. The measured values are from Chan
and Unsworth (1989).



for the longitudinal velocity V3 ˆ …C*
33=»†1=2, the elastic compliance S*

11 ‡ S*
12, the

dielectric constant ½*
33 and the piezoelectric constant d*

33 of the composite as func-

tions of the PZT-7A ® bre volume fraction. Also shown in each case is the arithmetic
average of the Voigt± Reuss bounds (estimates), which in the context of elastic poly-

crystals and composites is known as the Hill average. Measured values of each

parameter as obtained by Chan and Unsworth (1989) are also shown.

In ® gure 2, the density is well known to be accurately described by the rule of

mixtures. Then, since the main diagonal element C*
33 is bounded by the upper and

Variational bounds for eVective moduli 919

Figure 3. Bounds on S*11 ‡ S*12 of the PZT-7A ® bre-reinforcedpolymer composite versus the
volume fraction of PZT-7A. The measured values are from Chan and Unsworth
(1989).

Figure 4. Bounds on ½*33 of the PZT-7A ® bre-reinforced polymer composite versus the
volume fraction of PZT-7A. The measured values are from Chan and Unsworth
(1989).



lower bounds, so is the longitudinal velocity V3. It is observed that the Voigt± Reuss

bounds are very wide. This is because they do not consider the shape of reinforce-

ment, and it is extremely important. The measured data are close to the upper

bound; this is because the isostrain assumption is closely approximated for the
continuous ® bre microstructure. The Hill average predicts the behaviour qualita-

tively but is not a very good quantitative predictor. Interestingly, it is far outside the

Hashin± Shtrikman bounds. The Hashin± Shtrikman bounds are inside the Voigt±

Reuss bounds, are quite narrow and describe the experimental data well. This is

attributed to the incorporation of the reinforcement shape in their evaluation. In
® gures 3 and 4, S*

11 ‡ S*
12 and ½*

33 are bounded; the former because it is directly

related to bounded quantities …S11 ‡ S12 ˆ ‰2…S2
11 ¡ S2

12†Š=S66 for transversely isotro-

pic symmetry, and both S2
11 ¡ S2

12 and S66 are bounded), and the latter because it is a

main diagonal element. The general observations here are similar to those of ® gure 2,

except that in ® gure 3 the Hill average is inside the Hashin± Shtrikman bounds and

close to the experimental data, and in ® gure 4 the Hashin± Shtrikman upper and

lower bounds coincide with each other numerically and are in excellent agreement
with measurements. The piezoelectric constant d*

33 in ® gure 5 is not bounded because

it is an oŒ-diagonal element. As such, the Voigt± Reuss and Hashin± Shtrikman pre-

dictions only serve as estimates of d*
33. Here the Voigt± Reuss estimates are quite far

apart and do not agree well, either quantitatively or qualitatively, with the measure-
ments. On the other hand, the Hashin± Shtrikman estimates agree with each other

numerically and are in excellent agreement with the measurements. Interestingly, the

Hill average is far from the measured data and it predicts qualitative behaviour that

is grossly diŒerent from that observed.

4.2. Particle-reinforced composites

Here we consider a composite consisting of spherical PZT-5A particles
embedded in an epoxy matrix. The x3 axis is the unique axis for both the transversely

920 J. Y. Li and M. L. Dunn

Figure 5. Estimated d*33 of the PZT-7A ® bre-reinforced polymer composite versus the
volume fraction of PZT-A. The measured values are from Chan and Unsworth (1989).



isotropic PZT-5A particles and the composite. Figures 6 and 7 show the Voigt±

Reuss- and the Hashin± Shtrikman-type bounds for Young’ s modulus E*
11 and the

dielectric constant ½*
33 respectively of the composite normalized by the values for the

epoxy matrix. Also shown are measured values of E*
11 and ½*

33 obtained from the

work of Furukawa et al. (1976). Again it is seen that the Hashin± Shtrikman bounds

fall between and are narrower than the Voigt± Reuss bounds. The lower bounds are
closer to the measurements for both E*

11 and ½*
33. The bounds are much wider for ½*

33

than for E*
11. This is because the diŒerence between the ½33 values for the epoxy and

PZT-5A is much larger than for E11.
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Figure 6. Bounds on E*11 of the PZT-5A particle-reinforced polymer composite versus the
volume fraction of PZT-5A. The measured values are from Furukawa et al. (1976).

Figure 7. Bounds on ½*33 of the PZT-5A particle-reinforced polymer composite versus the
volume fraction of PZT-5A. The measured values are from Furukawa et al. (1976).



4.3. Porous ceramics

Here we consider a porous PZT± PNN piezoelectric ceramic. Speci® cally, this

material is a sintered PZT± PNN ceramic (transversely isotropic with the unique
axis along x3) with two-dimensional cylindrical voids along the x1 axis. The shape

of the voids is characterized by the aspect ratio a2=a3, which was measured to be 2.1

by Bast and Wersing (1989). Figure 8 shows the bounds on the dielectric constant ½*
33

of the porous ceramic normalized by ½0 of free space. In the calculations,

the electroelastic moduli of PZT-5H were used because they are known completely

(those for PZT± PNN are not) and they agree well with the known values of
PZT± PNN. The elastic moduli of the pores are assumed to be zero, while the dielec-

tric constant of the pores is taken to be the free-space dielectric constant

½0 ˆ 8:85 £ 10¡12 C2 N¡1 m¡2. The Hashin± Shtrikman bounds again lie inside and

are much narrower than the Voigt± Reuss bounds. The Hashin± Shtrikman upper

bound agrees reasonably well with the measurements at volume fractions less than
about 10% but is far above the measured values at a volume fraction of about 15% .

Note that the non-zero Hashin± Shtrikman lower bound is due to the non-zero

dielectric constant of the pore; if it were taken to vanish, the lower bound would

be zero, independent of volume fraction.

4.4. Layered composites

Finally we consider a layered composite consisting of PZT-5A ceramics and
FM73 epoxy. We fabricated the composite using Colorado State University’ s facil-

ities. The materials are layered along x3 axis, which is the unique axis for both the

transversely isotropic PZT-5A and the composite. Young’ s modulus for the compo-

site was measured by Ledbetter and Kim at the National Institute of Standards and

Technology, Boulder, Colorado, using a three-component oscillator. Figure 9 shows
the bounds on Young’ s modulus E*

11 for the layered composite. Also shown are
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Figure 8. Bounds on ½*33 of the PZT-5H ceramics with pores versus the volume fraction of
pores. The measured values are from Bast and Wersing (1989).



values of E*
11 measured by Ledbetter and Kim. In ® gure 9 the Hashin± Shtrikman

upper and lower bounds coincide with each other numerically and are in good

agreement with measurements. The reason that the measured E*
11 is above the

upper bound is that probably the elastic constants of the epoxy are slightly incorrect.

The Voigt± Reuss bounds are much wider than the Hashin± Shtrikman bounds, and

the Hill average does not agree with measurements well.

} 5. Summary and conclusions
We present a method to determine the bounds of the electroelastic moduli of

heterogeneous piezoelectric solids using the Hashin± Shtrikman variational princi-
ples, which is valid for statistically homogeneous multiphase composite with arbi-

trary microgeometry and anisotropy. Narrower bounds than the Voigt± Reuss

bounds are achieved by taking into account the reinforcement shape in addition

to its volume fraction. The generalized Hashin± Shtrikman bounds were shown to

be self-consistent, and to agree with the Mori-Tanaka model for composites with

aligned reinforcements of identical shapes if the matrix is the most positive or nega-
tive de® nite of all the phases. An algorithm was given for the computation of the

bounds that makes use of the expressions for the electroelastic Eshelby tensors that

exist in the literature. Numerical results were presented and compared with measure-

ments for four composites with diŒerent microstructural geometries. The Hashin±

Shtrikman bounds are always narrower than the Voigt± Reuss bounds and always
serve as better estimates of the eŒective electroelastic moduli. The Hill average of the

Voigt± Reuss bounds does not always agree well with measurements. Furthermore, it

can predict behaviour that diŒers substantially from observation not only quantita-

tively but also qualitatively. For the cylindrical-® bre-reinforced composite and

layered composite, the Hashin± Shtrikman bounds are very narrow and agree with
the experimental data very well. For composites with particle inclusions, the Hashin±
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Figure 9. Bounds on E*11 of PZT-5A-reinforced FM73 epoxy laminate versus the volume
fraction of PZT-5A.



Shtrikman bounds are wider and farther from measurements, suggesting that more

microstructural information is required to obtain narrower bounds.

APPENDIX A

Electroelastic Eshelby tensors for ellipsoidal inclusions
In } 3 we obtained bounds for the eŒective electroelastic moduli of heterogeneous

piezoelectric solids in terms of the concentration factors; in order to evaluate the

bounds, we must evaluate the concentration factors. As we showed, a key part of the

evaluation of the concentration factors is the evaluation of the Eshelby tensors for

ellipsoidal inclusions. To this end, we take advantage of the results of Dunn and
Taya (1993a) and Dunn and Wienecke (1997). The former work provides the

Eshelby tensors for general material symmetry and inclusion shapes in terms of a

surface integral over the unit sphere which can be easily evaluated numerically. They

also obtained closed-form expressions for an elliptic cylindrical inclusion and a

penny-shaped inclusion in a transversely isotropic solid. The latter work provides
explicit closed-form expressions for the Eshelby tensors for spheroidal inclusions in a

transversely isotropic solid. In both of these studies, a diŒerent form of the linear

electroelastic constitutive equations was used. Speci® cally, the strain and electric

® eld were chosen as independent variables so that the relevant eigen® elds were

Z T
Mn ˆ "T

mn M ˆ 1; 2; 3;

¡E T
n ; M ˆ 4:

(

…A 1†

As a result, the Eshelby tensors were de® ned as

ZMn ˆ SZ
MnAbZ T

Ab: …A 2†

Here we use the superscript Z to denote that the Eshelby tensors are associated with

the Z Mn of equation (A 1). The superscript Z was not used by Dunn and Taya and by
Dunn and Wienecke. In order to take advantage of their results, ® rst we connect YT

J i
of this study to their Z T

Mn. For this purpose, it is more convenient to carry out the

calculations using the matrix notation described by Dunn and Taya (1993b). To this

end, we rewrite equation (15) in matrix form as

e

D

µ ¶
ˆ

S d

dt s

µ ¶
r

E

µ ¶
¡

r*

E*

µ ¶³ ´
: …A 3†

or in expanded form:

e ˆ S…r ¡ r*† ‡ d…E ¡ E*† …A 4 a†

D ˆ dt…r ¡ r*† ‡ s…E ¡ E*†: …A 4 b†

Caution should be taken to avoid confusion between the Eshelby tensors and the

elastic compliance S. As we just mentioned, the Eshelby tensor SZ …SZ
jiMn) is de® ned

for the inclusion problem described by

r ˆ C…e ¡ eT† ‡ e…¡E ‡ ET†; …A 5 a†

D ˆ et…e ¡ eT† ‡ j…¡E ‡ ET†: …A 5 b†
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Because YT
Ji and Z T

Mn represent transformation quantities in the same electrostatic

inclusion problem, but using diŒerent notation, the ® eld variables in equations (A 4)

and (A 5) are identical. Equating the right-hand side of equations (A 4 b) and (A 5 b)
yields

ET ˆ s¡1dtr* ‡ E*: …A 6†

Similarly, equations (A 4 a) and (A 5 a) yield

eET ¡ CeT ˆ r* ‡ eE*: …A 7†

Substituting equation (A 6) into equation (A 7) yields

eT ˆ S…es¡1dt ¡ I†r*: …A 8†

Combining equations (A 6) and (A 8) yields

eT

¡ET

" #
ˆ S…es¡1dt ¡ I†

¡s¡1dt

0

¡i

" #
r*

E*

µ ¶
: …A 9†

Alternatively, this can be written as

ZT ˆ
S…es¡1dt ¡ I†

¡s¡1dt

0

¡i

" #

YT: …A 10†

Starting from consitutive equations (A 5) and applying the de® nition of the Eshelby

tensor) SZ , we have

Y ˆ r

E

h i

ˆ C

0

e

¡i

µ ¶µ
e

¡E

¶
¡ C

0

e

0

µ ¶µ
eT

¡ET

¶

ˆ C

0

e

¡i

µ ¶
SZ ¡ C

0

e

0

µ ¶³ ´
ZT: …A 11†

Equations (A 10) and (A 11) can be combined to yield

SY ˆ C

0

e

¡i

µ ¶
SZ ¡ C

0

e

0

µ ¶³ ´
S…es¡1dt ¡ I†

¡s¡1dt

0

¡i

" #

: …A 12†

Equation (A 12) allows us to compute directly the Eshelby tensors SY (which are

used in the computation of the bounds in } 3) in terms of the already tabulated SZ of

Dunn and Taya (1993a). If needed, the Eshelby tensors SX can be obtained in a

similar manner.
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