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Abstract
We study the ® elds in and around inclusions and inhomogeneities in

anisotropic solids exhibiting full coupled-® eld behaviour using Eshelby’ s
pioneering approach. Explicit expressions are obtained for the generalized
Eshelby tensors, as are a class of shape-independent relations for the Eshelby
tensors. These can be used in the same manner as Eshelby’ s tensor for elastic
inclusions.

§ 1. Introduction

Eshelby’ s (1957, 1959) classical analyses of the stress and strain ® elds in elastic
solids containing ellipsoidal inclusions and inhomogeneities are widely recognized
for both their elegance and wide-ranging applicability. In micromechanics analysis of
heterogeneous solids, a theoretical framework has emerged where exact expressions
for e� ective properties and internal ® elds can be obtained in terms of concentration
factors that relate the average ® elds in the phases to uniform applied ® elds. It is at
this point that an exact analysis typically ceases and approximate schemes must be
introduced to estimate the concentration factors. In most micromechanics schemes,
the reinforcement is modelled as ellipsoidal and recourse is made to Eshelby’ s solu-
tion. Eshelby’ s solution is used for at least three reasons: (i) the general ellipsoidal
shape can be used to model a wide range of microstructural geometries; (ii) explicit,
closed-form expressions exist for the stresses and strains in the ellipsoidal inhomo-
geneity; (iii) the elastic ® elds in the ellipsoidal inhomogeneity have the remarkable
property that they are uniform, rendering the computation of average ® elds in the
inhomogeneity trivial. Numerous examples of, and references to, such applications
can be found in the authoritative texts of Mura (1987) and Nemat-Nasser and Hori
(1993).

Perhaps the most widely used result of Eshelby’ s analyses is his closed-form
expression for what is now known as Eshelby’ s tensor: a fourth-order tensor that
is a function only of the elastic moduli of the matrix and the shape of the inclusion.
With explicit expressions for Eshelby’ s tensor in hand, solutions to many problems
involving inclusions and inhomogeneities are reduced to algebraic tensor manipula-
tion. Although he only provided explicit results for inclusions in isotropic solids,
Eshelby laid the groundwork for the study of inclusions in anisotropic solids which
was taken up by subsequent researchers (Hill 1961, Willis 1964, Walpole 1967, 1977,
Kinoshita and Mura 1971, Lin and Mura 1973, Asaro and Barnett 1975, Bacon et al.
1978, Withers, 1989). In addition, Eshelby’ s basic ideas have been extended to treat
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other uncoupled-® eld problems such as heat conduction, electrostatics and magne-
tostatics (Hatta and Taya 1988).

The emphasis of this work is on partial and full coupled-® eld problems pertain-
ing to inclusions and inhomogeneities in anisotropic media. By partial coupling we
mean phenomena such as uncoupled thermoelasticity where elastic and thermal
phenomena are coupled, but modelled in such a way that a temperature change
induces a change in strain, but a change in strain does not induce a temperature
change. Thus, temperature enters the mechanical problem as a parameter through
the constitutive equations and the temperature distribution can be computed simply
by the theory of heat conduction. Static poroelasticity also falls into this category
when one recognizes the mathematical analogy between poroelasticity and thermo-
elasticity (Norris 1992). Inclusion and inhomogeneity problems in media exhibiting
partial coupling between elastic and other ® elds can be treated using Eshelby’ s
results (or the corresponding results for anisotropic media) directly, and treating
the coupling term as a transformation strain (in Eshelby’ s terminology) or an eigen-
strain (in Mura’s terminology). Such examples in the context of thermoelasticity are
discussed in detail by Mura. Full coupling, on the other hand, presents more of a
challenge. Here we are referring to phenomena such as piezoelectricity where not
only does a change in the electric ® eld induce strain, but also strain induces a change
in the electric ® eld. In this case, Eshelby’ s results cannot be directly applied, but his
ideas can be. Speci® cally, one can solve the inclusion problem for full coupling
between two or more ® elds using a generalization of his elegant cutting± straining±
welding approach.

The motivation for this work is the study of heterogeneous media with coupled
® elds, and the belief that inclusion and inhomogeneity problems play a key role in
the analysis of such materials. In particular, the phases can be modelled as inhomo-
geneities. When combined with a rigorous micromechanical framework, substantial
progress can be made toward understanding the complicated microstructural-level
® elds in heterogeneous media with coupled ® elds. This has been demonstrated for
piezoelectric media by Deeg (1980), Wang (1992), Benveniste (1992), Dunn and Taya
(1993), Chen (1993a,b), Dunn and Wienecke (1996, 1997), and the many references
contained therein. Interesting composite materials consisting of combinations of
piezoelectric and piezomagnetic phases have already been studied both experimen-
tally and theoretically (Harshe et al. 1993a,b Avelleneda and Harshe 1994, Nan
1994, Benveniste 1995). These materials have been shown to exhibit the phenomena
of magnetoelectricity, a phenomena that does not appear in the individual phases
themselves.

In this study we consider the general case of inclusions and inhomogeneities in
media exhibiting full coupling between multiple ® elds. The key to the solution is the
generalized Eshelby tensor. We show that the fully coupled problem can be treated in
a very general way, completely analogous to the treatment of anisotropic elasticity.
This realization emerges naturally when the problem is cast using a convenient
notation introduced in the context of piezoelectricity by Barnett and Lothe (1975),
extended to piezoelectromagnetic media by Alshits et al. (1992), and used by Alshits
et al. (1995), Chung and Ting (1995) and Kirchner and Alshits (1996). The focus here
is on static behaviour; the corresponding dynamic case is more involved as each ® eld
reacts di� erently to dynamic e� ects. While we emphasize the treatment of general
coupled ® elds, we give explicit results for the special case where full coupling exists
between elastic, electric and magnetic ® elds. The generalized Eshelby tensor is
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expressed in terms of a surface integral over a unit sphere, which can be evaluated
numerically. The integrals are evaluated in closed form for special shapes when the
medium is transversely isotropic. The results can be used immediately in the micro-
mechanics analysis of heterogeneous media. We also show that when full coupling
exists between two or more ® elds and, in addition, partial coupling exists, the treat-
ment of the partial coupling proceeds in a manner analogous to that for elastic
inclusions.

§ 2. Basic equations

A three-dimensional Cartesian coordinate system is employed where position is
denoted by the vector x or xi . We consider materials that exhibit linear, static,
anisotropic coupled-® eld phenomena. These phenomena are described by three
sets of equations: constitutive equations, divergence equations and gradient equa-
tions. To clearly illustrate, we explicitly consider piezoelectromagnetic media, but we
emphasize that the formalism is valid for more general coupled-® eld problems where
the basic equations have the same structure. In full index form, the ® eld equations
(constitutive, divergence and gradient) are:

s ij = Cijkluk,l + eijl u ,l + qijl u ,l,
Di = eikluk,l - ·il u ,l - ail u ,l, (1)

Bi = qikluk,l - ail u ,l - ¹ il u ,l ,

s ij, j = 0,
Di,i = 0, (2)

Bi,i = 0,

e ij = 1
2 (ui, j + uj,i),

Ei = - u ,i, (3)

Hi = - u ,i.

In equations (1) ± (3), s ij , e ij and ui are the elastic stress, strain and displacement
respectively; Di , Ei and u are the electric displacement, ® eld, and potential respec-
tively; Bi , Hi and u are the magnetic ¯ ux, ® eld, and potential respectively. Cijkl , ·il

and ¹ il are the elastic sti� ness, the dielectric, and the magnetic permeability tensors.
They directly connect like ® elds, e.g., stresses to strains. Elastic ® elds are coupled to
the electric and magnetic ® elds through the piezoelectric eikl and piezomagnetic qikl

coe� cients respectively. Finally, electric and magnetic ® elds are coupled through the
magnetoelectric coe� cients ail . The symmetry conditions satis® ed by the moduli are
given by Nye (1957).

In the analysis to follow, it is convenient to treat the elastic, electric, and magnetic
variables on an equal footing. To this end, the notation introduced by Barnett and
Lothe (1975) for piezoelectric analysis and generalized to incorporate magnetic
coupling by Alshits et al. (1992) is utilized. This notation is identical to conventional
indicial notation with the exception that lowercase subscripts take on the range 1± 3,
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while uppercase subscripts take on the range 1± 5 and repeated uppercase subscripts
are summed over 1± 5. With this notation, the ® eld variables take the following forms:

UM =
um

u

u

ZMn =
e mn = 1

2 (um,n + un,m)

- En = u ,n
- Hn = u ,n

R nM =
s nm M = 1,2,3
Dn M = 4
Bn M = 5.

ìï
íïî

ìï
íïî

ìï
íïî

(4)

The moduli are expressed as:

EiJMn =

Cijmn J ,M = 1,2,3
eijn M = 4,J = 1,2,3
qijn M = 5,J = 1,2,3
eimn J = 4,M = 1,2,3
- ·in J = 4,M = 4
- ain J = 4,M = 5
qimn J = 5,M = 1,2,3
- ain J = 5,M = 4
- ¹ in J = 5,M = 5.

ìïïïïïïïïïïïïïï
íïïïïïïïïïïïïïïî

(5)

With this shorthand notation, the divergence, gradient, and constitutive equations,
can be written as:

R iJ ,i = 0, ZMn = UM,n, R iJ = EiJMnZMn. (6)

§ 3. Inclusion and inhomogeneity problems

Consider an in® nite solid D containing an ellipsoidal inclusion, the volume of
which is denoted by X with a surface denoted by |X |. The inclusion has the same
moduli, EiJMn, as the matrix, but is allowed to undergo a uniform transformation.
We denote by Z*Mn the uniform transformation that would occur if X were uncon-
strained by D - X . In the elastic case, the physical interpretation of the transforma-
tion strain is well known. In a more general setting it is not so clear. For example, in
the case of magnetostatics, Z*Mn can be interpreted as a volume distribution of
magnetic dipoles in X . The same interpretation can be attached to analogous ® eld
problems such as heat conduction and electrostatics. Despite the di� erent physical
interpretations of Z*Mn, we can still appeal to the imaginary cutting, straining, and
welding operations of Eshelby (1957) to calculate the actual (constrained) ® elds, and
this leads to:

UM(x) = ò ò
|X |

GMJ (x - xÂ )R *iJ ni dS(xÂ ) - ò ò ò
X

GMJ (x - xÂ )R *iJ ,i dV(xÂ )

= - EiJAbZ*Ab ò ò ò
X

GMJ ,i(x - xÂ ) dV(xÂ ) . (7)

In equation (7) GMJ (x) are generalized Green’s functions, R *iJ = EiJMnZ*Mn, and
the di� erentiation is with respect to x. When we di� erentiate UM with respect to x,
after substantial manipulation we can write UM,n inside the inclusion as:

UM,n(x) = - EiJAbZ*Ab ò ò ò
X

GMJ ,in(x - xÂ ) dV(xÂ ) . (8)
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The manipulations required to get from equation (7) to equation (8) follow
exactly those outlined by Bacon et al. (1978) in the context of anisotropic elasticity
and Deeg (1980) in piezoelectricity. Following Eshelby (1957) we write:

ZMn = SMnAbZ*Ab, (9)

where:

SMnAb =
1
8p

EiJAb

ò
1

- 1 ò
2 p

0
[GmJin(z) + GnJim(z)] dµ dx 3 M = 1,2,3

2 ò
1

- 1 ò
2p

0
G4Jin(z) dµ dx 3 M = 4

2 ò
1

- 1 ò
2p

0
G5Jin(z) dµ dx 3 M = 5.

ìïïïïïïïïï
íïïïïïïïïïî

(10)

In equation (10) zi = x i /ai (no sum on i), and x 1 and x 2 can be expressed in terms of
x 3 and µ by x 1 = (1 - x 2

3)1 /2 cos µ and x 2 = (1 - x 2
3)1 /2 sin µ. In addition, GMJin =

ziznK- 1
MJ (z) where K- 1

MR is the inverse of KJ R = ziznEiJRn.
Formally SMnAb is a generalization of Eshelby’ s tensor. In the case of piezo-

magnetoelectricity, SMnAb is a collection of nine tensors: one fourth-order, four
second-order and four third-order. SMnAb is a function only of the moduli EiJKl

and the shape of the inclusion. If the Eshelby tensors SMnAb are known, then for
prescribed eigen® elds Z*Mn, the constrained ® elds in the inclusion can be expressed as:

R iJ = EiJMn[ZMn - Z*Mn]. (11)

As shown by Deeg (1980), Benveniste (1992) and Dunn and Taya (1993), the ® elds in
the ellipsoidal inclusion are uniform.

Once the solution for the ellipsoidal inclusion (a transformed region with the
same moduli as the matrix) is obtained, the solution for the ellipsoidal inhomogene-
ity (a region with di� erent moduli from the matrix) easily follows. As shown by
Eshelby (1957) in the elastic case, the inhomogeneity can be simulated by an equiva-
lent inclusion. To ® x ideas, consider the in® nite solid D with moduli EiJMn which
contains an ellipsoidal inhomogeneity V with moduli E*iJMn. In the absence of an
applied load, the ® elds in both the inhomogeneity and matrix are zero. When sub-
jected to a far-® eld uniform load R

0
iJ , the ® elds R

0
iJ + R iJ in the inhomogeneity can be

written as:

R
0
iJ + R iJ = E*iJMn[Z0

Mn + ZMn] = EiJMn[Z0
Mn + ZMn - Z*Mn]. (12)

In (12), Z0
Mn is the uniform ® eld that would exist in the absence of the inhomogeneity

(R 0
iJ = EiJMnZ0

Mn) and ZMn is the disturbance of the uniform ® elds due to the pre-
sence of the inhomogeneity. The ® rst right-hand side of equation (12) represents the
® elds in the actual inhomogeneity while the second one represents the ® elds in an
inclusion of the same shape and orientation as the inhomogeneity and with eigen-
® elds Z*Mn, i.e. an equivalent inclusion. The simulation of the inhomogeneity by the
equivalent inclusion is possible if an appropriate Z*Mn can be found to enforce the
second equality of equation (12) (where equation (9) holds in the equivalent inclu-
sion). Substituting equation (9) into (12) and solving for Z*Mn gives

Z*Pq = - A- 1
PqiJ [E*iJMn - EiJMn]Z0

Mn, (13)
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where AiJAb = [E*iJMn - EiJMn]SMnAb + EiJAb. Once Z*Mn(Z
0
Mn) is obtained from equa-

tion (13), it can be used with equations (9) and (12) to obtain the ® elds in the
inhomogeneity due to the applied load.

An inhomogeneous inclusion is an inhomogeneity with prescribed eigen® elds
ZT

Pq. Consider the in® nite solid D with moduli EiJMn that contains an ellipsoidal
inhomogeneity V with moduli E*iJMn and eigen® elds ZT

Pq. The ® elds in the inhomo-
geneous inclusion are:

R 0
iJ + R iJ = E*iJMn[ZMn - ZT

Mn] = EiJMn[ZMn - ZT
Mn - Z**Mn] = EiJMn[ZMn - Z*Mn].

(14)

In equation (14) Z*Mn = ZT
Mn + Z**Mn, where Z**Mn are ® ctitious eigen® elds and

ZMn = SMnAbZ*Ab.
The above results for the interior ® elds can be used to obtain the ® elds just

outside an inclusion (and thus of course also an inhomogeneity) by making use of
the continuity conditions on ZMn and the jump conditions on UM at the inclusion±
matrix interface. The ® elds just outside the inclusion can be expressed as:

R out
iJ = R in

iJ + EiJKl[- EpQMnZ*MnK- 1
QKnpnl + Z*Kl]. (15)

In equation (15) the interior ® elds R in
iJ are obtained by the approach discussed above

and K- 1
QK is the inverse of KJK = KKJ = ninlEiJKl where ni is the outward normal from

the inclusion surface.
Also important are energy calculations for heterogeneous systems. Consider a

solid containing an inhomogeneity subjected to far-® eld loads R
0
iJ ni . These loads

would result in a uniform ® elds R 0
iJ in a homogeneous solid. The total free energy

of the inhomogeneous solid can be expressed as:

W =
1
2 ò D

R
0
iJ U0

J ,i dV +
1
2 ò X

R
0
iJ Z*Ji dV - ò S

R
0
iJ niU

0
J dS (16)

where V and S denote the volume and surface of the solid respectively and X denotes
the volume of the inhomogeneity. The interaction energy between R

0
iJ ni and the

inhomogeneity is then:

D W = W - W0 =
1
2 ò X

R
0
iJ Z*Ji dV - ò S

R
0
iJ niUJ dS = - 1

2
R

0
iJ Z*JiVX (17)

where the volume of the ellipsoid is VX = 4
3 p a1a2a3. Other energy expressions can be

readily calculated from these results.
We close this section by presenting two interesting and useful results regarding

the ® elds in and around an ellipsoidal inclusion. First, consider two ellipsoidal
domains V1 and V2 that are of the same shape and orientation as VX and surround
VX so that VX Í V1 Í V2. If we integrate ZMn of equation (9) over the annular
ellipsoidal region V2 - V1 we ® nd:

ò V2- V1

ZMn dV = 0. (18)

This result is a generalization of the Tanaka± Mori (1972) theorem regarding volume
integrals of elastic ® elds around ellipsoidal inclusions. This result has been used
advantageously by Hori and Nemat-Nasser (1993) to analyse the complicated elastic
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® elds in double inclusions. It has also been used by Dunn and Ledbetter (1995) to
model the elastic moduli of composites reinforced by multiphase particles.

The second result concerns invariant shape-independent relations for the general-
ized Eshelby tensors. We can couple equations (8) and (9) with the formal de® nition
of the coupled Green’ s functions GMJ to obtain:

SMnMn = 5, Smnmn = 3, S4n4n = S5n5n = 1. (19)

These relations are independent of the shape of the ellipsoidal inclusion. They extend
the results of Chen (1994) for ellipsoidal inclusions in piezoelectric media.

§ 4. Explicit results

For a general ellipsoidal shape and general material anisotropy, the Eshelby
tensors can be obtained by evaluating the integrals in equations (10) by numerical
integration. A convenient algorithm for this purpose is given by Gavazzi and
Lagoudas (1990) in the context of elasticity. The extension to coupled-® eld material
behaviour is straightforward. For certain material symmetries and inclusion shapes,
the integrals in (10) can be evaluated in closed form. In the context of piezomagne-
toelectricity, we have carried out such calculations for two inclusion shapes in trans-
versely isotropic media: a thin disc and an elliptical cylinder. In both cases the a3

semi-axis of the inclusion is aligned with the unique material axis. For transversely
isotropic piezoelectromagnetic solids, the independent components of the moduli
consist of: ® ve elastic coe� cients, C11, C12 , C13 , C33 and C44 ; three piezoelectric
coe� cients, e31 , e33, e15 ; three piezomagnetic coe� cients, q31, q33 , q15 ; two dielectric
coe� cients, ·11 , ·33 ; two magnetoelectric coe� cients, a11 , a33 ; and two magnetic
permeability coe� cients, ¹11 , ¹33. Below we list explicitly the nonzero components
of SMnAb for two cases of technological importance.

4.1. Elliptical cylindrical inclusion
For an elliptical cylindrical inclusion, we have a3 ® ¥ and we de® ne the in-plane

aspect ratio a = a2 /a1. The nonzero SMnAb are:

S1111 = [(3 + 2a )C11 + C12]a
2(1 + a )2C11

,

S1122 = [(1 + 2a )C12 - C11] a
2(1 + a )2C11

,

S1133 =
a C13

(1 + a )C11
,

S2211 =
(2 + 1a )C12 - a C11

2(1 + a )2C11
,

S2222 =
(2 + 3a )C11 + a C12

2(1 + a )2C11
,

S2233 =
C13

(1 + a )C11
,

S2323 = S2332 = S3223 = S3232 =
1

2(1 + a ) , (20)
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S1313 = S1331 = S3113 = S3131 =
a

2(1 + a ) ,

S1212 = S1221 = S2112 = S2121 =
(1 + a + a 2)C11 - a C12

2(1 + a )2C11
,

S1143 =
a e31

(1 + a )C11
,

S2243 =
e31

(1 + a )C11
,

S1153 =
a q31

(1 + a )C11
,

S2253 =
q31

(1 + a )C11
,

S4141 =
a

(1 + a ) ,

S4242 =
1

1 + a ,

S5151 =
a

(1 + a ) ,

S5252 =
1

1 + a .

Two extreme cases of the elliptical inclusion are particularly important: a circular
cylindrical inclusion ( a = 1) and thin-disc inclusions ( a ® 0 or a ® ¥ ). Explicit
results for these cases immediately follow from equations (20). In addition, one
can use these results to model slit cracks by expanding SMnAb in a Taylor series in
a and then retaining the lowest order terms. We mention this because one cannot
just set a = 0, but in general must retain the leading terms in a in order to proceed
with the analysis.

4.2. Thin-disc inclusion
For a thin-disc inclusion we have a1 = a2 and a = a3 /a1 ® 0. The nonzero SMnAb

are:

S3311 = S3322 =
·33q31q33 + ¹33e31e33 + C13·33¹33 - a33(a33C13 + e33q31 + e31q33)

·33q2
33 + ¹33e2

33 + C33·33¹33 - a2
33C33 - 2a33e33q33

,

S2323 = S2332 = S3223 = S3232 = S1313 = S1331 = S3113 = S3131 = 1
2 ,

S2342 = S3242 = S1341 = S3141 =
e15

2C44
,

S2352 = S3252 = S1351 = S3151 =
q15

2C44
, (21)

S4311 = S4322 =
a33(C33q31 - C13q33) + q33(e33q31 - e31q33) - ¹33(C33e31 - C13e33)

¹33(e2
33 + C33·33) - a33(a33C33 + e33q33) - q33(a33e33 - ·33q33)

,

S5311 = S5322 =
a33(C33e31 - C13e33) - e33(e33q31 - e31q33) - ·33(C33q31 - C13q33)

¹33(e2
33 + C33·33) - a33(a33C33 + e33q33) - q33(a33e33 - ·33q33)

,

S3333 = S4343 = S5353 = 1.
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Note that for both elliptical cylinder and thin-disc inclusion shapes, there are no
coupling terms for the Eshelby tensor between the electric and magnetic ® elds, i.e.
S4151 , S4252 , S4353 , S5141 , S5242 and S5343 are identically zero. This is despite the fact
that constitutive coupling exists, i.e. a11 and a33 are nonzero.

§ 5. Conclusion

We have used Eshelby’ s (1957) approach to analyse the ® elds in and around
inclusions and inhomogeneities in anisotropic solids exhibiting full coupled-® eld
behaviour. Explicit results are given for coupling between elastic, electric and mag-
netic ® elds. The key results of this study are the expressions for the generalized
Eshelby tensors that can in general be evaluated by a simple numerical integration
over the surface of a unit sphere. For certain inclusion shapes in transversely iso-
tropic media, closed-form expressions were obtained for the Eshelby tensors. The
explicit expressions for the generalized Eshelby tensors can be used in the same
manner as Eshelby’ s tensor for elastic inclusions to solve a wide range of problems
in the mechanics and physics of heterogeneous media. These include the study of
internal ® elds, e� ective moduli of heterogeneous media, cracks and phase transfor-
mations. Furthermore, the results presented here can serve as the backbone for
micromechanically based nonlinear constitutive modelling of ferroelectric and ferro-
magnetic media.
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