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Electromagnetic fields induced in a uniaxial multiferroic material by a point source or an
ellipsoidal inclusion
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Multiferroic materials possess two or more types of orders simultaneously that couple the electric and
magnetic fields, rendering them a rich variety of microstructural phenomena and macroscopic properties. In
this paper, we derive explicit closed-form expressions of magnetoelectric Green’s functions for uniaxial mul-
tiferroic materials induced by a point electric or magnetic charge, and use them to determine the electromag-
netic fields in an ellipsoidal inclusion with spontaneous polarization and magnetization embedded in a multi-
ferroic material. Numerical results show that for a typical multiferroic composite, it is easier to induce
magnetic field by electric charge or spontaneous polarization, suggesting that it is probably easier to manipu-
late the electric polarization by a magnetic field in those composites. We expect our solutions to have a wide
range of applications in mesoscopic analysis of multiferroic materials.
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I. INTRODUCTION

Multiferroic materials possess two or more types of orders
simultaneously that couple the electric and magnetic fields,
rendering them a rich variety of microstructural phenomena
and macroscopic properties. For example, it is possible to
manipulate the ferroelectric state of a multiferroic material
through the magnetic field or vice versa, which is not only
appealing scientifically, but also makes it promising for a
wide range of applications, including electrically controlled
microwave phase shifters or ferromagnetic resonance de-
vices, magnetically controlled electro-optic or piezoelectric
devices, broadband magnetic field sensors, and magnetoelec-
tric memory devices. As a result, there has been renewed
interest in magnetoelectric effect of multiferroic materials
over the last few years, and significant progress has been
made in the experimental studies of multiferroic materials in
both single-phase and multi-phase forms. For single-phase
multiferroic materials, the coupled magnetic and electric do-
mains have recently been observed,1,2 and the magnetic con-
trol of polarization and electric control of magnetization
have been demonstrated.3–7 For multi-phase multiferroic ma-
terials, a variety of magnetoelectric composites consisting of
ferroelectric and ferromagnetic phases have been
fabricated,8–15 with the magnetoelectric coupling much
higher than that of single-phase materials.

The rapid experimental progress demands a better theo-
retical analysis and understanding of multiferroic materials.
In particular, a fundamental solution of electromagnetic
fields in a multiferroic material in the presence of both elec-
tric and magnetic ordering is needed. Such a solution is not
only essential for the analysis of magnetoelectric domains in
a single-phase multiferroic material, such as switching of the
polarization by a magnetic field or vice versa, but is also
necessary for the predictions of the effective magnetoelectric
coefficients of multiferroic composites. And thus in this pa-
per, we seek to determine the distribution of electric and
magnetic fields in a multiferroic material induced by a point
source or an ellipsoidal inclusion using the Green’s function

method, which complements recent first-principle studies of
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single-phase multiferroic materials16 and micromechanical
analysis of multiferroic composites.17–24 Such a solution can
serve as the cornerstone for the mesoscopic analysis of mul-
tiferroic materials.

As the core of singular integral methods, Green’s func-
tions are essential to many problems in the mechanics and
physics of solids,25,26 for example, in the analysis of hetero-
geneous piezoelectric materials.27–29 In the past few years,
there have been attempts to derive Green’s functions for sol-
ids with full couplings between elastic, electric, and mag-
netic fields.30–32 However, there is rarely a material that pos-
sesses all the couplings simultaneously, and the full
magneto-electro-elastic coupling makes the analysis inevita-
bly complicated and an explicit solution of Green’s functions
virtually impossible, rendering the analysis difficult to use.
And thus in this paper we will focus on magnetoelectric cou-
pling only that is relevant to many multiferroic materials,
especially single-phase one. In particular, we seek to derive
explicit closed-form expressions of magnetoelectric Green’s
functions for uniaxial multiferroic materials in the presence
of point electric or magnetic charge, and use them to deter-
mine the electromagnetic fields in an ellipsoidal inclusion
with spontaneous polarization and magnetization embedded
in a multiferroic material. Such a solution will find a wide
range of applications in the analysis of multiferroic materi-
als, for example the evolution of domain configurations in a
single-phase multiferroic material, and the effective proper-
ties of multiferroic composites.

II. MAGNETOELECTRIC GOVERNING EQUATIONS

For a multiferroic material that possesses electric and
magnetic orderings simultaneously, namely spontaneous po-
larization Pi

s and magnetization Mi
s, the electric field Ei and

magnetic field Hi are coupled together through the linear
magnetoelectric coefficient ail. For example, the electric dis-
placement in the material cannot only be induced by an elec-
tric field, but may also be induced by a magnetic field. As
such, the behavior of the multiferroic materials is governed
by the following constitutive equations:
©2006 The American Physical Society-1
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�Di

Bi
� = ��il ail

ail �il
��El

Hl
� + � Pi

s

Mi
s� , �1�

where �il and �il are dielectric permittivity and magnetic
permeability, and Di and Bi are electric displacement and
magnetic flux, which satisfy Gauss’s equation in the presence
of free electric and magnetic charges �e and �m,

�Di,i

Bi,i
� = ��e

�m
� . �2�

The electric and magnetic fields, on the other hand, can be
derived from electric potential � and magnetic potential �,

�Ei

Hi
� = − ��,i

�,i
� , �3�

where the electric potential cannot only be induced by an
electric charge, but may also be induced by a magnetic
monopole, due to the magnetoelectric coupling. In these
equations, Latin subscripts range from 1 to 3 and repeated
Latin subscripts are summed from 1 to 3; the subscript
comma is used to denote partial differentiation with respect
to xi. Also notice that the magnetic charge is introduced for
mathematical convenience, as we elaborate later. Combining
Eqs. �1�–�3�, we obain the governing equation for the multi-
ferroic magnetoelectric material in the absence of free elec-
tric and magnetic charges,

��il ail

ail �il
���,li

�,li
� = � Pi,i

s

Mi,i
s � , �4�

from which it is clear that the divergences of spontaneous
polarization and magnetization function as electric charge
−�e and magnetic charge −�m. As such, although magnetic
charge or monopole does not exist, the distribution of mag-
netization may lead to a nonzero divergence, which produces
a magnetic field that is equivalent to that of magnetic charge.
The problem then is to determine the electric and magnetic
fields in the material for a given distribution of electric and
magnetic charges, and Green’s function method can be used
for this purpose.

We are particularly interested in a uniaxial multiferroic
material having the unique axis along x3, with the constitu-
tive moduli given by

�
�11 0 0 a11 0 0

0 �11 0 0 a11 0

0 0 �33 0 0 a33

a11 0 0 �11 0 0

0 a11 0 0 �11 0

0 0 a33 0 0 �33

� , �5�

which can be used to represent a wide range of multiferroic
materials, including tetragonal and hexagonal multiferroic
crystals, and transversely isotropic multiferroic composites.
As a result, the governing equation can be rewritten as
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�A11 A12

A21 A22
���

�
� = − ��e

�m
� , �6�

where

A11 = A22 = a11� �2

�2x1
+

�2

�2x2
� + a33

�2

�2x3
,

A12 = �11� �2

�2x1
+

�2

�2x2
� + �33

�2

�2x3
,

A21 = �11� �2

�2x1
+

�2

�2x2
� + �33

�2

�2x3
.

This is the equation we seek to solve for electric potential �
and magnetic potential � with given distribution of electric
and magnetic charges.

III. MAGNETOELECTRIC GREEN’S FUNCTIONS

To be specific, we consider a unit point electric or mag-
netic charge in the material locating at the source point x�,
and seek to determine the electric and magnetic potentials at
observing point x. Due to the magnetoelectric coupling in the
material, the electric charge will not only induce an electric
field, but will also induce a magnetic field, while the mag-
netic charge will not only induce a magnetic field, but will
also induce an electric field. As such, four magnetoelectric
Green’s functions G�	�x−x��, where the Greek subscripts
range from 1 to 2, can be introduced for this purpose, which
have the following physical interpretations,

G11�x−x��: the electric potential at x due to a unit point
electric charge at x�;

G21�x−x��: the magnetic potential at x due to a unit point
electric charge at x�;

G12�x−x��: the electric potential at x due to a unit point
magnetic charge at x�;

G22�x−x��: the magnetic potential at x due to a unit point
magnetic charge at x�.
In addition, the following boundary conditions have to be
satisfied: �1� � and � vary as 1/r for r→0 where r= 	x
−x�	; �2� � and � vanish when r→
; �3� the resultant elec-
tric displacement acting on the surface of an infinitesimal
region centered at the source point is equivalent to the ap-
plied point electric charge; and �4� the resultant magnetic
flux acting on the surface of an infinitesimal region centered
at the source point is equivalent to the applied point mag-
netic charge. Without loss of generality, we assume that the
source point is located at the origin in the following deriva-
tion.

Following similar ideas in elasticity33 and
piezoelectricity,27 a magnetoelectric potential function g is
introduced, such that the electric potential � and the mag-
netic potential � can be expressed as

��

�
� = � A11

− A21
�g . �7�

Substituting Eq. �7� into Eq. �6�, we obtain a differential

equation governing g,
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�� �2

�x1
2 +

�2

�x2
2�2

+
a

c
� �2

�x1
2 +

�2

�x2
2� �2

�x3
2 +

b

c

�4

�x3
4�g = 0, �8�

where

a = 2a11a33 − �11�33 − �33�11,

b = a33
2 − �33�33,

c = a11
2 − �11�11

are constants that depend on the constitutive moduli. Equa-
tion �8� can then be rewritten as a z-weighted dual-harmonic
function,

� �2

�x1
2 +

�2

�x2
2 +

1

v1
2

�2

�x3
2�� �2

�x1
2 +

�2

�x2
2 +

1

v2
2

�2

�x3
2�g = 0, �9�

where −1/v1
2 and −1/v2

2 are roots of the quadratic equation

s2 +
a

c
s +

b

c
= 0, �10�

and thus they only depend on the constitutive moduli of the
material. Considering the axial symmetry of the problem,
and taking into account the first two boundary conditions, we
propose the following form of g,

g = 

�=1

2

�A�v�x3ln�R� + v�x3� + B�R�� , �11�

where R�=
x1
2+x2

2+v�
2x3

2, and A� and B� are constants to be
determined. Notice that no summation is implied for the re-
peated Greek subscript. Since g satisfies Eq. �9�, we have

� �2

�x1
2 +

�2

�x2
2 +

1

v�
2

�2

�x3
2� f� = 0, �12�

where

f� = �A�v�x3 ln�R� + v�x3� + B�R�� .

After considerable manipulation, it is established that

A� = − B�, �13�

which leads to

� = 

�=1

2
�− a11 + a33v�

2�A�

R�

, � = 

�=1

2
��11 − �33v�

2�A�

R�

.

�14�

In order to determine A�, we recall the last two boundary
conditions. First let us consider a unit point electric charge
such that �e=1 and �m=0 at the origin, which requires

�
S

DinidS = 1, �
S

BinidS = 0, �15�

where ni is the outward surface normal. The corresponding
constants, denoted by A�

e , are then determined as

A1
e =

C4 , A2
e =

− C3 .

J J
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In a similar manner, we can determine constants A�
m when

there is only a unit magnetic charge at the origin,

A1
m =

− C2

J
, A2

m =
C1

J
,

with the constants given in the following:

J = C1C4 − C2C3,

C1 = 4�v1�a33�11 − �33a11� ,

C2 = 4�v2�a33�11 − �33a11� ,

C3 = 2��h1��11�11 − a11
2 + 2a11a33v1

2 − �11�33v1
2 − �33�11v1

2

+ a33
2 v1

4 + �33�33v1
4� + 2v1��33�11 − a33a11 + a33

2 v1
2

− �33�33v1
2�� ,

C4 = 2��h2��11�11 − a11
2 + 2a11a33v2

2 − �11�33v2
2 − �33�11v2

2

+ a33
2 v2

4 + �33�33v2
4� + 2v2��33�11 − a33a11 + a33

2 v2
2

− �33�33v2
2�� ,

h� =

2 arctan
1 − v�
2

v�
2

�1 − v�
2�3/2 −

2v�

1 − v�
2 .

The explicit, closed-form expressions of the magnetoelectric
Green’s functions can then be obtained from our solutions,

G11�x� = 

�=1

2
�− a11 + a33v�

2�A�
e

R�

,

G21�x� = 

�=1

2
��11 − �33v�

2�A�
e

R�

,

G12�x� = 

�=1

2
�− a11 + a33v�

2�A�
m

R�

,

G22�x� = 

�=1

2
��11 − �33v�

2�A�
m

R�

.

Although it is not obvious, the Green’s functions are sym-
metric in the sense that G12=G21. Notice that in an infinite
body, only the relative position to the source point matters.

From the explicit expressions of Green’s functions, it ap-
pears that they could be zero when the material is uncoupled,
i.e., when the magnetoelectric coefficients are zero. This is
not true, since Ai

e and Ai
m will approach infinity under such

circumstances, and the limit of G�	 exists when aij→0. In
fact, the limits of these expressions when aij→0 do recover
the well-known solutions for a single-ferroic material, di-
electric or magnetic, in which the electric and magnetic
fields are uncoupled. Similar conclusion can also be drawn

for cubic or isotropic materials where a11=a33. Such degen-
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eracies do not present an obstacle to the application of our
solutions, because a valid numerical solution can be obtained
by slightly perturbing one or several moduli in a degenerate
set of material constants to eliminate the degeneracy.

To demonstrate our solutions, we present a numerical re-
sult of Green’s functions as shown in Figs. 1–3 for a multi-
ferroic material, with the material constants listed in Table I.
Since no constitutive moduli for any single-phase multifer-
roic material is completely determined, we use the values
that are typical for a multiferroic composite consisting of
ferroelectric and ferromagnetic phases. Because all the
Green’s functions have axial-symmetry along x3, we plot
them using two-dimensional cylindrical coordinates r and x3.
The figures on the top provide the distribution of the Green’s
functions in the whole space while the figures at the bottom
show more details about the Green’s functions near the
source point. From these figures, it is clear that the distribu-
tions of different Green’s functions are very similar, while
the magnitudes vary significantly. In particular, the electric
potentials induced by a unit electric and magnetic charges
are different by eight orders of magnitude, while the differ-

FIG. 1. �Color online� The distribution of the Green’s function
G11 in space.
ence between magnetic potentials are different by only two

184416
orders of magnitude. This suggests that the manipulation of
an electric charge by a magnetic field might be easier than
the manipulation of the magnetic charge by an electric field
for a typical multiferroic composite.

IV. MAGNETOELECTRIC INCLUSION PROBLEM

Now instead of point charges, let us consider an inclusion
� embedded in an infinite multiferroic material. The inclu-
sion has the same magnetoelectric moduli �il, �il, and ail as
the matrix, but has spontaneous polarization Pi

s and magne-
tization Mi

s that are absent in the matrix. As such, it could be
a domain in a multiferroic crystal, or a particle in a multifer-
roic composite. There is no electric or magnetic field applied
at the boundary of the infinite multiferroic matrix, yet the
electric and magnetic fields can still be induced in the mate-
rial since the divergences of spontaneous polarization and
magnetization function as electric and magnetic charges. In
order to determine the electric and magnetic potentials in-
duced by the spontaneous polarization and magnetization in

FIG. 2. �Color online� The distribution of the Green’s function
G22 in space.
the inclusion, we resort to the Green’s functions we derived,
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���x�
��x� � = − �

�

�G11 G12

G21 G22
�� Pi,i�

s

Mi,i�
s �dV�x��

+ �
��

�G11 G12

G21 G22
�� Pi

sni

Mi
sni
�dS�x�� , �16�

where the first term is due to the volume charges in �, with
the differentiation taken with respect to xi�, and the second
term is due to the interface charge at ��, induced by the
discontinuity of polarization and magnetization at the bound-
ary of �. Applying the divergence theorem to the equation,
we obtain

FIG. 3. �Color online� The distribution of the Green’s function
G12 in space.

TABLE I. The constitutive moduli of a multiferroic
material.a

a11 a33 �11 �33 �11 �33

5 3 8 9.3 5.9 1.57

aUnits: dielectric permittivity 10−11 C2/N m2; magnetic permeabil-
−4 2 2 −12
ity 10 N s /C ; magnetoelectric coefficient 10 N s/VC.

184416
���x�
��x� � = − �

�

�G11,i G12,i

G21,i G22,i
�� Pi

s

Mi
s�dV�x�� , �17�

where the differentiation is taken with respect to xi.
We are particularly interested in the ellipsoidal inclusions

given by

� x1�

a1
�2

+ � x2�

a2
�2

+ � x3�

a3
�2


 1, �18�

where ai are the dimensions of the inclusion along the xi
axis. The ellipsoidal inclusions can be used to represent a
wide range of micro-geometries, including fibers, particles,
and laminates, commonly observed in heterogeneous materi-
als. For such an ellipsoidal inclusion with uniform polariza-
tion and magnetization, the volume integral in Eq. �17� can
be expressed in terms of the spherical coordinates for an
arbitrary point x inside the inclusion,

���x�
��x� � = �

�

�g11i�l� g12i�l�
g21i�l� g22i�l�

�� Pi
s

Mi
s�sin �d�d�dr ,

�19�

with

gMJi�l� = − r2GMJ,i�x − x��, l =
x� − x

r
, r = 	x� − x	 .

After integrating Eq. �19� with respect to r, we obtain

���x�
��x� � = �

��

�g11i�l� g12i�l�
g21i�l� g22i�l�

�� Pi
s

Mi
s�r�l�sin �d�d� ,

�20�

where r�l� is the boundary of the inclusion, satisfying

� x1 + rl1

a1
�2

+ � x2 + rl2

a2
�2

+ � x3 + rl3

a3
�2

= 1. �21�

We thus have

l = �sin � cos �,sin � sin �,cos ��

on the boundary of the inclusion, which allows us to derive

���x�
��x� � = xk�

��

�k

m
�g11i�l� g12i�l�

g21i�l� g22i�l�
�� Pi

s

Mi
s�sin �d�d� ,

�22�

where

� = �−
sin � cos �

a1
2 ,−

sin � sin �

a2
2 ,−

cos �

a3
2 � ,

m =
sin2 � cos2 �

a1
2 +

sin2 � sin2 �

a2
2 +

cos2 �

a3
2 . �23�

Differentiating Eq. �22� with respect x then yields

�Ei

Hi
� = �Qij

11 Qij
12

Qij
21 Qij

22�� Pj
s

Mj
s� , �24�
where

-5



LIANGJUN LI AND JIANGYU LI PHYSICAL REVIEW B 73, 184416 �2006�
�Qij
11 Qij

12

Qij
21 Qij

22� = − �
0

2� �
0

� �i

m
�g11j�l� g12j�l�

g21j�l� g22j�l�
�sin �d�d� .

�25�

The integral in Eq. �25� can be evaluated when a1=a2=�a3,
resulting in 4 second-rank tensors Qij

�	 that relate the electric
and magnetic fields inside the ellipsoidal inclusion to its
spontaneous polarization and magnetization,

Q11
11 = Q22

11 = 

	=1

2

�a11 − a33v	
2�A	

e K1�v	� ,

Q33
11 = 


	=1

2

�a11 − a33v	
2�A	

e K2�v	� ,

Q11
12 = Q22

12 = 

	=1

2

�a11 − a33v	
2�A	

mK1�v	� ,

Q33
12 = 


	=1

2

�a11 − a33v	
2�A	

mK2�v	� ,

Q11
21 = Q22

21 = 

	=1

2

�− �11 + �33v	
2�A	

e K1�v	� ,

Q33
21 = 


	=1

2

�− �11 + �33v	
2�A	

e K2�v	� ,

Q11
22 = Q22

22 = 

	=1

2

�− �11 + �33v	
2�A	

mK1�v	� ,

Q33
22 = 


	=1

2

�− �11 + �33v	
2�A	

mK2�v	� , �26�

where K1�v	� and K2�v	� are given by

K1�v	� = 2���2 − v	
2�−3/2�− v	


�2 − v	
2

+ �2 arctan�
�2 − v	
2/v	�� ,

K2�v	� = 4��2v	��2 − v	
2�−3/2�
�2 − v	

2

− v	 arctan�
�2 − v	
2/v	�� .

Although K1 and K2 are generally complex, Qij
�	 are always

real. Notice that Qij
11 relates the electric field and spontaneous

polarization in the inclusion, Qij
22 relates the magnetic field

and spontaneous magnetization in the inclusion, and Qij
12

=Qij
21 are additional factors due to the magnetoelectric cou-

pling, relating electric field to magnetization, and magnetic
field to polarization. When the magnetoelectric coefficient

11
ail→0, it is easy to show that the limit of Qij recovers the

184416
well-known depolarization factor for an uncoupled dielec-
trics, while the limit of Qij

22 recovers the well-known demag-
netization factor for an uncoupled magnets.

To demonstrate our results, we calculated the electric field
Ei and the magnetic field Hi inside an ellipsoidal inclusion as
a function of the shape aspect ratio of the inclusion �
=a1 /a3, induced by a unit spontaneous polarization or mag-
netization along x3, shown in Figs. 4 and 5. The constitutive
moduli used in the calculation is listed in Table I, which is
typical for a multiferroic composite. As expected, no electric
or magnetic field is induced when the inclusion is a cylinder
with �→0, and the electric and magnetic fields are maxi-
mum for the lamellar inclusion when 1/�→0. Also, it is
noticed that the difference between the magnetic field in-
duced by a unit magnetization and polarization is much

FIG. 4. The electric and magnetic fields E3 and H3 inside an
ellipsoidal inclusion with unit polarization −P3

s versus the shape
aspect ratio � of the inclusion in a multiferroic material.

FIG. 5. The electric and magnetic fields E3 and H3 inside an
ellipsoidal inclusion with unit magnetization −M3

s versus the shape

aspect ratio � of the inclusion in a multiferroic material.
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smaller than the difference between the electric field induced
by a unit polarization and magnetization, consistent with our
calculations for Green’s functions. This again suggests that
for a typical multiferroic composite, it is probably easier to
manipulate the polarization by a magnetic field than manipu-
lating the magnetization by an electric field, which may ex-
plain that while the polarization has been reversed by a mag-
netic field in multiferroic materials,5 no magnetization
reversal by an electric field has been reported yet. Instead, it
has been observed that an electric field can change the mag-

6
netic structure of multiferroic materials.

J. G. Wan, Z. Y. Li, Y. Wang, M. Zeng, G. H. Wang, and J. M.

184416
V. CONCLUDING REMARKS

In summary, we have derived the magnetoelectric Green’s
functions explicitly for uniaxial multiferroic materials, and
used them to determine the electric and magnetic fields in a
ellipsoidal inclusion with spontaneous polarization and mag-
netization. Numerical results using constitutive moduli typi-
cal for a multiferroic composite show that it is easier to in-
duce magnetic field by electric charge or spontaneous
polarization, suggesting that it is probably easier to manipu-
late the electric polarization by a magnetic field for a typical

multiferroic composite.
*Electronic address: jjli@u.washington.edu
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