UW Micro Home UW Home
Home | Welcome | Academics | Courses | Research | News & Events | Support UW Micro | Directory | Diversity | Terms | Privacy
 
 
 
Return to Faculty Index
 

Denise Galloway
Research Professor of Microbiology
Member, Fred Hutchinson Cancer Research Center

Website
Email: dgallowa@fhcrc.org
Phone:(206) 667-4500
Office Location: Fred Hutchinson Cancer Research Center
Campus Box: 358080

 

 

 

Research:

Our lab is interested in the mechanisms by which human papillomaviruses (HPVs) contribute to epithelial cancers. Most of our research has focused on the HPVs that have a high risk of progression to cervical cancers, such as HPV 16. We have sought to determine how the E6 and E7 oncoproteins disrupt the cell cycle checkpoints that normally maintain genomic integrity, and how E6/E7 facilitates the immortalization of primary human cells in culture. Much of our current effort is directed towards understanding how and why E6 activates and increases expression of hTERT, the catalytic subunit of telomerase. We are also studying the mechanisms by which other oncogenes, such as c-MYC and Ha-RAS immortalize cells, and the tumor supressors that constrain these activities.

In addition to mechanistic studies, we have had long-standing collaborations with epidemiologists and clinicians to understand the natural history of genital HPV infections, and the risk factors that cause only a small subset of women infected with high risk HPVs to progress to cancer. To aid in these studies we have developed serologic assays to detect and characterize HPV-specific antibodies. The recent establishment of multiplex assays in our lab is affording a more comprehensive assessment of the prevalence of HPV infections.

More recently we have begun to study a different group of HPVs, known as the genus beta HPVs. These beta HPVs commonly infect skin, and may play a role in squamous cell skin cancers (SCSC). However unlike the genital HPVs, the genus beta HPV E6/E7 proteins do not target p53 or Rb for degradation, nor do the beta HPVs persist during tumor progression. We have developed methods to detect beta HPV DNA and antibodies, are collaborating in studies to define the role of beta HPV infection in SCSC in a cohort of organ transplant recipients, and are studying the role of E6/E7 in blocking UV-induced apoptosis, as well as other functions of E6/E7.

Selected Publications:

Carter, J.J., Wipf, G.C., Madeleine, M.M., Schwartz, S.M., Koutsky, L.A., Galloway, D.A. Identification of human papillomavirus type 16 L1 surface loops required for neutralization by human sera. J. Virol. 80:4664-72. 2006.


Katzenellenbogen, R. A., Egelkrout, E. M., Vliet-Gregg, P., Gewin, L.C., Gafken, P.R., Galloway, D.A. NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6 expressing cells. J. Virol. 81:3786-3796. 2007.


Bedard, K.M., Underbrink, M.P., Howie, H.L., Galloway, D.A. The E6 oncoproteins from human betapapillomaviruses differentially activate telomerase through an E6AP-dependent mechanism and prolong the lifespan of primary keratinocytes. J. Virol. 82: 3894-3902. 2008.


Xu, M., Luo, W., Elzi, D., Grandori, C., Galloway, D.A. NFX1 represses hTERT transcription by recruiting the Sin3A co-repressor. Mol. Cell. Bio. 28(15):4819-28. 2008.


Madeleine, M.M., Johnson, L.G., Smith, A.G., Hansen, J.A., Nisperos, B.B., Li, S., Zhao, L.P., Daling, J.R., Schwartz, S.M., Galloway, D.A. Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res. 68:3532-3539. 2008.

 



 

 



 

Department of Microbiology · University of Washington · Box 357735 · Seattle WA 98195-7735

phone: (206) 543-5824 · fax: (206) 543-8297 · micro@u.washington.edu