Periodic Structure Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University ### Suggested Reading Materials • An excellent (and free!) book on nonlinear optical fibers by J.D. Joannopoulos, S.G. Johnson, J.N. Winn, and R.D. Meade, Photonic Crystals: Molding the Flow of Light. Chapter 9 discusses photonic-crystal fibers. #### Materials Covered - Bragg grating - Grating Coupler - Long period grating - Photonic crystal - Metamaterial ### Grating Coupler The light coupled into the thin film is achieved by the fact that the diffracted incident light is phase-matched to a mode of the film. Grating couplers viewed as surface-wave to leaky-wave converter (output coupler) Because of its periodic nature, the grating perturbs the waveguide modes in the region underneath the grating, thus causing each one of them to have a set of spatial harmonics with z-direction propagation constants given by $$\beta_{v} = \beta_{0} + \frac{v2\pi}{\Lambda}, \quad v = 0, \pm 1, \pm 2, ...$$ The fundamental factor is approximately equal to the of the particular mode in the waveguide region not covered by the grating. Because of the negative values of v, the phase matching condition $\beta_m = k n_1 \sin \theta_m$ (continuity of tangential field component) can now be satisfied so that $$\beta_{\rm v} = k n_{\rm l} \sin \theta_{\rm m}$$ ### Why grating coupler? - 1. A simple reproducible and permanent coupler compatible with planar device technology. - 2. The grating coupler can also be used on high-index semiconductor waveguide where it is difficult to obtain suitable prism material. ### Example Grating: $\Lambda = 0.4 \mu m$ on a GaAs planar waveguide $$\lambda_{\rm o} = 1.15 \mu \rm m$$ Propagation constant for the lowest-order mode in the waveguide: β_0 =3.6k Assume 1st order coupling, |v| = 1, what incident angle should the Light make in order to coupe to the lowest-order mode? ### Assignment Grating: $\Lambda = 0.4 \mu m$ on a SiO planar waveguide $$\lambda_{\rm o} = 1.310 \mu \rm m$$ Propagation constant for the lowest-order mode in the waveguide: β_0 =3.6k Assume 1st _order coupling, |v| = 1, what incident angle should the Light make in order to coupe to the lowest-order mode? At what λ_0 do we start to need higher-order coupling? W.Wang wang # Photonic Crystal Table 1. Comparison of FOSs. | FOS Technology | Advantages | Disadvantages | Remarks | Main
Applications | |---|--|--|--|--| | Standard FBGs | Most accepted
technology, allows
for point
measurements of
strain and
temperature | Temperature and
strain cross
sensitivity issues | Typical strain
sensitivity
-1.2 pm/με and
typical temperature
sensitivity
-11.6 pm/°C | Strain, temperature,
vibration, cure
process, localized
damage, etc. | | FBGs written in
MOF | Can discriminate
both axial and
transverse strain
components of
composite material
with insignificant
temperature
sensitivity | FBGs written in
bow-tie fibers have
temperature and
strain cross
sensitivity. But FBGs
written in MOF have
lower strain
sensitivity compared
to FBGs written in
bow-tie fibers. | The cross-sensitivity issue can be resolved by using FBGs written in low temperature sensitive MOFs | Multi directional
strain sensing,
localized damage,
etc. | | Interferometric
fiber optic
sensors | Possesses higher
temperature and
strain sensitivities
and are flexible in
terms of size | Temperature and
strain cross
sensitivity issue, and
brittle sensor | The cross-sensitivity issue can be resolved by using low temperature sensitive MOFs | Strain, temperature,
vibration, cure
process, localized
damage, etc. | | Polarimetric
sensors | Sensitivity can be
tuned by choosing
different optical fiber
types and sensor
lengths | Difficult to measure
strain/temperature
at localized points,
provide information
averaged over the
sensor's length | The cross-sensitivity issue can be resolved by using low temperature sensitive HB-PM-PCF | Strain, temperature, vibration, cure process, etc. | | Fiber optic micro
bend sensors | Can measure
continuous strain
profile in a composite
material using single
optical fiber | Low accuracy | Output signal is
strongly attenuated
by any mechanical
wave propagating
in the composite
material | Delamination and damage detection | | Distributed sensors | Can measure
continuous
strain/temperature
profile in a composite
material using single
optical fiber | For better resolution
require the use of
spectral
demodulation
techniques that are
expensive and bulky | Appropriate
sensing technology
can be selected
based on the
application and its
requirements | Strain, temperature,
delamination,
damage detection | | Hybrid sensors | Two or more FOS operate in a combined manner to eliminate the disadvantages of individual FOSs providing accurate and independent strain/temperature information | Since two or more
sensors are
employed
complicated
interrogation
methods are needed | Capable of
discriminating
between strain,
temperature and
thermal strain | Strain, thermal
strain, temperature,
vibration, cure
process, damage
point, etc. | M. Ramakrishnan, Sensors, 2016 # Photonic Crystal Fiber #### **Metamaterial** #### Stealth? MICRO TECH AB DEPARTMENT OF MECHANICAL ENGINEERING UNIVERSITY OF WASHINGTON #### What's a Metamaterial? MICRO TECH AB - Meta-? - Alloy? - Concrete? - Artificially engineered materials - V.G.Veselago (1968) Theory - J.B.Pendry (1996, 1998) -ε (thin wires) - J.B.Pendry (1999) -µ (split-ring resonator) - D.R.Smith (2000) LHM (combo) - Applications - Wave manipulation: -n, cloaking, superlens, transformation optics - How to categorize it? # Electromagnetic response MICRO TECH AB From the electromagnetic point-of-view, an atom is just an electric or magnetic, *polarizable* dipole. # MICRO TECH # Electromagnetic response LAB A material is a collection of electric and magnetic dipoles. Homogenization allows this collection to be *continuous*. # MICRO TECH AB #### What are metamaterials? Maxwell's equations do not *know* about atoms or molecules — all they *know* are magnetic and electric dipoles! We can use any object to create a dipole response, and use that object to form an artificial material, or metamaterial. # **M**ICRO #### TECH **L** AB #### **Circuit Metamaterials** #### **M**ICRO TECH AB #### **Circuit Metamaterials** non-resonant, positive dielectric response $$\varepsilon(\omega) = 1 + \frac{\omega_p^2}{\omega_0^2}$$ resonant, magnetic response $$\mu(\omega) = 1 - \frac{F\omega^2}{\omega^2 - \omega_{0,m}^2}$$ ## **Metamaterial Response** MICRO TECH AB # Epsilon-Negative (ENG) Metamaterials Frequency dispersive Drude Model $$\varepsilon_{rz} = \varepsilon_{rz}' - j\varepsilon_{rz}'' = 1 - \frac{f_{ep}^2}{f^2 - j\gamma_e f/2\pi}$$ $$Au:\omega_{p_Au}=1.37\times 10^4~THz$$ # Mu-Negative (MNG) Metamaterials MICRO TECH LAB Frequency dispersive Lorentz Model $$\mu_{rx} = \mu_{rx}' - j\mu_{rx}'' = 1 - \frac{f_{mp}^2 - f_{mo}^2}{f^2 - f_{mo}^2 - j\gamma_m f/2\pi}$$ $$\mu_{x'} \approx 1$$ $$\mu_{y'} \approx 1$$ $$\mu_{x'} < 0$$ $$\omega_{mo} = \frac{1}{\sqrt{LC}} = \frac{1}{l} \frac{c}{\varepsilon_c} \sqrt{\frac{d}{w}}$$ S Linden et al. Science 2004;306:1351-1353 DEPARTMENT OF MECHANICAL ENGINEERING UNIVERSITY OF WASHINGTON 22 # Double negative (DNG) metamaterials MICRO TECH LAB DEPARTMENT OF MECHANICAL ENGINEERING UNIVERSITY OF WASHINGTON #### **Terahertz** #### What is TeraHertz? - THz radiation (EM wave) - THz wave (0.1 THz to 10THz, 30μ m to 3mm) - Non-ionizing & non-destructive (frequency is low) - Penetrate most of dielectric material (fabric, plastic or tissue) - Several absorption lines for water - Rotational & vibrational frequencies of most molecules Confidentia DEPARTMENT OF MECHANICAL ENGINEERING ——UNIVERSITY OF WASHINGTON # Physical Limitations of Existing THz sources M. Tonouchi, Nature Photonics 1 (2007) ## **THz Applications** MICRO TECH AB Medical Imaging Wallace et. al, Faraday Discuss (2004) Biological and Genomic studies Nagel et. al, (RWTH Aachen) Security Screening http://www.teraview.com Based on Imaging or Spectrum measurement! Pharmaceutical Industry Taday, Pharma. Sci. 92 (2003) Industrial Quality Control Hu et. al, Optics Lett. 20 (1995) Atmospheric /space studies T. G. Phillips et. al., Proc. IEEE 80,(1992) DEPARTMENT OF MECHANICAL ENGINEERING •University of Washington