Introduction to microsensors and microactuators

Wei-Chih Wang Department of Mechanical Engineering University of Washington 7/6/2006

Class Information

- Instructor: Wei-Chih Wang, Ph.D.
- Office: S606 (Phone: 206-543-2479)
- Grading: 3 credits
- Class Time: MTW 10:00-12:00 AM (S607)
- Course website: http://depts.washington.edu/mictech/optics/sensors/index.html
- Textbooks:
 - Fundamentals of Photonics, B. Saleh, John Wiley& Sons
 - Fiber optic Sensors, E. Udd, John Wiley& Sons
 - Selected papers in micro sensors, MEMS devices, smart materials and micro actuators.
 - EAP Handbook, SPIE

Class Information

• Grading:

- Homework assignments 60% (3 assignments)
- Final Project 40%.
- •Final Project:
 - Choose topics related to sensors and actuators.
 - Details of the project will be announced in mid quarter
 - Two people can work as a team on a project, but each person needs to turn in his/her own final report.
 - Oral presentation will be held in the end of the quarter on your final project

Objectives

• To introduce the student to some basic principles and techniques of micro sensors and actuators

Outline of the class

- Definition of sensor and actuator
- Methodology and materials commonly used in sensors and actuators
- Sensor and actuator examples of each underlying physical principle (including some of my research projects)
- Mainly mechanical sensors and actuators

Schedule

- Week 1. Introduction to basic principal of micro sensors and actuators
- Week 1 Electrostatic transducers capacitive sensors, electrostatic actuators
- Week 1 Cantilever transducer mechanical resonance, damping, and stress analysis
- Week 1 Composite structure
- Week 2 Magnetic transducers typical and non-typical applications of magnetic sensors and actuators
- Week 2. Piezoelectric transducers devices and applications using piezoelectric materials (i.e. PZT, PVDF, ZnO and PTF)
- Week 3 Thermal transducers resistive sensors and actuators (i.e. strain gage, anemometer, bubble jet, SMA, optothermal actuator, etc.)
- Week 3 Electrostrictive and Magnetostrictive transducers
- Week 4. Optical Transducers optical techniques in devices and applications. (Intensity modulation, phase modulation, and other optical techniques)
- Week 4 Smart Materials –electro active polymers (dielectric actuator, ionic polymers, etc.)
- Week 5 Introduction to Biosensors materials and applications.
- Week 5 Final project presentation

Sensor Definition

A device that responds to a physical stimulus, such as thermal energy, electromagnetic energy, acoustic energy, pressure, magnetism, or motion, by producing a signal, usually electrical.

My sensor definition

• Sensors imitating after the five human senses: gustatory (taste), olfactory (smell), tactile, auditory, and visual.

Actuator definition

• A mechanism that puts something into automatic action

Method for sensing and actuation

- Optical
- electrostatic
- magnetic
- Piezoelectric
- thermal

electrostatic actuator

Electrostatic actuator

Comb Drive MEMS motor

electrostatic

In estimating the force generated by an electrostatic actuator, One can begin with Coulomb's law, which give the force Between two point charge,

$$F_{elec} = \frac{1}{4\pi\varepsilon_r\varepsilon_o} \frac{q_1q_2}{x^2}$$

Where x distance separation between two charge $q_1 q_2$. For most realistic electrostatic actuators, the model becomes quite complex, the method most be solved by numerical methods.

First-order approximation

For first order approximation, sometimes one can start with a Parallel-plate capacitor approximation.

For parallel-plate capacitor with plate area, A (neglecting fringe effect), the energy stored at a given voltage, V is given by

$$W = -\frac{1}{2}CV^2 = -\frac{1}{2}\frac{\varepsilon_r \varepsilon_o \,\mathrm{AV}^2}{x}$$

And force between the plates is

$$F = \frac{\partial W}{\partial x}$$

Electrostatic cantilever actuators

An analysis of relationship of applied voltage and deflection in a Micro machined cantilever beam

Based on simple beam deflection equation having electrostatic Force q applied at position x on a beam with length L and width W and tip deflection δ_t is given by

$$d\delta_T = \frac{x^2}{6EI}(3L - x)wq(x)dx$$

Total beam deflection is $\delta_T = \int d\delta_T$ 16

To make the solution of the integral possible, one can assume a square-law curvature of the beam at any point along its length

$$\delta(x) \approx \left(\frac{x}{L}\right)^2 \delta_T$$

This in turn yields a normalized load, F, required to produce a Specified tip deflection,

$$F = \frac{\varepsilon_o w L^4 V^3}{2EId^3} = 4\Delta^2 \left(\frac{2}{3(1-\Delta)} - \frac{\tanh^{-1}\sqrt{\Delta}}{\sqrt{\Delta}} - \frac{\ln(1-\Delta)}{3H}\right)^{-1}$$

Where $\Delta = \delta_T / d$ (normalized deflection at tip)

Based on the normalized force equation, the above curve Shows that at once deflection exceeds a threshold voltage, The position of the tip is unstable and the beam spontaneously Deflects all the way down. The threshold voltage is approximately Given by $18EId^3$

w.wang

$$V_{th} \approx \sqrt{\frac{18EId^3}{5\varepsilon_o L^4 w}}$$

18

Comb Drive Actuators

Electrostatic Comb-Drive Actuator -- Voltage Control

$$C = \frac{\varepsilon A}{g} = \frac{\varepsilon tx}{g}$$
$$W(V,g) = \frac{1}{2}CV^{2}$$
$$W^{*}(V,g) = QV - W(Q,g) = \frac{1}{2}CV^{2}$$
Force per Gap:
$$F_{x} = \frac{\partial W^{*}(V,g)}{\partial x}\Big|_{V} = \frac{\varepsilon V^{2}t}{2g}$$

Total Force: Multiply by the number of gaps

Electrostatic force with voltage control is

- proportional to V²
- inversely proportional to g
- independent of x
 - → Constant force along motion direction
 - No bistability

Typical Electrostatic Force in Microscale

Direction of Force: Increasing Overlap

 $\varepsilon_0 = 8.854 \times 10^{-12} \frac{Farad}{meter}$

E.g., V = 15 Volt

 $F_x = 1 \text{ nN}$

Stability Analysis

- An equilibrium point is unstable if in the presence of small perturbation, the net force does not tend to return it back to equilibrium position
- For stable point, the variation of the net force should be of opposite sign with the perturbation.

Always Stable

Lateral Instability

- To increase the lateral stability
 - Design a spring with large lateral stiffness (or large K_v/K_x ratio)
 - Reduce overlap at V = 0 (small l)
- Lateral stability becomes more critical for comb drives with

Optimum Comb Drive Geometry

These 2 comb drives have the same electrostatic force along the finger direction

Poor lateral instability

Better lateral instability

How to Create Comb Drive Actuators with Small Gaps?

- Smaller gap produces larger force
 - Force of comb drive is inversely proportional to the gap spacing between adjacent combs
 - High force, high resonant frequency
- Sub-micron gap requires expensive lithography (ebeam writing, ..)
- Innovative approach to produce sub-micron fingers
- Lateral stability become more critical
 - Optimize spring design

How capacitor works

 $C = \epsilon A/d$

Condenser microphone

Distribute tactile sensor (capacitive)

Noval PEDAR distribute pressure sensor

3 axis capacitive Accelerometer

British aerospace system and equipment model C3A-02

Analog device accelerometer

ADXL50 accelerometer

Basic Concept

Sensitivity

 Sensitivity is limited by noises, including fluidic damping, circuit noise, shot noise

Damping force noise spectral Density: $S = 4k_BTb$

k_BT: thermal energy b: damping coefficient

Mean-square force noise in 1 Hz: $f_{n,rms} = \sqrt{4k_B T b}$

Mean-square equivalent acceleration noise:

$$a_{n,rms} = \frac{\sqrt{4k_B T b}}{m} = \sqrt{\frac{4k_B T}{m^2}} \left(\frac{m \omega_0}{Q}\right) = \sqrt{\frac{4k_B T \omega_0}{mQ}} \quad \text{unit:} \quad \frac{g}{\sqrt{Hz}}$$

ADXL Differential Capacitive Sensor

Differential Capacitive Sensing

Microfabricated Beams

SU8 Beams

UWMictech