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s-of-function mutations in the human RecQ helicase genes WRN and BLM respectively cause the genetic
ility/cancer predisposition syndromes Werner syndrome and Bloom syndrome. To identify common
nique functions of WRN and BLM, we systematically analyzed cell proliferation, cell survival, and
ic damage in isogenic cell lines depleted of WRN, BLM, or both proteins. Cell proliferation and survival
ssessed before and after treatment with camptothecin, cis-diamminedichloroplatinum(II), hydroxyurea,
uorouracil. Genomic damage was assessed, before and after replication arrest, by γ-H2AX staining,
was quantified at the single-cell level by flow cytometry. Cell proliferation was affected strongly by
tent of WRN and/or BLM depletion, and more strongly by BLM than by WRN depletion (P = 0.005).
oliferation of WRN/BLM-codepleted cells, in contrast, did not differ from BLM-depleted cells (P = 0.34).
epleted and WRN/BLM-codepleted cells had comparably impaired survival after DNA damage, whereas
depleted cells displayed a distinct pattern of sensitivity to DNA damage. BLM-depleted and WRN/BLM-
leted cells had similar, significantly higher γ-H2AX induction levels than did WRN-depleted cells. Our
provide new information on the role of WRN and BLM in determining cell proliferation, cell survival,
nomic damage after chemotherapeutic DNA damage or replication arrest. We also provide new infor-
n on functional redundancy between WRN and BLM. These results provide a strong rationale for further
matio

developing WRN and BLM as biomarkers of tumor chemotherapeutic responsiveness. Cancer Res; 70(16); 6548–55.
©2010 AACR.
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human RecQ helicases are members of a deeply
ved protein family that plays important, albeit poorly
stood, roles in DNA metabolism, genetic stability, and
se to DNA damage (1, 2). Germline loss-of-function
ions in three human RecQ helicase genes, WRN, BLM,
ECQL4, respectively cause Werner syndrome, Bloom
me, and the subset of Rothmund-Thomson syndrome
ated with a high risk of osteosarcoma. These genetic
ility/cancer predisposition syndromes also have differ-
velopmental or acquired features. Werner syndrome pa-
atures resembling premature aging beginning
cade of life (3). Bloom syndrome patients, in
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st, are proportionately small from birth, display sun
ivity and hypopigmented and hyperpigmented skin
s, are often immunodeficient, and have reduced fertility
othmund-Thomson syndrome patients are typically
with sparse hair and eyebrows; have variable skeletal,
, and nail abnormalities; and develop a persistent skin
n infancy together with a high risk of juvenile ocular
cts (5). Epigenetic loss of expression of RecQ helicases
lso be linked to human disease. For example, epigenetic
ing of WRN expression has been documented and is
nt in common adult epithelial malignancies such as
ctal cancer (6, 7). No human disease has been linked
ar to mutation or epigenetic inactivation of the two
human RecQ helicase genes, RECQL or RECQL5 (1, 2).
five human RecQ proteins share a conserved helicase
in that encodes DNA-dependent ATPase and 3′-to-5′
se activities. WRN also encodes a 3′-to-5′ exonuclease
y in an NH2-terminal domain. Purified human RecQ
ses preferentially bind and unwind, and in the case of
also degrade, partially double-stranded DNA molecules
ing model replication forks, D- and T-loops or synthetic
ay junctions, and highly structured DNAs such a
druplexes. Several human RecQ helicases also possess
trand annealing activity (1, 2, 8). Functional correlates

se activities include a requirement for RecQ helicases in
logy-dependent recombination, in replication initiation,
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lication restart or fork elongation, and in DNA repair
–11).
delineate redundant and unique in vivo functions of
and BLM, we systematically analyzed cell proliferation,
ic damage as assessed by γ-H2AX staining, and cell
l in isogenic human cell lines depleted of WRN and/or
before and after treatment with DNA-damaging chemo-
eutic drugs. Our results provide new information on the
WRN and BLM in determining the response to chemo-
eutic damage and on functional redundancy between
and BLM.

rials and Methods

and cell culture
SV40-transformed GM639 human fibroblast cell line
ped from a normal donor was originally obtained from
riell Institute Cell Repositories (Camden, NJ) in 1990.
9-cc1 is a clonal derivative of GM639 that carries an
ated copy of the pNeoA direct repeat homologous
bination reporter plasmid (12). The human osteosar-
cell line U-2 OS (13) was obtained from the American
ulture Collection in 2008. GM639 cells are functionally
−), whereas U-2 OS cells express TP53 protein and are
onally TP53(+). Cell lines were initially DNA finger-
d and screened to verify the absence of Mycoplasma
on using PCR kits obtained from the Coriell Institute
epositories. Subsequent fingerprinting and Mycoplasma
ing verifications have been performed by the University
souri Research Animal Diagnostic Laboratory (http://
adil.missouri.edu/). Recently thawed aliquots of both
ere used for all experiments. GM639-cc1 cells were
in DMEM and U-2 OS cells in McCoy's 5A medium

aTech CellGro) in a humidified 37°C, 7% incubator. Both
h media were supplemented with 4,500 mg/L glucose,
/v) fetal bovine serum (FBS; Hyclone), and penicillin
its/mL) and streptomycin sulfate (100mg/mL; Invitrogen).

and dyes
ck solutions of cis-diamminedichloroplatinum(II)
or cis-Pt; 2 mmol/L in 0.9% NaCl), camptothecin
1 mmol/L in DMSO), hydroxyurea (HU; 1 mol/L
S), 5-fluorouracil (5-FU; 1 mg/mL in DMSO), and
odeoxyuridine (BrdUrd; 10 mmol/L in sterile water)
tored at −20°C and diluted just before use. Propidium
(10 mg/mL in PBS) was stored at 4°C in the dark,
,6′-diamidino-2-phenylindole (DAPI; 1 mg/mL) at
. DAPI was obtained from Accurate Chemical and
ific Corp. All other chemicals and drugs were obtained
igma-Aldrich.

roliferation and survival assays
ulation-based cell proliferation assays were performed
ting 104 cells per well in six-well plates (9.1 cm2/well).
ate wells were trypsinized and counted every 3 days.
urvival was quantified by colony-forming efficiency

, determined as previously described (12). In brief,
500 control cells or 4,000 to 20,000 RecQ-depleted cells

WRN-
maxima
16; add

acrjournals.org
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ell were plated in six-well plates 24 hours before drug
ent, then treated for 24 hours, followed by 8 days of
h in the absence of drug before crystal violet staining
ntify colonies containing ≥6 cells.

A-mediated depletion of WRN and BLM
screened WRN- and BLM-specific shRNAs designed by
NAi Consortium (TRC; http://www.broad.mit.edu/
rc/lib) or by Rosetta Inpharmatics, Inc., to identify
s that reproducibly depleted WRN or BLM when ex-
d from pLKO.1, a lentiviral expression vector contain-
human U6 promoter (http://www.broad.mit.edu/
e_bio/trc/protocols/pLKO1.noStuffer.pdf; ref. 14).

.1 shRNA vectors (Fig. 1A) were packaged by cotrans-
g pLKO.1 DNA with packaging plasmid pCMV-dR8.2
nd envelope plasmid pCMV-VSVG (kindly provided
bert Weinberg, Whitehead/MIT, Cambridge, MA) into
n 293T cells as previously described (15). Viral super-
ts were filtered through a 45-μm filter and stored at
until use. shRNA-mediated depletions were performed
nsducing cells with shRNA lentivirus for 48 hours,
ed by an additional 96 hours of puromycin selection
.0 μg/mL). Depletions were quantified by Western blot
is (Fig. 1B). Controls included cells transduced with
.1 vector DNA alone or with pLKO.1 expressing a
bled shRNA with no known target sequence in the hu-
enome (plasmid 1864, “scramble shRNA”; Addgene).
letions were achieved by simultaneously transducing
ith WRN- and BLM-specific shRNA lentiviruses.

rn blot analyses
ubilized cell pellets (∼1 × 106 cells), prepared as
usly described (16, 17), were resolved by SDS-PAGE
ogen, Nu-PAGE) before transfer onto a polyvinylidene
ouse monoclonal anti-WRN primary antibody 195C

1. RNA interference–mediated depletion of WRN and BLM.
O.1 lentiviral vector used for shRNA expression. LTR, 5′ RSV and
nactivating HIV long terminal repeats; Hs U6, human U6 promoter;
, human phosphoglycerate kinase promoter; puro, puromycin
ce gene. B, experimental protocol for the generation or use of
and/or BLM-depleted cells. Depletion of WRN and BLM was

l from 5 to 6 d after transduction and persisted for >14 d (refs. 15,
itional results not shown).

Cancer Res; 70(16) August 15, 2010 6549
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y provided by Dr. Patricia Opresko, University of
urgh, Pittsburgh, PA; ref. 18). BLM protein was de-
using affinity-purified rabbit polyclonal anti-BLM

ra directed against the BLM COOH-terminal peptide
PFLKPSYAFS (additional results not shown). Human
protein was detected with an anti-Chk1 mouse mono-
primary antibody (Santa Cruz). Bound antibodies
etected by enhanced chemiluminescence (GE Health-
Fig. 2A). Blots were scanned and quantified using a
Phosphorimager and ImageQuant software (Molecu-
namics) as previously described (16).

cytometric analysis of γ-H2AX–stained cells
omic damage was quantified by flow cytometric
is of cellular γ-H2AX staining as previously described
n brief, 1 × 105 to 2 × 105 cells per well were plated in
ll plates before treatment with HU for 2 to 8 hours.
ere scrape-harvested, washed twice in 1× PBS, fixed
-mL cold 66% ethanol/PBS, and stored at 4°C until
ed. Fixed cells were resuspended in TBS [25 mmol/L
Cl (pH 7.4), 137 mmol/L NaCl, 5 mmol/L KCl] supple-
d with 4% FBS and 0.1% Triton X-100, incubated on ice
minutes, and stained for 1 hour with a mouse mono-
anti–phospho-histone H2AX (Ser139) primary anti-
clone JBW301, Millipore) for 1 hour. Bound antibody
etected by staining for 1 hour with a goat anti-mouse
488–conjugated-secondary antibody (Molecular

s, A1100110C). Cells resuspended in TBS were stained
API (10 μg/mL) before flow cytometric analysis on an
flow cytometer (Cytopeia, Inc.). Control cells (pLKO.1
only or pLKO.1 scrambled shRNA) were used to define
e staining set to include 1% of the cell population in

sitive cell fraction (gate 1). A second gate included all
hile excluding cell debris (gate 2). The same gating was

were
Bonfe

r Res; 70(16) August 15, 2010

American Association Copyright © 2010 
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or all samples within an experiment. Gate 1 versus gate
os defined the “percent γ-H2AX–positive” cells, and
nductions” were calculated by dividing experimental
trol, γ-H2AX–positive cell frequencies.

ycle distribution determined by BrdUrd labeling
low cytometry
cQ-depleted and control cells were labeled with
ol/L BrdUrd for 2 hours, then harvested as previously
bed (15). BrdUrd content was determined by fixing cells
66% ethanol/PBS, denaturing in 2 N HCl/0.5% Triton
for 30 minutes each, and then neutralizing samples
00 mmol/L Na borate (pH 8.5). Immunostaining to
incorporated BrdUrd was done for 1 hour each at 4°C
dark with mouse anti-BrdUrd primary antibody (347580,
sciences), followed by Alexa 488–conjugated antimouse
ary antibody (Molecular Probes A1100110C). Cells were

ed with propidium iodide (10 μg/mL) in PBS containing
g/mL RNase A before analysis on an Influx flow
eter. Data analyses were done using Summit software
). Cell cycle fractions were estimated using FCS Express
ovo Software) or M-cycle (Phoenix Flow Systems).

tical analysis of cell proliferation, survival,
-H2AX straining
ression modeling was used as the most rigorous way to
e outcomes as a function of RecQ depletion type while
lling for time, within-experiment correlations, extent
letion, drug, and drug dose. This approach allowed
analyze primary proliferation, survival, or staining data
tify significant differences while correcting for interac-

between variables and for multiple testing. Differences
Fig
or c
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rroni corrected for multiple testing by experiment type

Cancer Research

  for Cancer Research
 on May 13, 2011s.org
2. Lentiviral shRNAs selectively deplete
plete WRN and BLM. A, Western blot
s of GM639 cells after WRN- and/or
ecific shRNA expression. C, pLKO.1
control; W, shWRN579; B, shBLM2554;
shWRN579 and shBLM2554, where
al shRNAs are numbered from their 5′
the corresponding WRN or BLM cDNA
ce (see part B). The predicted molecular
of WRN is 162 kDa and BLM is 159 kDa.
pecific cross-reacting bands detected
polyclonal BLM antisera. CHK1 protein
ed as a loading control. B, summary of
s screened for ability to deplete WRN
proteins, where symbols indicate extent
etion:•, >90% depletion; , 20–90%
depletion;○, <20% or no detectable
n; , inconclusive data. *, shRNAs
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serve a family-wise type I error rate of 0.05. These
cted P values were as follows: cell proliferation,
012; cell survival, P = 0.00096; and γ-H2AX induction,
007. Analyses of log cell counts and γ-H2AX straining
itted as a linear function of time. Data for survival of
reated U-2 OS cells with fewer than 500 cells plated
xcluded from regression analysis to avoid generating
ially high colinearity within the treated survival design
. CFE outcomes were normalized to zero-dose CFE by
ing the latter in the regression model. This approach
es fewer modeling assumptions than using a “ratio of
” approach (20) and thus avoids the high variability
ted when dividing by small numbers. Differences be-
depletion states (control, scrambled shRNA, WRN or
epleted, and WRN/BLM codepleted) were tested after
ing for dose and experiment.

lts

tion of WRN and BLM from human fibroblasts
identified two WRN-specific and three BLM-specific
s that reproducibly depleted their respective target
ns in different cell types by ≥90%. We also identified
dditional WRN-specific and three additional BLM-
ic shRNAs that partially depleted WRN or BLM by
o 70% (Figs. 1 and 2; additional results not shown).
rn blot analyses indicated that both WRN and BLM
maximally depleted by day 6 after transduction and
ed depleted at ≥90% for at least 25 days (Fig. 2A; Sup-
ntary Fig. S1; refs. 13–15; additional data not shown).
sduction using the same protocol and shRNA lentiviral

led to simultaneous depletion of both WRN and BLM signif

n BLM-depleted and WRN/BLM-codepleted cells in colony-forming ability (P = 0
of WRN or BLM depletion were −0.18 and −0.035 log10 units of percent of con

acrjournals.org

American Association Copyright © 2010 
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roliferation as a function of WRN/BLM
in content
letion of WRN or BLM from GM639 and U-2 OS cells
essed cell proliferation in both population-based and
proliferation assays. Higher percent depletions were

iated with stronger suppression for both WRN and
Cell proliferation was more strongly suppressed by
han by WRN depletion as a function of percent deple-
ver the observed depletion range, and comparable
were observed for regression lines that related percent
n depletion to percent proliferative suppression in both
ation-based and colony-forming assays (Fig. 3). Of note,
oliferation of WRN/BLM-codepleted cells did not differ
that of cells depleted of BLM alone (P = 0.34; Fig. 3;
mentary Fig. S2).

mic damage after WRN/BLM depletion
a measure of genomic damage, we quantified both
and replication arrest–induced γ-H2AX levels in
and/or BLM-depleted cells. γ-H2AX is a minor histone
riant that is phosphorylated on Ser139 in response to
tion stress and other types of genomic damage includ-
NA breakage (21, 22). The primary data presented in
are means and SDs for fold γ-H2AX induction from five
ndent experiments. All of these data and time points
sed to build a regression model to determine the rate
nge and whether there were differences in mean fold
X induction as a function of time and depletion type.
analyses revealed significantly higher γ-H2AX induc-
n all depleted cell types (WRN-depleted, BLM-depleted,
N/BLM-codepleted) as compared with controls and no

icant difference in γ-H2AX induction between cells
% (Fig. 2A). depleted of BLM alone and WRN/BLM-codepleted cells

3. WRN and BLM depletion suppress cell proliferation. A, proliferation of GM639 human fibroblasts depleted of WRN and/or BLM. Open symbols,
ation measured at day 9 (see Fig. 1B); filled symbols, proliferation at the same time point in codepleted cells where WRN (⧫) or BLM (•) depletion
termined by Western blot in four independent experiments. The proliferation of BLM-depleted versus WRN-depleted cells was significantly
t (P = 0.0002), in contrast to BLM-depleted versus WRN/BLM-codepleted cells (P = 0.34). The slopes of regression lines for proliferative
ssion as a function of percent depletion were −0.20 and −0.061 log10 units of percent of control per 1% protein depleted for WRN and BLM,
ively. B, colony formation by WRN- or BLM-depleted cells was significantly suppressed as a function of percent depletion (P = 3.9 × 10−7 for WRN
0.0016 for BLM), with significantly stronger suppression in BLM- versus WRN-depleted cells (P = 1.1 × 10−8). There was no difference
.45). Slopes of the regression lines for suppression of CFE as a
trol per 1% of protein depleted, respectively.

Cancer Res; 70(16) August 15, 2010 6551
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lementary Table S1). The rate of increase in γ-H2AX
g as a function of time in HU was linear and did not
as a function of depleted protein(s). Differences in
X staining among depleted cells were not explained
ferences in cell cycle phase distribution, as assessed
Urd labeling (ref. 16; additional results not shown).
results indicate that the depletion of WRN or BLM may
genomic damage that can be detected by higher levels of
X staining. Comparable results were observed in U-2 OS
lthough these were not formally analyzed as we had
data than for GM639 cells (additional results not shown).

urvival after WRN/BLM depletion and
amage
quantified cell survival of depleted, isogenic cell lines
reatment with four different cancer chemotherapeutic
: the topoisomerase I inhibitor CPT, the DNA cross-
g drug cis-Pt, the ribonucleotide reductase inhibitor
d the antimetabolite and thymidylate synthase inhib-
FU. Primary data from these analyses, performed as CFE
using GM639 or U-2 OS cells, are shown in Fig. 5. These
ere again analyzed by regressionmodeling to use exper-
al data across different doses and to correct for potential
mental confounders and for multiple testing.
letion of WRN or BLM significantly sensitized GM639
-2 OS cells to dose-dependent killing by CPT, cis-Pt,
-FU, and BLM-depleted cells to HU (Fig. 5; P = 0.31;
1; see also ref. 16). Several significant differences in sur-

M2554; WB, codepletion with shWRN579 + shBLM2554.
ere noted between depletion type (WRN or BLM) and
l line. BLM-depleted GM639 cells had significantly

deplete
C, pLK
W, shW

r Res; 70(16) August 15, 2010

American Association Copyright © 2010 
cancerres.aacrjournalDownloaded from 
survival after CPT or HU treatment than did WRN-
ed cells. In contrast, WRN-depleted U-2 OS cells had
4. Elevated genomic damage with γ-H2AX staining in HU-arrested
nd/or BLM-depleted cells. The bar graphs are primary data
H2AX induction experiments using WRN- and/or BLM-depleted
fibroblasts and replication arrest with 2 mmol/L HU where

s were pLKO.1 vector-only (C) or scrambled shRNA–expressing
). Regression modeling of these data revealed significantly higher
in WRN- and/or BLM-depleted cells versus either type of control

; P < 0.01; Supplementary Table S1) and a linear rate of change
γ-H2AX induction as a function of time. BLM-depleted and
LM-codepleted cells had significantly higher fold inductions in
than did WRN-depleted cells (P = 0.0016 and P = 2.8 × 10−6,
ively) but did not differ from one another (P = 0.18; Supplementary
1). There was no difference in slopes/rate of change in the
n of H2AX staining over time as a function of depletion type
r WB). Bars, SD for five independent experiments except for
here duplicate values from a single experiment are shown.
epleted or codepleted cells. Of note, codepletion of

5. Chemotherapeutic drugs selectively kill WRN- and/or BLM-
d cells. Columns, mean CFE of depleted and control GM639 and
cell lines after 24-h treatment with CPT, HU, cis-Pt, or 5-FU from
five independent experiments; bars, SD. Data were analyzed by
ion modeling (Table 1) to account for cell type, depletion type
or WB), agent, dose, and between-experiment variation. WRN-
-depleted drug-treated cells had significantly lower survival
ntrols after treatment with CPT, cis-Pt, and 5-FU (P < 1 × 10−4 for
rol versus treatment comparisons). WRN-depleted GM639 cells
nificantly higher CFE than did BLM-depleted cells after CPT or
tment. BLM-depleted and WRN/BLM-codepleted cells had
cally indistinguishable survival with the exception of BLM-
d U-2 OS versus WB-codepleted cells treated with CPT (Table 1).

O.1 control vector; S, scrambled shRNA control vector;
RN579; B, shBLM2554; WB, shWRN579 + shBLM2554.
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and BLM did not additively or synergistically sensitize
ed cells to killing by any of the four drugs tested (Fig. 5;
1). P = 0.00096 was the cutoff for significance in these

es, corrected for multiple testing to retain a type I error
f 0.05 (Table 1).
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determine how WRN and BLM influence the response
motherapeutic drugs, we quantified cell proliferation,
ic damage as assessed by γ-H2AX induction, and cell
al after treating WRN- and/or BLM-depleted cells with
ifferent DNA-damaging chemotherapeutic drugs.
ic, WRN- or BLM-depleted or WRN/BLM-codepleted
+) and TP53(−) cell lines were used together with re-
n modeling to control for important variables includ-
ll line, depleted protein and percent depletion, drug,
rug dose. Codepletion analyses also allowed us to
ze for the first time the functional redundancy of
and BLM in isogenic human cell line pairs.
N or BLM depletion alone suppressed cell proliferation
h TP53(+) and TP53(−) cell lines (Fig. 3) and increased
ic damage as assessed by γ-H2AX induction both be-
nd after HU-mediated replication arrest (Fig. 4). WRN-
M-depleted cells were sensitized to dose-dependent
by CPT, cis-PT, and 5-FU (see Fig. 5 data and Table 1
ical analysis). WRN-depleted GM639 cells had signifi-
higher survival after CPT or HU treatment than did
ic BLM-depleted cells. Of note, depletion of BLM from
depleted cells sensitized them to HU-mediated cell kill-
nversely, BLM-depleted U-2 OS cells were refractory to
illing, but could be sensitized to CPT-mediated cell kill-
the depletion of WRN (Fig. 5 data and Table 1 statis-
nalysis).
se results substantially extend and clarify our under-
ng of the proliferation and drug sensitivity phenotypes
N- or BLM-deficient human cells. Previous work by us
thers had documented reduced proliferative potential
NA damage sensitivity of WRN-deficient, patient-
d fibroblasts, peripheral blood lymphocytes, or
phoblastoid cell lines to cis-Pt and CPT. Other reports
ocumented the selective killing of WRN-deficient cells
itroquinoline 1-oxide (4-NQO), mitomycin C, and
hoxy-psoralen + UV light using chromosomal breakage,
formation, or flow cytometric assays (12, 16, 23–30).
are inconsistent reports on the HU sensitivity of
deficient cells, together with one or more reports of
lective sensitivity of WRN-deficient, often patient-
d, cells after UV damage or Adriamycin, daunomycin,
side, trans-Pt, beneril, or mitoxantron treatment
). Fewer reports have documented the drug sensitivity
M-deficient cells. BLM-deficient human lymphoblast
broblast cell lines were reported to be selectively killed
light or HU (32) and, less consistently, by CPT (25, 33,
m-mutant mouse ES cells seem to be hypersensitive to
tercalating agent ICRF-193 but, in contrast to BLM-
nt human cells, are mildly resistant to CPT and strongly
nt to HU (35).
unexpected new finding with both mechanistic and
l implications in our analyses was the marked 5-FU
ivity of both WRN- and BLM-deficient TP53(+) and
−) cells. There were few prior suggestions that this
e 1. Regression modeling identifies

icant d
r BLM
erences in c
epleted cells
ll survival of WRN-
after DNA damage
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B WB 0.11 0.03

E: CFE data in Fig. 5 were used for the statistical ana-
of colony-forming efficiency, which used regression
eling to account for cell type, depletion type (W, B,
B), agent, dose, and between-experiment variation.
trol and depleted cells were treated for 24 h with
, HU, cis-Pt, or 5-FU.
reviations: S1, sample 1; S2, sample 2; C, pLKO.1
tor–transduced; W, WRN-depleted; B, BLM-depleted;
, WRN/BLM-codepleted.
ple pairs were tested for significance.
alues <0.00096 are significant after Bonferroni correc-
for multiple testing.
tistically significant difference.
s P value was calculated from 0.5 mmol/L HU data only
used chemotherapeutic antimetabolite might selectively
cQ helicase–deficient human cells. Although the mode of
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of FU is still poorly understood (36, 37), loss of WRN or
ould promote 5-FU cell killing by interfering with DNA
tion or by inducing error-prone, homology-dependent
bination. Both DNA replication and recombination have
nt requirements for RecQ helicase function as discussed
It should be possible to provide additional mechanistic
t into the 5-FU–mediated killing of WRN- or BLM-
nt cells. DNA replication could be analyzed at the single
ule level with the methods we developed and used to
replication defects in WRN-deficient human cells (15).
r approaches have also been used to show replication
s in BLM-deficient human cells (9, 38). Recombination
s in 5-FU–treated WRN- or BLM-deficient cells could
ntified and analyzed at the molecular level using recom-
n reporter substrates of the type originally used to iden-
recombination resolution defect in WRN-deficient cells

.g., ref. 12).
results provide a first analysis of functional redundancy
en WRN and BLM in human cells. Prior analyses of
onal redundancy had used Wrn/Blm double-mutant
r avian DT-40 cells. In contrast, no patient has been
fied who lacks more than one of the human RecQ
ses. Wrn/Blm-mutant mice develop strong cellular
ganismal phenotypes that resemble Werner syndrome,
ly after ≥3 generations in a telomerase-deficient back-
d (39, 40). These experiments thus support the idea
RN and BLM may act on short or disrupted telomeres
press DNA damage responses, genetic instability, and
r senescence (41, 42). Wrn/Blm-mutant avian DT-40
isplay a proliferation defect and are hypersensitive to
43). Wrn-deficient DT-40 cells, in contrast, are only
sensitive to CPT, cis-Pt, 4-NQO, and MMS (44, 45),

as Blm-deficient DT-40 cells have a proliferative defect
e selectively sensitive to etoposide, bleomycin, 4-NQO,
rradition, X-irradiation, and HU (46, 47).
found that codepletion of WRN and BLM in human
uppressed cell proliferation, led to higher γ-H2AX
ng both before and after HU arrest (Figs. 3 and 4),
d to dose-dependent killing of both TP53(+) or TP53
lls by all four chemotherapeutic agents we tested
). An important new finding in these analyses was
ck of additive or synergistic defects in WRN/BLM-
leted cells. This finding indicates that WRN and BLM
ct in a common pathway to suppress genomic damage
sure cell survival after chemotherapeutic DNA damage.
tronger organismal and cellular phenotype observed
loss of BLM further suggests that BLM may have a

portionate role in this common functional pathway Rece

retakers. Nat Rev Cancer 2009;9:644–54.
stein CJ, Martin GM, Schultz AL, Motulsky AG. Werner's syn-
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ed in our assays (3, 4). One prediction from this model
t somatic cells, stem cells, and tissues from Bloom
me patients will display higher levels of cell turnover,
enesis, and telomere erosion than comparable cells or
s from Werner syndrome patients (48).
results provide a strong rationale for developing the

n RecQ helicases as novel cancer therapeutic biomar-
nd targets. RecQ helicase mutations are uncommon
an tumors, but epigenetic loss of expression seems

frequent in common adult epithelial malignancies such
orectal cancer (6, 7). Thus, RecQ expression profiling
identify tumors that could be selectively killed by
used chemotherapeutic agents such as 5-FU, cis-Pt,

T that selectively kill RecQ-deficient cells. Of note, as
above, these drugs selectively kill WRN- and/or

deficient cells regardless of TP53 status. Targeting
n RecQ helicases may provide a second way to improve
r chemotherapy. Direct inhibition of WRN or BLM
confer a drug sensitivity profile similar to that ob-
in RecQ-deficient, transformed human cells. However,
rategy in its simplest form would not confer tumor-
ic cell killing in vivo. An alternative approach would
identify drugs or small molecules that inhibit survival
ays required for cell viability in the absence of WRN or
(49, 50). Agents that selectively killed RecQ-deficient
cells might be useful as monotherapies or in conjunc-
ith lower doses of conventional chemotherapy. Our
s and these additional approaches thus might allow
effective therapies to be designed for cancer patients
ecQ helicase–deficient tumors.
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