
Therapeutic Stimulation for Restoration
of Function After Spinal Cord Injury

Paralysis due to spinal cord injury can severely limit motor function and indepen-

dence. This review summarizes different approaches to electrical stimulation of

the spinal cord designed to restore motor function, with a brief discussion of their

origins and the current understanding of their mechanisms of action. Spinal

stimulation leads to impressive improvements in motor function along with some

benefits to autonomic functions such as bladder control. Nonetheless, the precise

mechanisms underlying these improvements and the optimal spinal stimulation

approaches for restoration of motor function are largely unknown. Finally, spinal

stimulation may augment other therapies that address the molecular and cellular

environment of the injured spinal cord. The fact that several stimulation ap-

proaches are now leading to substantial and durable improvements in function

following spinal cord injury provides a new perspectives on the previously “in-

curable” condition of paralysis.
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Paralysis due to spinal cord injury affects ~282,000
people in the U.S. (70). Spinal cord injury can lead
to paralysis of both the upper and lower extrem-
ities, severely limiting activities of daily living.
People with tetraplegia (paralysis of upper and
lower limbs) cite restoration of hand and arm
function as their highest priority for functional
recovery (2, 22). People with paraplegia (paraly-
sis of only the lower limbs) cite walking move-
ment as a priority, although notably a lower
priority than restoration of autonomic functions
(2). Although many types of therapy may be pre-
scribed for spinal cord injury rehabilitation, only
a few of the most commonly applied methods
have demonstrated reliable effects (37), and
most do not completely restore motor function
of the paralyzed limbs.

The application of electrical stimulation to
treat spinal cord injury has garnered substantial
interest from the research community, since it
can enhance the electrical activity of neurons
after spinal cord injury and may help to restore
function. The spinal cord is an attractive target
for stimulation-based rehabilitative therapies,
since interventions at the spinal level can take
advantage of preserved motor and sensory neu-
ral pathways below the injury. Stimulation of the
spinal cord allows fatigue-resistant movements
(42), which are typically difficult to achieve with
more distal stimulation sites, such as peripheral
nerves or muscles (53, 66). Spinal stimulation
can also produce complex movements involving
multiple muscles and joints, such as those

required for walking (41, 63), reaching, and
grasping (60, 90, 97).

Several groups have used electrical stimulation
to improve limb function in awake, behaving, par-
alyzed animals. This includes the production of
hindlimb stepping movements in paralyzed rats (8,
85), cats (5, 42, 63), and non-human primates (11),
as well as forelimb reaching movements in rats (49)
and non-human primates (60, 69, 97).

In addition to its somatic effects, spinal stimula-
tion may also benefit the autonomic nervous sys-
tem. Spinal stimulation during motor training can
improve and trigger bladder voiding in animal
models (26, 73), and a human case study cited
improvements in bladder control, sexual function,
and temperature regulation after motor training
with spinal stimulation (36). Although this review
is primarily focused on somatic motor improve-
ments, these broad benefits illustrate that stimula-
tion focused on motor rehabilitation may also
confer important autonomic benefits to people
with spinal cord injury (2).

Furthermore, targeted electrical stimulation may
be useful in directing the rehabilitation of specific
motor pathways (21). The spinal cord undergoes
neural remodeling after injury, and this remodel-
ing can lead to maladaptive changes in neural
pathways that may increase detrimental effects
such as pain and spasticity (6, 48). Targeted ther-
apeutic electrical stimulation may guide these
remodeling mechanisms toward the formation of
functional, rather than maladaptive, neural
pathways.
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Types of Spinal Stimulation

Researchers have identified several methods of spi-
nal cord stimulation for the restoration of move-
ment after paralyzing spinal cord injury.
Stimulation can be delivered 1) epidurally, with
electrodes on the dorsal surface of the cord above
the dura; 2), transcutaneously, with electrodes
placed on the skin above the vertebral column; and
3) intraspinally, with stimulating electrodes im-
planted within the spinal cord (FIGURE 1). The site
of stimulation partly determines the neural path-
ways activated as well as the stimulation parame-
ters required to elicit the desired result (86). The
different approaches to spinal stimulation may
also differ in their mechanisms of action; current
opinion in the field is that intraspinal stimulation
likely activates motor pools as well as intraspinal
and propriospinal networks to enable coordinated
whole-limb movements (91), whereas sub-thresh-
old epidural and transcutaneous stimulation may
increase the baseline excitability of the spinal cord,
thereby enabling movements triggered by inputs
that remain intact after spinal cord injury (20).

Epidural Spinal Stimulation

Although electrical stimulation treatments for var-
ious disorders can be traced back as early as the
first century, the utility of spinal cord stimulation
for the restoration of motor function is a more
recent development. Therapeutic electrical stimu-
lation of the spinal cord first emerged as a treat-
ment for pain described in clinical cases in the late
1960s and early 1970s (17, 87, 88). In a 1967 exper-
iment, Shealy and colleagues stimulated the spinal
cord through a single electrode placed on the dura of
a man complaining of diffuse chest and abdominal

pain. Stimulating at frequencies of 10 –50 Hz
caused a “buzzing” sensation for the patient but
also eliminated his pain for 5–15 min, after which a
change in stimulation frequency was required to
continue control of the pain (88). This stimulation
was believed to inhibit the conduction of pain sig-
nals via activating larger sensory fibers in the dor-
sal columns of the spinal cord and quieting the
smaller pain fibers (87). Later experimental results
demonstrated effective pain relief using bipolar
electrode arrangements, which allowed for high-
er-frequency (100 –200 Hz) stimulation while re-
maining well below the tissue damage threshold
(7.75�10�3 W/cm2) (87).

The clinical applications of spinal cord stimula-
tion quickly expanded, as other groups observed its
benefits for improved motor and sensory function
in people with multiple sclerosis. Using similar
epidural stimulation implants, Cook and Weinstein
reported improvements in spasticity, motor func-
tion, and sensory function in people with multiple
sclerosis treated with epidural spinal stimulation
(12). Less than a decade later, Campos and col-
leagues reported improved motor function and
bladder control, among other positive effects, fol-
lowing therapeutic spinal stimulation in people
with spinal cord injury as well as in those with
multiple sclerosis (10). Interestingly, Dimitrijevic
and colleagues later observed variable effects of
electrical stimulation on relief of spasticity in
people with spinal cord injury, citing differences
in body position (e.g., standing vs. sitting), dif-
ferences in spasticity at a given time, and pa-
tient-controlled stimulation strength as likely
contributors to this variability (18). The same
group later outlined standards for epidural stim-
ulation to relieve spasticity, observing that 50- to
100-Hz stimulation of 2- to 7-V strength and

FIGURE 1. Illustrations of the location of epidural, intraspinal, and transcutaneous spinal stimulation
Left: illustrations of the location of epidural stimulation compared with intraspinal microstimulation, both applied distal to a contusion injury. Right:
stimulation location and stimulation parameters for transcutaneous stimulation applied to the cervical spinal cord utilizing a 10-kHz carrier frequency
to improve hand function after spinal cord injury.

REVIEW

PHYSIOLOGY • Volume 32 • September 2017 • www.physiologyonline.org392

 by 10.220.33.4 on A
ugust 22, 2017

http://physiologyonline.physiology.org/
D

ow
nloaded from

 

http://physiologyonline.physiology.org/


210-ms pulse width worked best. They also
noted, however, that the stimulation could be
further optimized for each patient by testing dif-
ferent electrode combinations and adjusting
stimulus amplitude based on body position (74),
highlighting the anatomical variability of spinal
pathways similar to those seen between the
brains of different people.

Several groups proceeded to refine electrical
stimulation of the spinal cord in animal models.
They tested the threshold level of stimulation re-
quired to evoke movements, then experimented
with stimulation that directly evoked movements
(supra-threshold). The Skinner group demon-
strated that supra-threshold stimulation of the
dorsal surface of the spinal cord at a frequency of
3–5 Hz could reliably elicit stepping movements in
decerebrated cats (44), and the Edgerton group
induced bilateral stepping movements via similar
methods in rats, observing that bilateral stepping
movements occurred most often with 40- to 50-Hz
stimulation delivered over the second lumbar spi-
nal segment (43). More recently, the Courtine
group observed improved locomotion with supra-
threshold epidural stimulation in non-human pri-
mates with spinal cord injuries (11).

In contrast to supra-threshold stimulation, sub-
threshold stimulation does not immediately evoke
movements but may permit the animal to execute
movements in contexts such as treadmill locomo-
tion. For example, the Edgerton group demonstrated
that sub-threshold stimulation could induce move-
ment in the presence of proprioceptive inputs, likely
by amplifying existing reflexive activity in the rat
spinal cord (23).

Parallel findings were observed in human partic-
ipants. Dimitrijevic’s group demonstrated that su-
pra-threshold epidural stimulation at 5–15 Hz
could result in lower limb extension in people with
complete spinal cord injury and paraplegia. They
hypothesized that this effect relied on the activa-
tion of primary sensory afferents, which in turn
activated a network of neurons within the spinal
cord to elicit motor unit activity and muscle con-
traction (47). Human and animal studies indicate
that epidural stimulation of the spinal cord may
induce movements either by direct electrical acti-
vation of motor or sensory units (43, 44, 47) or by
the facilitation, or increase, of baseline motor unit
activity (23, 30). Increasing baseline motor unit
activity could bring the motor units closer to
threshold, the level of activity required to produce
a movement. This sub-threshold stimulation tech-
nique has garnered substantial interest in the spi-
nal stimulation research community in recent
years.

In contrast to direct activation of motor units,
epidural stimulation more recently enabled

otherwise paralyzed people to make volitional
movements in the presence of continuous, sub-
threshold stimulation. Recent work has demon-
strated the utility of this “enabling” epidural
stimulation for promoting both lower (3, 36) and
upper (52) limb movements. These studies show
an impressive return of voluntary lower limb
movement with epidural stimulation in people
with complete and incomplete spinal cord injuries
(3, 36), as well as improved volitional hand control
with epidural stimulation in people with motor-
limiting cervical spinal cord injuries (52).

For some participants, the benefits of sub-
threshold epidural stimulation persist beyond the
period of stimulation. The exciting therapeutic
benefit was noted by both participants in the up-
per-extremity study, whose hand function re-
mained improved after stimulation had ceased
(52). This encouraging result further supports the
need for an evaluation of the circuits activated by
epidural stimulation. Just as customized stimula-
tion parameters such as stimulation frequency and
amplitude for individual patients and specific tasks
typically lead to better functional improvements
during the stimulation period (1, 76, 77, 85),
customized parameters and pairing with other
rehabilitation strategies geared toward enabling
sustained function after stimulation may provide
an additional benefit.

The mechanisms responsible for the effect of
epidural stimulation on paralyzed limbs have in-
trigued many researchers. A 1975 review of early
work in neural stimulation described the multitude
of factors at play, explaining that an understanding
of the precise cells and tissues activated by stimu-
lation will require detailed knowledge of the cell
and tissue properties, electrode configurations,
and stimulus parameters, such as waveform shape,
duration, and magnitude (75). Although the field
may yet lack a complete understanding of the com-
plex interactions of these elements, some general-
ized mechanistic explanations have emerged, as
described below.

Although epidural stimulation activates both af-
ferent and efferent pathways (57, 79), supraspinal
and sensory inputs driven by the patient’s intent
and position may dictate the specific motor units
recruited for a given task. For example, it is likely
that the sensory signals produced by weight-bear-
ing standing can selectively enhance the activity of
relevant motor units during stimulation periods
(34, 79), effectively increasing activity in the units
required to maintain an upright position. Su-
praspinal input in the form of volitional, conscious
motor commands can control lower limb move-
ment in a supine position in the presence of
epidural stimulation, even for people with clini-
cally motor and sensory complete injuries (3, 34,
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36). These results are aligned with the current gen-
eral view of epidural stimulation as an “enabling”
technology capable of enhancing baseline activity
or physiological state of the spinal cord such that
additional inputs such as proprioceptive inputs in
the case of locomotion may activate the appropri-
ate motor pathways for a given task (20). In one
study, all 12 participants with motor complete spi-
nal cord injuries could voluntarily produce electro-
myographic activity in two independent muscles of
the paralyzed limbs, although not sufficient to re-
sult in movement (61). This provides evidence of
spared pathways passing the spinal cord injury in
nearly all persons with clinically complete injuries.
These spared pathways may carry signals that
could be useful in triggering movements in the
presence of spinal stimulation. In most cases, epi-
dural stimulation must be applied to observe ben-
efits (3, 34, 76), and carryover of lower extremity
motor benefits after the period of stimulation is
limited (76). Nonetheless, benefits to autonomic
functions such as bladder, bowel, and sexual func-
tion persist beyond the period of stimulation in
both human (36) and animal subjects (26), suggest-
ing a persistent and beneficial reorganization of
spinal neural pathways is possible due to stimula-
tion therapy.

Transcutaneous Stimulation

Both electrical and magnetic stimulation applied
to the skin surface can improve motor function
after injury. Magnetic stimulation applied over the
lumbar spinal cord improves spasticity for up to
24 h following stimulation (50). Similarly, transcu-
taneous electrical stimulation applied over the tho-
racic spinal processes leads to improvement in
spasticity and augmented stepping ability during
stimulation periods for people with spinal cord
injuries (39, 40, 55). The adoption of high-fre-
quency electrical stimulation permits the appli-
cation of higher current transcutaneous
stimulation to the skin above the spinal cord with
minimal discomfort (93, 94). The 10-kHz carrier fre-
quency (FIGURE 1, RIGHT) permits over 100 mA of
current to pass through the skin without painful sen-
sations (27). Such stimulation is capable of activating
the lumbar spinal cord both in spinally intact (28, 31,
80, 81) and injured participants (24, 25, 27, 29). As
with epidural stimulation, the effects of transcutane-
ous stimulation depend on body position. For exam-
ple, the current required to elicit a movement is
greater in prone compared with standing positions,
and the magnitude of the response is highest in su-
pine compared with standing and prone positions
(16). These findings reinforce the context-dependent
nature of spinal neural pathways that may be lever-
aged for therapy.

Several groups are also exploring transcutaneous
spinal stimulation applied to the cervical region for
improving hand and arm function with promising
results. Early results suggest that transcutaneous
stimulation may confer similar benefits to those of
epidural stimulation (29).

Although the electrodes are positioned further
from the spinal cord, the basic mechanisms re-
sponsible for the effects of transcutaneous stimu-
lation likely also rely on increasing baseline
electrical activity to enable movements induced by
remaining volitional motor commands or sensory
inputs. The Gerasimenko group recently demon-
strated that specific electrode configurations can
also contribute to enhanced effects of transcutane-
ous spinal stimulation (81). By stimulating at two
sites in rostro-caudal order, first at the site closer to
the head and then at the site further down the
spinal cord, they were able to elicit stronger re-
sponses than by stimulating at individual loca-
tions. They suggest that this may be explained by
recruitment of motoneurons via both direct and
indirect (e.g., sensory, interneuron) pathways in
the rostro-caudal stimulation paradigm (81).

Because transcutaneous approaches do not re-
quire surgery, they may be more attractive to some
people. This experimental approach, however, is
quite new, and optimal application schedules and
activities to be performed during stimulation are
still being discovered. Although precise parameters
used in epidural stimulation are unlikely to trans-
late given the more distant application of current
through the skin, a common theme appears to be
the need for intensive therapy and exercise to be
performed during the application of spinal cord
stimulation to realize the full benefits to motor
function (3, 24).

Intraspinal Stimulation

Intraspinal stimulation differs from epidural and
transcutaneous stimulation in that it delivers elec-
trical current through electrodes implanted within
the spinal cord. Thus far, intraspinal stimulation
studies in humans are rare, but animal work pro-
vides insights into the potential benefits of this
approach. Intraspinal stimulation can elicit a wide
variety of functionally relevant movements in ani-
mal models, including movements required for
stepping (33, 42, 51, 63– 67, 78). It can also elicit a
variety of movements related to reaching and
grasping (60, 90, 97). When intraspinal stimulation
is applied to the ventral spinal cord, direct activation
of motoneurons or ventral root axons can occur,
leading to single joint movement. When it is applied
to the intermediate lamina of the spinal cord,
consensus is that stimulation most likely activates
axons and subsequently interneurons, cells
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within the spinal cord that can in turn activate
complex neural pathways and result in coordi-
nated motor patterns. This is because electrical
stimulation generally activates fibers of passage
rather than cell bodies (75), and interneuron fibers
are abundant within the spinal cord. The activated
interneurons can then activate the reflex and
movement coordination pathways in which they
participate, which may lead to coordinated multi-
joint movements.

Intraspinal stimulation may be especially useful
when paired with physical rehabilitation in exper-
iments geared toward activating specific motor
pathways or strengthening synapses—the connec-
tions between neurons. Rodent studies have dem-
onstrated lasting forelimb motor improvements
after intraspinal stimulation of a specific move-
ment (49, 54), even weeks after stimulation had
ceased (54, 56). These results allude to the poten-
tial long-term therapeutic effect of intraspinal
stimulation. Pairing intraspinal stimulation with
rehabilitative physical training may have added
benefits, and specific studies that directly address a
combined approach would be useful.

Intraspinal stimulation may also confer more ben-
efits if the user can easily control the stimulation.
One way to enable such control would be to use
signals that are already present during a particular
task, such as a brain signal that occurs when an
animal attempts to move. Stimulation controlled by
activity-related signals is called activity-dependent
stimulation. Activity-dependent stimulation may
confer long-term benefits when the time between
recording of the activity signal and delivery of stim-
ulation falls within a specific time window (54). Ac-
tivity-dependent stimulation that takes advantage of
this time window can strengthen cortico-cortical (45)
and cortico-spinal (68) connections in uninjured an-
imals, and further investigation of the utility of this
approach in spinal cord injury rehabilitation is war-
ranted. It would be extremely useful to understand
the maximum duration of these changes and
whether they can be extended from days (68) and
weeks (54) to months or years.

Challenges

Although the stimulation of the spinal cord at epi-
dural, transcutaneous, and intraspinal locations as
described above has led to substantial advance-
ments in the field, all of these approaches cur-
rently fall short of fully restoring natural
movements and achieving long-term rehabilita-
tion. Our understanding of the underlying mecha-
nisms responsible for the effect of exogenous
stimulation on biological tissue is incomplete,
leading to challenges in translation from animal
models to humans (13) and difficulty facilitating

motor improvements that persist beyond the
period of stimulation. Additionally, although epi-
dural stimulation benefits from widespread clin-
ical acceptance due to its long history as a pain
treatment, translation of intraspinal stimulation
methods will likely take more time, since develop-
ment of hardware and novel surgical and applica-
tion techniques is still underway.

Nonetheless, electrical stimulation shows thera-
peutic potential in the treatment of spinal cord
injury motor deficits, and investigations of the un-
derlying mechanisms and optimal stimulation pa-
rameters should continue to drive progress toward
restoring natural movements to paralyzed limbs.

Future Directions

Although promising early results of electrical spi-
nal stimulation indicate a prominent role in en-
hancing motor recovery, the potential of this
technology to elicit long-term, sustained improve-
ments will most likely require further refinement
and perhaps a combination of multiple treatment
approaches. Such approaches are referred to as
combinatorial treatments, since they include a
combination of interventions.

Such combinatorial interventions might target
the molecular environment of the injured spinal
cord to further increase its excitability and en-
hance the effects of therapeutic electrical stimula-
tion. For example, pharmacological agents that
increase excitability, such as serotonergic agonists
or inhibitory neurotransmitter antagonists, ap-
pear to enhance the effects of epidural stimula-
tion (8, 32). These pharmacological treatments
can in some cases enhance the effects of loco-
motor training (21) and epidural stimulation
(14). When administered orally during a period
of transcutaneous stimulation treatment in hu-
mans, the serotonergic agonist buspirone en-
hanced motor function during and beyond acute
stimulation treatments (29). This is consistent
with prior results in animals, in which quipazine,
another serotonergic agonist, appeared to regu-
late the stepping rhythm induced by epidural
stimulation (30). Combinatorial approaches that
employ multiple tools may prove to be the most
useful. For example, combinations of low-dose
pharmacological agents, electrical stimulation,
and motor training have demonstrated func-
tional improvements in animal models of spinal
cord injury (8, 19, 21). The combinations of stim-
ulation and pharmacological approaches are re-
viewed in greater detail elsewhere (21, 30).

In addition to pharmacological agents that directly
affect spinal cord excitability, agents that enhance
the plasticity of the spinal cord may also improve
motor outcomes. These agents typically interfere
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with molecular pathways that inhibit plasticity. For
example, approaches that interfere with Nogo-A, a
component of myelin that inhibits neurite out-
growth, can enhance cerebrospinal tract sprouting
and improve hindlimb locomotion after spinal cord
injury (84). Similarly, dissolution of chondroitin sul-
fate proteoglycans (CSPGs), extracellular matrix
components that limit synapse formation (7), has
resulted in sprouting of ascending and descending
neural projections and improved motor function (7,
46, 89). Interestingly, a combination of anti-Nogo
and enzymatic treatment to dissolve CSPGs yielded
greater improvements in motor function than either
treatment alone (96). Ongoing and future work test-
ing the combination of electrical spinal stimulation
and these plasticity-promoting interventions is a
promising avenue to improve function after spinal
cord injury.

Although pharmacological interventions may pro-
mote excitability and plasticity in the cells that re-
main viable after spinal cord injury, replacing
damaged cells may further enhance electrical stimu-
lation treatments. Spinal cord injury often results in
cellular damage and demyelination or dysmyelina-
tion, whereby the insulating material that enables
efficient electrical conduction through axons is lost
or damaged. Stem cells might promote the repair of
this damage; for example, neural and glial cells de-
rived from transplanted neural stem and progenitor
cells (62, 71, 92) promote remyelination of axons near
the injury site and promote motor improvement af-
ter spinal cord injury (15, 38). However, because stem
cells may mature into many different cell types, it is
important to carefully direct the cell toward a specific
type, or fate, before transplant to achieve optimal
results (38). Stem cell and neural progenitor treat-
ments also improve reaching performance and hand
function (72, 83).

Intriguingly, stem cells might also respond to ther-
apeutic electrical stimulation, potentially by migrat-
ing toward the site of injury and providing support to
damaged neurons or by forming new neural net-
works to bridge the gaps caused by spinal cord in-
jury. Early results from studies investigating this
combination are promising. Electrical stimulation
appears to promote transplanted cell survival after
peripheral nerve axotomy in vivo (35), indicating the
potential for a positive interaction of the two ap-
proaches. Additionally, the application of electrical
current can affect neural stem cell migration in vitro
(4, 58, 95). Based on these findings, perhaps electrical
stimulation could be used to guide stem cells toward
sites of cellular damage in vivo.

Taken together, these currently disparate ap-
proaches suggest many potential avenues for com-
bined therapeutic electrical stimulation, cell-based,
and pharmacological therapies in future work. The
early successes of electrical stimulation therapies are

encouraging, but restoring complete function may
require the combination of many approaches that
address the multi-faceted effects of spinal cord in-
jury. It is an exciting time in the field of spinalcord
injury, since future studies have a multitude of po-
tentially viable treatment options to explore. Going
forward, careful and systematic evaluation of thera-
peutic stimulation approaches and their combina-
tions with molecular and cellular interventions may
be necessary to deliver effective new treatments to
benefit people with spinal cord injuries. �
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