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Abstract—For brain-computer interfaces (BCIs) which
provide the user continuous position control, there is
little standardization of performance metrics or evaluative
tasks. One candidate metric is Fitts’s law, which has been
used to describe aimed movements across a range of
computer interfaces, and has recently been applied to BCI
tasks. Reviewing selected studies, we identify two basic
problems with Fitts’s law: its predictive performance is
fragile, and the estimation of ‘information transfer rate’
from the model is unsupported.

Our main contribution is the adaptation and validation
of an alternative model to Fitts’s law in the BCI context.
We show that the Shannon-Welford model outperforms
Fitts’s law, showing robust predictive power when target
distance and width have disproportionate effects on diffi-
culty.

Building on a prior study of the Shannon-Welford
model, we show that identified model parameters offer a
novel approach to quantitatively assess the role of control-
display gain in speed/accuracy performance tradeoffs dur-
ing brain control.

Index Terms—Neural engineering, Neural prosthesis,
brain-computer interface (BCI), brain-machine interface
(BMI), Fitts’s law, Shannon-Welford, performance metric

I. INTRODUCTION

Performance metrics are used in BCI studies to discern
performance differences between algorithm and experi-
ment design variations. Standardized and straightforward
metrics exist for quantifying symbol transmission rates,
but not for characterizing the movement control medi-
ating selection tasks. The implementation of metrics for
continuous movement control is not consistent, making
comparison across studies difficult to impossible. Here,
we focus on Fitts’s law and similar empirical models pre-
dicting the duration of aimed reaching movements, and
on within-study comparisons between control modali-
ties. The use of Fitts’s law and derived metrics entails
an implicit, often untested, assumption that a model
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developed to describe stereotyped reaching movements
applies to a novel and disembodied control task, in some
cases performed by a non-human primate. As the state
of the art of BCls evolves, identifying the incremental
contributions of individual design choices within studies
and the reproducibility of results across studies will be
critical for continued performance improvement.

Our goal in this paper is to evaluate the descriptive
power of candidate models that can enable comparisons
of BCI control across conditions and with muscle-
controlled movement. Further, we seek an approach that
reveals actual or potential influence of manipulated vari-
ables not of primary interest, particularly task geometry
and control-display (CD) gain, on results. Task geometry
here refers to the combination of target distance and
width, and could be adapted to include, for example, the
direction of required net movement. CD gain is defined
as the ratio between the user-controlled interface signal
(e.g., force) and the rate of pointer movement on the
computer display. Critically important for usability, CD
gain is often a nonlinear and user-tunable function in
consumer computer interfaces. In the BCI context, CD
gain may be subsumed in complex algorithms designed
to estimate intended movements from neural signals
[1], [2]. Consequently, this parameter that undeniably
influences performance may be difficult to define.

To this end, we evaluate the ability of Fitts’s law
and the competing Shannon-Welford model, recently
introduced by Shoemaker et al [3], to describe movement
times observed in manual and BCI rate-controlled cursor
positioning tasks performed by a macaque. Our specific
hypotheses are the following:

H1: Fitts’s law and the Shannon-Welford model can
predict average movement times in a rate-controlled
cursor task performed by a non-human primate.

H2: In at least some cases, the Shannon-Welford
model will provide significantly better descriptive power
than Fitts’s law, accounting for its additional parameter.

The rest of this paper is organized as follows: in
Section II, we review BCI task performance analyses
including Fitts’s law before introducing the Shannon-
Welford model; we next describe a basic 1D cursor
control paradigm designed to isolate differences between
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manual and brain control in Section III; in Section IV
we show modeling results and comparative performance
analyses; and finally in Section V we discuss the impli-
cations of these findings.

II. BACKGROUND
A. Performance Metrics in BCI Studies

Several approaches have been taken to quantify the
performance of BCI-mediated tasks in addition to Fitts’s
law. One of the most persistent basic metrics is to
report both trials per unit time and percentage of correct
trials, with the latter being more relevant during early
learning [4]-[6]. Drawbacks to this method are that it
does not take into account task difficulty, nor can it
accommodate mulitple task geometries or types into the
same measurement. More information is provided by
reporting trial time histograms [2], [7].

Properties of the trajectory taken to the target provide
more nuanced insights into control qualtiy changes.
These quantitative properties collectively considered to
assess path efficiency can include straightness, direction
reversals, movement orthogonal to target vector, and path
length [8]. A problem with path efficiency is that it
assumes an optimal trajectory without knowledge of the
cost functions affecting the subject’s control strategy. For
example, experimentally-observed trajectories of stereo-
typed computer mouse movements are neither perfectly
aimed, nor without overshoot and corrective actions near
the endpoint [9].

A third method is to show average trajectories (after
re-orienting many trajectories to match their directions),
optionally highlighting the target entry region [2], [10].
Trajectory information provides insight into differences
between manual and BCI-mediated control, but aver-
aging obscures corrective feedback strategies near the
endpoint. Also, the problem of only evaluating a single
task type and geometry exists here as well.

Information transfer rate (ITR) is a metric easily
calculated for discrete symbol transmission, and efforts
have been made to apply it to target selection tasks
by equating possible task outcomes with symbols [11],
[12]. More recent studies use Fitts’s law to characterize
performance and derive putative ITR [1], [13], or to
estimate putative ITR directly under the assumption
that the model applies [2]. For a survey of recent BCI
studies permitting this analysis, see supplement to [2].
We review Fitts’s law and its validity in quantifying ITR
in the next section.

B. Fitts’s Law

Fitts’s law is an empirical model developed to describe
the average duration of point-to-point reaching move-

ments [14]. The original 1954 model predicts movement
time 7" as a function of movement distance D to a target
of width W,

T = a+ blog, (I?/):a—i-b(ID) (1)

where ¢ and b are free parameters, and the Index of
Difficulty term (I D) is meant to capture task difficulty
as a function of only the ratio between target distance
and width.

The relationship, originally verified for 1D reciprocal
tapping tasks using a stylus [14], also describes 2D point-
and-click tasks using a computer mouse [9], [15] as well
as other pointing devices.

The “Shannon” formulation [15] of the ID term
changes the model to

D
T = a+ blogy (W>

2
W ()
which differs in the ID term from that used in the

original study. It is inspired by the Shannon-Hartley
Theorem,

3)

C = Blog, (S+N>

N

relating channel capacity C' with signal power S, noise
power N, and bandwidth B [15]. However, no math-
ematical equivalency between the two has been estab-
lished. Nonetheless, the 1D term in Fitts’s law is often
conferred units of bits [2], [13] when interpreting fitting
results. Putative ITR, or information throughput, of a
pointing device can then be specified in ‘bits/sec’,
defined either as the inverse of the b parameter (‘slope in-
verse method’) or, ignoring a, as the mean of 1D /T over
subjects and conditions (‘mean of means method’); the
latter is recommended in [16]. A recent study authored
by a previous advocate of Fitts-derived ITR shows that
it is inconsistent with Shannon’s entropy [17].

Throughput provides an attractive overall performance
measure, but reporting a single number hides vital details
relevant to comparing different studies. For example,
reporting complete modeling fitting results would en-
able comparison of predicted performance at equivalent
difficulty across studies, in addition to calculation of
easily interpretable confidence intervals for predicted
movement times.

C. Standardization Efforts

The ISO 9241-9 standard [18] and a follow-on pub-
lication by Soukoreff et al [16] define standardized
assessment tasks for computer pointing devices and
prescribe the use of putative ITR, estimated from the
Shannon formulation of Fitts’s law, as a performance
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metric. Soukoreff et al make specific recommendations
for the application of Fitts’s law, including using a
wide range of ID values, first using linear regression
to determine whether the model applies, and finally
calculating putative ITR.

However, the standard calls for reporting putative ITR
by averaging I D and movement times across both task
conditions and subjects, rather than deriving it from fit
parameters: studies reporting throughput estimated via
regression are considered non-conforming to the ISO
standard. This leaves the linear regression out of the
metric, with the caveat that the fit intercept should be
“small” [16]. Consequently, the relationship between
parameter confidence intervals and the range of task
conditions and subjects tested is obfuscated if not absent
in published standard throughput measures, making it
difficult to attribute variability to specific factors. The
Soukoreff et al study concluded that throughput measures
may have dependence on task design.

Intracortical BCI studies frequently use only one or
two subjects, and task design can vary considerably be-
tween studies. This suggests significant value in report-
ing complete and subject-specific model fit parameters to
enable better comparisons across studies and conditions,
rather than only reporting the standard metric.

D. Success Rates and Dwell Selection

To create a task compatible with Fitts’s law and also
feasible without a selection command, some studies sub-
stitute the click-to-select behavior with dwell-to-select
[19]. This in turn challenges the standard approach to
controlling for trial success rates.

Trial success rates must be high for an empirical
movement model, such as Fitts’s law, to be applied to
a data set, since failed trials cannot be included in the
model. In tapping and point-and-click tasks, the distri-
bution of trajectory endpoints is assumed to be normally
distributed. Post-hoc calculations of effective target size
can then be used to capture 96% of all endpoints [15],
as originally proposed by Crossman [20]. This approach
is shown to improve model accuracy by reducing the
effects of subject-to-subject variation in speed/accuracy
trade-off [9].

In a dwell-to-select task, movement trajectories con-
tinue when the cursor crosses the target boundary, but the
subject’s incentive changes. Consequently, the trajectory
endpoint cannot be treated as the selection point in a
way that easily admits similar post-hoc target width
corrections.

Another important difference in the dwell-to-select
paradigm is that aggressive control results in target

overshoot rather than trial failure. Thus, more variability
in trial times is inevitable, and success rates substantially
different from 100% suggest a lack of consistent compe-
tence at the task. If a significant number of trials fail due
to reaching the trial time limit, the limit can be extended
so more trials can be included in analysis, and to avoid
skewing the distribution of trial times.

E. Prior BCI Studies Using Fitts’s Law

Two cortical BCI studies, by Simeral et al (2011) and
by Gilja et al (2012), and one EEG study by Felton
et al (2009), employ Fitts’s law analyses [1], [2], [13].
The studies by Simeral et al and Felton et al incorporate
experimental design and statistical methods to test the
predictive power of Fitts’s law with human subjects,
while Gilja et al report the derived putative ITR metric
for non-human primate performance.

Gilja et al. use a center-out dwell-to-select task with a
single target distance and width, thus testing performance
at a single 7D [2]. To then report ITR requires assuming
that Fitts’s law applies and a zero intercept of the
trendline, leaving b as the only free parameter.

In the study by Simeral et al., a human subject
with tetraplegia performed a point-and-click task [1].
Their intracortical BCI decoded both cusor velocity and
a discrete click signal from a population of recorded
neurons. Because targets appeared at random distances
from the cursor position and multiple target widths were
used, I D’s ranging from 1 to greater than 4 were tested.
Thus, the data set permits a regression on I.D to derive
a Fitts’s law trendline. Simeral et al report significant
(p < 0.001) fits to all trial times on each of several
experimental days, with R? values ranging from 0.31 to
0.67. Note that in this case, the model must predict every
trial time, rather than the per-condition average. The
data does not permit the repeated-measures statistical
analyses commonly used to test for data consistent
with Fitts’s law in the human-computer interface (HCI)
community [3], [21].

Felton et al compared EEG control with a joystick-
driven rate-controlled manual task, thus matching system
order between control modalities. They used repeated
trials with a set of multiple discrete distances and a single
width to obtain average trial times at each ID which
were then fit using Fitts’s law, resulting in R? values
frequently above 0.9.

FE. The Shannon-Welford Model

Although Fitts’s law is widely used and shown to have
excellent explanatory power over movement data, its
robustness to task parameter variations is demonstrably
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poor, particularly when CD gain is manipulated [3], [22].
One practice which has emerged in Fitts’s law studies of
HClISs is grouping data by either target width or distance
into sets which can be separately fit with better results
[22]. We provide an example of this in Figure 5. This
leaves a troubling open question as to why the model
fails in some cases.

Exploring this problem further, a recent study by
Shoemaker et al [3] compares the performance of Fitts’s
law with variants of Welford’s 2-factor model [23],

T = a+ by logy(D) + ba logy(W). ()

Welford’s model extends Fitts’s law under the intuition
that separable gross movement and homing phases of
motion contribute to the total time. In [3], the authors
modify Welford’s 1971 model for equivalency with the
Shannon form of the index of difficulty using the substi-
tution D <~ D + W. (This modification is subsequently
justified by empirical fitting results.) They can then
algebraically combine terms to match the form of Fitts’s
law, yielding the Shannon-Welford model,

D+ W)
Wk '
Here, & = bo/by captures the effect of W on task
difficulty relative to D. Note that when k£ = 1, the
model is equivalent to the Shannon form of Fitts’s law
(Equation 2). However, it is observed in [3] to take on
values between 0.2 and 1.8. The fact that k is often close
to 1 provides insight into why Fitts’s law demonstrates
good fit quality in many studies, yet is not robust.
Shoemaker et al [3] found their Shannon-Welford
model to better describe manual pointing performance
on very large displays, and over a wide range of CD
gains, compared to the original and Shannon forms of
Fitts’s law, and to Welford’s original model. They also
found that the value of k increases linearly with CD gain.

T:a+blog2< 5

III. METHODS
A. Electrophysiology

In this study, we tested whether the more robust
descriptive power of the Shannon-Welford model car-
ries over to isometric manual control (MC) and BCI-
mediated (BC) rate-controlled cursor tasks. We im-
planted a Macaca nemestrina with dual 96-channel mi-
croelectrode arrays (Blackrock Microsystems, Salt Lake
City, UT), bilaterally in motor cortex, and connected
these to a 128-channel Cerebus neural signal processor
(Blackrock). Manually set time-voltage criteria were
used for online spike sorting, which was recorded at
30KHz for offline analysis. Custom LabVIEW software

(National Instruments) was used to implement a con-
figurable algorithm for BCI control as well as manual
(torque control) of cursor control tasks. The decoding
algorithm and cursor task operated at a sampling rate
of 60Hz, while the display refresh rate was 30Hz. The
combined BCI/manual computer cursor control system
input-output latency was measured to be about 50ms.
Latency was measured by mapping a cursor state variable
to a hardware output, then using an oscilloscope to
simultaneously capture input and output signals. The
experiments were approved by the University of Wash-
ington Institutional Animal Care and Use Committee.

B. BCI Architecture

We implemented a simple decoder based on popula-
tion vector mapping [24]. For each unit, spike counts in
1/60s bins were first filtered with a truncated Gaussian
kernel, 0 = 0.05s, before a baseline firing rate estimate
was subtracted and the resultant instantaneous firing rate
modulation estimate contributed to the population vector
sum uft] according to

N
ult] = > ai(filt] — bilt]) (6)
=1
bilt] = bilt — 1]y + filt] (1 — 7). (7)

The baseline rate b;[t] for each filtered firing rate f;[t]
was continuously updated using an exponential moving
average filter with decay constant v = 0.99999 resulting
in a decay time constant of 28 minutes (we set initial
values using a time constant of 2.8 minutes for several
minutes at the beginning of each experimental session).
This basic per-channel algorithm is illustrated in Figure
1. Modulation from each of 2-4 cells, typically 4, were
summed with weights a; = +0.01 to determine cursor
velocity. Selection of cortical units, and the sign of their
corresponding «;, were chosen on the basis of observed
correlations with torque production during manual con-
trol, or on the basis of modulation depth. The same
algorithm was used to implement manual control tasks,
except fi[t] was replaced with the flexion/extension
torque signal recorded from the manipulandum and «;
were generally fixed across days and chosen by the
experimenter.

C. Behavioral Tasks

We conducted experiments in a primate behavior
booth outfitted with a computer monitor, buzzers, and
a computer-controlled feeder containing apple sauce.
The animal’s arm, contralateral to the implanted array,
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Fig. 1. Block diagram of basic BCI algorithm used for each single-
unit or torque input channel. The summation block combines signals
from several copies of the basic system for multiple single units.

Brain Control

Manual Control

Fig. 2. The two 1D cursor positioning tasks compared in this study.
Cursor velocity was controlled either by wrist torque (left) or neural
modulation (right) of up to 4 single units. The primate’s forearm was
enclosed in a nearly-isometric manipulandum, minimizing proprio-
ception of limb state relevant to the task. The cursor center had to be
held within the target radius for 1 second for a successful trial, and
a 0.5s break separated trials, during which the screen was blank.

was situated in a custom 2-DOF near-isometric manip-
ulandum. The computer monitor was 30 cm x 23 cm,
and located 28 cm in front of the animal’s head. The
manipulandum was used for task training and to measure
motor correlates of neural activity. It also eliminated
the possibility that neural activity is accounted for by
limb kinematics or dynamics, since there were minimal
postural changes.

We presented the macaque with 1D cursor position-
ing tasks with either of two control modalities: during
manual control (MC), isometric wrist torque determined
cursor velocity, and during brain control (BC), velocity
was determined by aggregate cortical single-unit activity,
both via Equation 6.

The animal was tasked with moving the center of a
circular cursor to within the boundary of a circular target,
then holding the cursor inside the target for 1s to receive
an applesauce reward, as shown in Figure 2. Thus, a
target of width W centered a distance D from the starting
position required a minimum movement of D — W/2 to
reach the boundary. The cursor and target were always
shown with the same radii. Targets were randomly drawn
from a discrete set with position referenced to cursor
position at the beginning of each trial, and only one target
was shown and selectable during a given trial. A 0.5s

break was provided between trials, and trials timed out
if the target was not acquired within 40s. The cursor was
always under the primate’s control, even when not visible
on the screen, with the partial exception of movement
limits at screen edges. Candidate target locations were
constrained to be greater than W/2 from screen edges
so that it was always possible to overshoot the target.
The cursor was initialized to the center of screen at the
beginning of trial blocks.

In a typical daily experiment session, we first se-
lected putative single units correlated with manipulan-
dum torque and assigned them to the BCI mapping
during several minutes of a 2D warm-up task. Then,
we conducted alternating 10-minute blocks of MC and
BC with 1-minute breaks in between. Target widths
were typically held constant during a single block, and
randomly-selected distance was biased or constrained to
help balance the distribution of trials at each (D, W)
condition.

For the purpose of performance analysis in our dwell-
to-select context, we subtract the constant 1s dwell
from each trial, and parameterize distance using center-
to-boundary distance as illustrated in Figure 3. This
distance measure is consistent with the I D definition
used by Gilja et al [2], and subtracting dwell time is
standard in the application of Fitts’s law [16]. This
approach is also similar to previous successful modeling
of a crossing-based interface using Fitts’s law [25], and
justified because the task requirement becomes simply
to avoid leaving the target area after the boundary is
crossed.

D. Statistical Analyses of Model Performance

Our use of target geometries randomly chosen from
a discrete set for each trial led to a data set with
repeated measures unevenly distributed among condi-
tions. We also observed large variability in trial times
during brain control. We therefore chose to fit only
to conditions with enough trials to estimate typical
performance, according to the criteria below (I1II-D2),
rather than fitting models to every trial in a given data
set. This is consistent with models predicting typical
performance, and the resultant R? values will reflect
a graded measure of model performance. In contrast,
fitting to every trial depresses R? values (approaching
perfect prediction of average movement times does not
drive R? to 1), diminishing their interpretability as a
graded model performance measure, and significance
tests provide only binary outcomes. Non-normal trial
time distributions motivated the substition of median for
average trial times in our analyses. We selected trial sets
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Fig. 3. Plot of example task geometries, including starting positions
(x’s) and visual target (large circles), showing two choices of task
parameterization (D, W) for model fitting: defining distance as to
target boundary (open circles) represents a significant correction in
modeled task difficulty compared to traditional Fitts’s law distance
measured to target centers (solid dots).

well-described by at least one candidate model to support
comparisons of model performance and discussion of the
estimated model parameters.

1) Parameterizing Trial Time Distributions: The con-
vention is for Fitts’s law to predict average trial time
at each (D,W) condition, under the assumption of
normally-distributed trajectory endpoints in click-to-
select tasks. An alternative possibility, suggested by the
fact that our data represent task completion times, each
of which could represent multiple attempts at holding
the target, is that trial times have a log-normal distri-
bution. To assess normality, we can combine trial times
across (D, W) conditions into a single distribution by
subtracting the (D, W) mean from each. We can then
plot this distribution histogram, and compare it, and its
log transform, to the normal distribution using a quartile-
quartile (Q-Q) plot. An example of this analysis is shown
Figure 4 for a set of trial times during brain control on
one experimental day. We chose to use the median trial
time to represent each (D, W) condition, because this
heuristic analysis of trial time distributions suggested
that they have non-normal, skewed distributions that
resemble log-normal distributions.

2) Trial Set Definition and Screening Criteria: A
trial set is drawn from trials during a single daily
experimental session, and defined as all trials from a
single control condition (MC or BC, at a single gain in
the case of MC). Within each set, we require a minimum
of 30 successful trials at each (D, W) condition to have

confidence in the sample median, and so trials at a
(D, W) condition not meeting this criteria are discarded.
After this culling, each trial set is required to have
4 unique (D,W) conditions so that the 3-parameter
Shannon-Welford model can be applied (we do not
require a fully crossed or balanced set, and consequently
include degenerate cases where 3 or 4 of only 4 tested
conditions share the same D). Finally, we discard trial
sets without at least a 95% success rate, following the
precedents of 90% and 80% in the Felton et al study
[13], and of the standard of capturing 96% of trajectory
endpoints in Fitts’s law analysis of click-to-select tasks
(see 1I-D).

3) Modeling and Strength-of-Fit Screening: We then
apply the Fitts’s law and Shannon-Welford models to
each eligible trial set, using a least-squares regression
against median trial times, and weighted by the number
of trials at each (D,W) condition. We calculate R?
values for each model fit, and perform a final screening
requiring at least one model to have a degree-of-freedom
adjusted R? > 0.9, consistent with the criteria proposed
by MacKenzie in 1992 for the application of Fitts’s law
[15]. We use the trial sets for which at least one of
our two models showed strong predictive power as test
cases for comparative analyses and for visualization of
parameter estimates and trial time prediction surfaces in
Section 1V.

4) Testing Comparative Model Performance: Our
goal is to test the predictive power of two different
empirical models, where one model is nested with the
other, the latter having an additional parameter. For
this, we desire a statistical hypothesis test, not simply a
heuristic that facilitates model selection, such as compar-
ing R? values or Akakie Information Criterion (AIC) or
Bayesian Information Criterion (BIC) metrics. We do not
know what margin of difference one of these measures
must show between models to have confidence that the
difference is significant. We therefore report degree-of-
freedom adjusted R?, as a standard measure of model
power, but do not use it to determine which model
performs significantly better.

We can instead use the F-test to perform one-way
statistical hypothesis tests of relative model performance.
Specifically, the F-test of nested models [26] can be used
to test whether the Shannon-Welford model provides
significantly improved explanatory power over Fitts’s
law for a given trial set. The F-test is the only available
analysis that provides a statistical hypothesis test of
whether the more complex model is significantly better.
To apply it here, we use the F-test F'(p2 — p1,m — p2)
with significance level p < 0.05, where po = 3 is the
number of parameters in the Shannon-Welford model;
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p1 = 2 is the number of parameters in Fitts’s law; and n
is the number of median trial times in the analysis. This
closely follows the comparative analysis of these same
models in the recent study by Shoemaker et al [3].

IV. RESULTS

Our screening criteria for 30 successful trials at each
of at least 4 (D, W) conditions per trial set yielded 20
MC sets and 51 BC sets, however 11 BC sets were
removed due to success rates below 95%. We next found
that 12 MC trial sets and 35 BC trial sets failed to
result in adjusted R? > 0.9 for either model, leaving
us with 8 MC (40%) and 5 BC (10%) trial sets out
of the original pools. Our nested F-test results show
that the Shannon-Welford model is significantly better
in 4 of the 13 comparisons we performed. Although
these results are mixed, they do not reject any of our
hypotheses. We show below that the mixed comparative
results are consistent with the results of Shoemaker et al
when viewed in context with the suitability of the trial
sets for model fitting and the estimated values of the
model parameter k.

We show an example of our heuristic analysis of trial
time distributions in Figure 4. The histogram reveals an
asymmetrical distribution with very long tails (truncated
in the plot), which are not fully eliminated by a log trans-
form, as shown in the second Q-Q plot. Consequently,
we elected to perform all model fitting using median trial
times.

For insight on the fragility of Fitts’s law compared
to the Shannon-Welford model, we show in Figure 5
examples of both models fit to trial set #1. We chose
a set where k£ = 0.56 with the expectation that Fitts’s
law would over-estimate the influence of target width on
task difficultly, which is reflected in the separation of the
two W groupings despite similar trial times when plotted
against I D. Fitts’s law is able to model either grouping
with an excellent coefficient of determination, which
shows that if this particular experiment did not include
multiple target widths, there would be no indication
that the results do not generalize to different target
widths. However, when all six conditions are fit, the
coefficient of determination for Fitts’s law is poor while
the Shannon-Welford model performs well. We confirm
the significantly better performance of the Shannon-
Welford using an F-test, included in Table I.

We provide a table of model fitting results for all trial
sets where at least one model performed well in Table
I. We sorted the enumerated sets by control condition
(MC/BC), then by gain for MC sets, and finally by de-
scending p of the F-test results. D, W, and D x W refer
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Fig. 4. Heuristic analyses of trial-time distributions reveal an

asymmetrical distribution with long tails (truncated in the plots),
which are not eliminated by the log transform. Top, histogram of
trial times with (D, W) condition means subtracted, for the set of
BC trials from trial set 13, with median shown. Bottom are quartile-
quartile (Q-Q) plots comparing this histogram and its log-transform,
respectively, to the standard normal distribution.

to the number of distinct target distances, widths, and
unique combinations thereof included in each trial set.
The number of D x W levels is not equal to the product
of D and W levels because not every combination was
tested with enough trials. Nested models F-test results in
the rightmost column show in which cases the Shannon-
Welford model is significantly better than Fitts’s law
(p < 0.05).

An examination of R? (not adjusted for degrees of
freedom) shows that without exception, the Shannon-
Welford model produces higher R? values, as it math-
ematically must. Further, in most cases where Fitts’s
law showed a degree-of-freedom adjusted coefficient
of determination (R?) above 0.9, the Shannon-Welford
model did as well. The exception is one degenerate
case (3) in which all task conditions are at the same
W. Note that we have four such degenerate trial sets
3, 9, 10, 11), in which three or four of only four
total (D, W) conditions share the same W value. For a
quantitative categorization of suitability for model fitting,
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Example Fitts’s Law Fit to Manual Control
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Fig. 5. Example of model fitting with Fitts’s law (top) and the

Shannon-Welford model (bottom), with MC trial set 1. Fitts’s law
is applied to conditions grouped by W (trendlines not shown, see
R?in legend) as well as to all six conditions (black trendline). Note
that x-axis is different in each, and the bottom plot represents two
super-imposed slices of a surface plot (the two black curves are the
same model) in D-W space.

we examined the condition number of the Jacobian
matrix in the last iteration of model regression. We found
that for most trial sets the condition number was < 102,
but for 3, 9, and 10 it was > 108, also corresponding
to cases where the F-test yielded a p-value of 1.0. The
high condition numbers indicate that good parameter
estimates for our two-factor model cannot be derived
from those ill-conditioned trial sets, so their confidence
intervals are omitted in Figure 6.

For four trial sets, Fitts’s law shows R? < 0.9 while
the Shannon-Welford model retains predictive power,
shown in bold in Table I. The F-test of nested models
shows that the Shannon-Welford model is significantly
better (p < 0.05) at describing these same 4, out of the
10 trial sets with well-conditioned model fits.

Manual Control

Set [ D[ W [ DxW [ Trials | R? R? kE | P-test
Fitts SW p=
1 5|2 6 511 0.811 | 0.956 | 0.6 | 0.033
2 4 | 2 5 719 0.710 | 0.968 | 0.5 | 0.037
3 4 | 1 4 621 0.928 | 0.856 | 0.1 | 1.000
4 4 12 7 751 0.943 | 0930 | 0.9 | 0.819
5 7 2 8 1143 | 0975 | 0.971 | 0.9 | 0.661
6 6 2 7 886 0.947 | 0946 | 1.1 | 0.404
7 5 2 9 929 0.969 | 0978 | 0.8 | 0.099
8 5|2 10 982 0.844 | 0916 | 0.5 | 0.026
Brain Control
Set | D | W | DxW | Trials R? R? k F-test
Fitts SW p=
9 4 1 4 397 | 0.986 | 0.971 | 1.4 | 1.000
10 | 4 1 4 209 0.967 | 0.935 | 0.5 | 1.000
11 4 2 4 412 0.996 | 0.993 | 1.0 | 0.683
12 | 11 | 4 15 1368 | 0940 | 0.942 | 0.7 | 0.243
13 5 5 11 1155 | 0.693 | 0.927 | 1.4 | 0.001
TABLE 1

SUMMARY OF FITTING RESULTS. TOTAL NUMBER OF UNIQUE
DISTANCES AND WIDTHS ARE SHOWN, AS WELL AS UNIQUE
TARGET GEOMETRIES (D x W), FOLLOWED BY FITTING
RESULTS. ITALICIZED ROWS INDICATED TRIAL SETS WITH
ILL-CONDITIONED MODEL FITS FOR SHANNON-WELFORD
MODEL, WHILE BOLD ROWS INDICATE SIGNIFICANTLY BETTER
PERFORMANCE OF THE SHANNON-WELFORD MODEL.

We note that excepting ill-conditioned cases, the trial
sets for which the Shannon-Welford model performs
significantly better are those with k values farthest from
one. We highlight this pattern in a plot of k estimates
versus trial set in Figure 6, with significantly better
Shannon-Welford performance denoted by larger mark-
ers. This is consistent with the fact that the two models
are equivalent when k& = 1.

We found that &k values in the identified models fell
within the range [0.1, 1.8] reported in a previous study of
multiple human-computer interfaces [3]. We did not find,
and did not expect, a significant trend in the relationship
between k£ and CD gain during manual control. We
varied gain by only a factor of 2, whereas previous
results varied gain by a factor of 10 and observed a total
change in k of less than 1 [3].

Our estimates of k for well-conditioned cases averaged
0.78 for MC and 1.05 for BC. This suggests that width
played a marginally dominant role in determining dif-
ficulty during BC, whereas distance played a dominant
role during MC. Finally, we note that for the three sets
of BC trials with well-conditioned fits, the Shannon-
Welford model had good predictive power and provided
estimates of k£ with confidence intervals on par with those
identified during MC. We explore the implications of
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Estimated k Values for Model Fits
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Fig. 6. In this plot of identified £ values for 13 trial sets, large mark-
ers indicate instances where the Shannon-Welford model significantly
outperformed Fitts’s law, and vertical bars indicate 95% confidence
intervals for k£ estimates. MC trial sets 1-8 are ordered by control-
display gain, but no significant k£ vs. gain trend is indicated. The
dashed k£ = 1 line indicates where the Fitts and Shannon-Welford
models are equivalent.

these results in the next section.

We chose the models from MC and BC with the
smallest confidence interval on estimated k£ to compare
predicted movement time surfaces using contour plots in
Figure 7. Note that the prediction surface for MC only
partially overlaps the BC prediction surface, because
the surface boundaries in (D, W) space are determined
by the range of experimental task geometries to avoid
extrapolation. The gradient direction (orthogonal to the
rendered contour lines) at each point in (D, W) space
shows the relative marginal difficulty change if D or W
is changed. Thus, we can see that where the prediction
surfaces meet, BC difficulty is more sensitive to changes
in W while MC is more sensitive to changes in D.

V. DISCUSSION
A. Summary of Results

We showed that the Shannon-Welford model more
robustly describes movement times in reaching tasks
controlled manually as well as directly by cortical ac-
tivity in a non-human primate, outperforming the in-
cumbent Fitts’s law model. In particular, it captures
performance when the relative influence of distance and
width are disproportionate with the assumption of Fitts’s
law. This result is consistent with prior work on the use
of empirical movement models as performance metrics

Prediction Surface for Brain Control
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Fig. 7. These contour plots compare movement time predictions
for manual and brain control, using trial sets 7 and 13, chosen
because they had the smallest confidence intervals for the & estimate.
We match prediction surface boundaries to the range of tested task
geometries, shown by open black circles; for this reason they are
only partially overlapping.

for pointing tasks, including recent works probing the
fragility of the Fitts’s law model [22], and establishing
superiority of the Shannon-Welford model [3]. At the
same time, less than half of the experimental sessions
tested were well-described by either model, stressing
the danger of assuming a movement model is valid.
The variability of our identified parameters for manual
control across well-modeled days provides context for
interpreting brain control parameter estimates, and the
examples of ill-conditioned fits show the importance of
balanced experiment design.
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B. Insights About CD Gain from the k Parameter

By construction, and supported by experimental re-
sults, the k parameter in the Shannon-Welford model
captures the relative difficulty contributions of target
width and distance. Therefore, the model offers a quan-
titative way to refine a common intuitive method of
gain assessment: that it is too high if it is hard to
stay on-target, and too low if it takes too long to get
to the the target. Additionally, the Shoemaker et al
study [3] identified a linear relationship between the k
parameter and gain, which held for mouse as well as
gesture-based pointing with a wall-sized display. This
information motivates new research questions: is there a
correlation between k and subjective user preference of a
gain setting? If so, does this gain setting have correlates
in the model-predicted trial times?

If we assume this relationship holds for interfaces
including BCls, which is consistent with although not
shown by our data, then the k£ parameter provides a
measure of the effect of gain on interface performance,
i.e. an indirect unit-free measure of CD gain. Two oppor-
tunities for comparison then arise. First, we can compare
the effect of BCI gain across experimental sessions with
different decoder weights and neural signals, where no
well-defined direct measure of CD gain exists. Second,
we can compare the effect of CD gain during BC with
the effect of gain during MC.

For example, during each session with an otherwise
fixed BCI decoder, an experimenter can collect enough
trial data to estimate k for two or three levels of gain.
The experiment can be repeated with different decoders
or with re-fitted decoders using the same algorithm. If &
correlates with gain within the same decoders, then it is
a validated method to indirectly measure gain for BClIs,
e.g. across days with re-fitted decoders and potentially
with different decoding algorithms.

C. Evaluating Performance Across Studies

The Shannon-Welford model introduces richer details
into the conditions where one interface enables lower
movement times than another, and motivates a new
perspective on cross-study comparison. While Fitts’s law
can only predict a point of intersection in predicted
movement times along the ID axis, intended as an
abstract measure of both information and difficulty, the
Shannon-Welford model offers prediction surfaces in the
physical (D, W) space. This creates the possibility of
curved intersections between two prediction surfaces,
partitioning the task geometry space according to which
interface will enable faster movements.

There are two consequences of this: first, experimenter
choice of task geometry can bias an an experiment
testing two control interfaces; second, the only sufficient
test of interface performance for a particular task is
experiments designed to include the same range of task
geometries. The use of the Shannon-Welford model, and
reporting of tested geometries and CD gains, therefore
provides a check as to whether experimenter choice
of task geometry may have biased an experiment in
favor of one control mode. There is no gold standard
of appropriate task geometries to test; this choice is ulti-
mately grounded in the degree to which the experiment
is representative of a real-world task.

We hope to have convinced the reader that there is
much to gain from switching to this richer and more
descriptive empirical model of reaching movements, and
that the non-conformity of experimental data with Fitts’s
law emphasizes the importance of reporting complete ex-
perimental details. Although the Shannon-Welford model
does not resolve the challenges of cross-study compar-
ison, we submit that it represents an important step
in the right direction. Along these lines, we endorse
the consensus opinion from the 2013 International BCI
Meeting at Asilomar [27], with the important exception
of their endorsement of Fitts’s law as defined in the
ISO standard. We submit that the Shannon-Welford
model should be used instead, because it offers a more
robust standard model and the intuitively meaningful &
parameter; results from modeling with Fitts’s law can
also be reported for completeness.

D. Trade-offs Unique to BCI Experiments

Here we examined 1-dimensional movement tasks,
the simplest test case for this movement model. The
model can be applied to 2- and 3- or even higher
dimensional tasks [28], as well as over-actuated ex-
perimental paradigms where the controlled degrees of
freedom (DOF) can exceed the task degrees of freedom
(e.g., [29]). We expect the model to work independent
of dimensionality, allowing a distance metric to be
substituted for D and W in the one-dimensional case
addressed here, but it may be necessary to design the
distance metric to ensure that speed/accuracy tradeoffs
across dimensions are equivalent. A movement model
based on task DOF may seem inadequate for overactu-
ated systems, but this is exactly the context in which a
task-based model can reveal similar performance trade-
offs between BCI and native motor control. In a native
motor task, task difficulty, and consequently movement
times, marginally increase with task DOF [9], despite the
control DOF (i.e. the arm) remaining exactly the same -
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and much larger than the task DOF. We expect to see this
dissociation between task and control degrees of freedom
in proficient BCI-mediated control. Movement times
well-explained by an experimentally validated movement
model are a necessary condition to claim performance
tradeoffs on par with the native motor system in pointing
tasks.

VI. CONCLUSION

In developing summary recommendations for BCI task
design, we are keenly aware that each trial performed
with a BCI consumes precious experimental time and
subject motivation. While we are sensitive to the limited
experimental time available to test both animal and
human BCI performance, we recommend the use of a
balanced design with at least 2, and ideally 3 distinct
distances and widths of target — with the largest pos-
sible separation — to efficiently determine the Shannon-
Welford model fit. We acknowledge the frustration at the
loss of a single quantitative performance measure, but
emphasize that the failure to inform nuanced attribution
of variability, in addition to the logical inconsistency
of information claims, compel the community to find
a better standard measure than Fitts’s law.
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