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The number of clinical trials in regenerative medicine is burgeoning, and stem cell/tissue engineering technologies hold the
possibility of becoming the standard of care for a multitude of diseases and injuries. Advances in regenerative biology reveal
novel molecular and cellular targets, with potential to optimize tissue healing and functional recovery, thereby refining
rehabilitation clinical practice. The purpose of this review is to (1) highlight the potential for synergy between the fields of
regenerative medicine and rehabilitation, a convergence of disciplines known as regenerative rehabilitation; (2) provide
translational examples of regenerative rehabilitation within the context of neuromuscular injuries and diseases; and (3)
offer recommendations for ways to leverage activity dependence via combined therapy and technology, with the goal of
enhancing long-term recovery. The potential clinical benefits of regenerative rehabilitation will likely become a critical
aspect in the standard of care for many neurological and musculoskeletal disorders. (Pediatr Phys Ther 2017;29:S10–S15)
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INTRODUCTION

The combination of rehabilitation together with engineered
devices and regenerative therapies holds potential to improve
quality of life after neuromuscular injury or disease. The field of
regenerative medicine is based on the assumption that the health
of our population would benefit from a paradigm shift in the
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way we approach the treatment of acute and chronic conditions
so as to maximize clinical outcomes. As proposed by Daar and
Greenwood1:

Regenerative medicine is an interdisciplinary field of
research and clinical applications focused on the repair,
replacement or regeneration of cells, tissues or organs
to restore impaired function resulting from any cause,
including congenital defects, disease, trauma and ageing.
It uses a combination of several converging technolog-
ical approaches, both existing and newly emerging, that
moves it beyond traditional transplantation and replace-
ment therapies. The approaches often stimulate and sup-
port the body’s own self-healing capacity.

Regenerative medicine technologies have been investigated
as a means to enhance the functional capacity of a host tissue
when endogenous regenerative mechanisms are inadequate
or fail altogether. The enthusiasm surrounding regenerative
medicine continues to build, and this enthusiasm is being
matched with clinical deliverables at an accelerating pace. Over
the next decades, stem cell and tissue engineering protocols
hold the possibility of becoming the standard of care for a
number of diseases and injuries. Although early stem cell appli-
cations were initially limited to the treatment of potentially fatal
conditions, clinical trials are increasingly investigating a diverse
array of applications, including musculoskeletal and neurolog-
ical systems. As an example, the Clinical Trials registry (www
.clinicaltrials.gov) lists 7 active studies investigating cellular
therapies for the treatment of Duchenne muscular dystrophy
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(accessed July 19, 2016). Cell sources for these trials include
umbilical cord mesenchymal stem cells and bone marrow–
derived cells. A similar query using the Boolean search terms,
“stroke” and “stem cell,” yields 102 hits (accessed July 19, 2016).
With return to normal tissue function as the ultimate goal of
these biological therapies, it is clear that regenerative medicine
shares an increasingly convergent path with rehabilitation.

OVERVIEW OF REGENERATIVE REHABILITATION

Physical rehabilitation has foundations in the targeted appli-
cation of mechanical stimuli to enhance intrinsic tissue healing
potential. Mechanobiology is a growing scientific field that
seeks to better understand how mechanical forces induce cel-
lular and tissue responses, and how these forces contribute
to tissue development, homeostasis, and pathophysiology.
A central area of study within mechanobiology is mechanotrans-
duction, the process by which mechanical stimuli are sensed,
transmitted, and translated into biologic responses (reviewed
in Dunn and Olmedo2 and Thompson et al3). There is robust
evidence supporting biologic adaptations in response to both
dynamic and static mechanical stimuli. Advances in mechanobi-
ology suggest that changes in cell mechanics, extracellular
matrix (ECM) structure and composition, and mechanotrans-
ductive sequences may contribute to the pathophysiology of
many inheritable and acquired disabling conditions (reviewed
in Dunn and Olmedo2 and Thompson et al3). Applied mechan-
ical stimuli represent a potent stimulus to harness intrinsic tissue
healing capacity. This concept has served as a foundation for the
application of rehabilitation protocols for the treatment of dis-
eased or injured tissues.

Similar mechanical and biological stimuli can also be used
to activate the nervous system to induce reorganization and
potentially repair. Pairing physical movement with activity in the
nervous system is the foundation for many therapies aimed at
promoting neuroplasticity. These approaches leverage the phe-
nomenon discovery by Donald Hebb in the 1950s, now para-
phrased as “neurons that fire together wire together.”4 Cur-
rent approaches to physical therapy promote recovery by lever-
aging this activity-dependent plasticity via assisted movement
and stimulation applied to the muscles, nerves, spinal cord,
or brain. Going forward, such activity and timing-dependent
strategies will be needed in combination with stem cell or tissue
engineering solutions to guide the incorporation of tissue grafts
or promote the regeneration and functional organization of
endogenous stem cells.

Just as endogenous musculoskeletal and neural tissues ben-
efit from the application of rehabilitation protocols to promote
functional tissue recovery after injury and with disease, it is
increasingly recognized that the functional efficacy of regenera-
tive medicine technologies may be enhanced when coupled with
mechanical and electrical stimuli.5-11 The recognized poten-
tial for synergy between the fields of regenerative medicine
and rehabilitation science has in recent years launched the
birth of a new field, regenerative rehabilitation.12-14 The Inter-
national Consortium for Regenerative Rehabilitation defines
regenerative rehabilitation as “the integration of principles
and approaches from the fields of rehabilitation science and

regenerative medicine. Regenerative medicine focuses on the
repair or replacement of tissue lost to injury, disease, or age, pri-
marily via the enhancement of endogenous stem cell function
or the transplantation of exogenous stem cells. A focus of Reha-
bilitation science is the use of mechanical and other physical
stimuli to promote functional recovery. The integration of these
two approaches will optimize independence and participation
of individuals with disabilities” (www.ar3t.pitt.edu).

SUCCESSES IN REGENERATIVE REHABILITATION
AND RELATED THERAPIES

Musculoskeletal Regenerative Rehabilitation

Progress in regenerative rehabilitation research has arguably
been the greatest when considering musculoskeletal applica-
tions, such as the treatment of traumatic skeletal muscle injuries.
Although skeletal muscle is capable of remarkable regenerative
potential, when the injury or disease is extensive and destroys
the underlying architecture, regeneration is aborted and is char-
acterized, instead, by scar tissue formation (reviewed in Huard
et al15). The consequence is severely impaired functional
capacity of the damaged tissue. In cases such as these, cel-
lular therapies have been investigated as a means to boost
tissue regenerative capacity. Unfortunately, the therapeutic ben-
efit of these interventions has often been limited by massive
cell death following transplantation and a poor transplanta-
tion efficiency,16,17 ultimately resulting in poor functional out-
comes. To overcome this barrier, studies have demonstrated
that the combination of stem cell transplantation and muscle
loading increases the engraftment of donor cells, both in cases
of myopathy6,7,18 and injury.5,19

Accordingly, surgical placement of acellular biologic scaffold
materials (a tissue engineering approach) composed of mam-
malian ECM promotes constructive tissue remodeling in cases
of volumetric muscle loss.20-22 The mechanisms underlying the
reported functional improvements have yet to be elucidated, but
it has been hypothesized that donor ECM-mediated response
occurs through the recruitment of stem/progenitor cells at the
site of implantation.23-26 The application of rehabilitation pro-
tocols following ECM implantation has been suggested to be
beneficial—even crucial—for providing the needed mechanical
signals to encourage site-specific tissue remodeling (reviewed in
Gentile et al27 and Badylak et al28). Future randomized studies
to determine whether and how optimal rehabilitation protocols
may enhance functional outcomes following the application of a
tissue engineering device for the treatment of volumetric muscle
loss are warranted.

Neurological Regenerative Rehabilitation

In the central nervous system (CNS), electrical and chem-
ical signaling is believed to be the strongest driver of plasticity
and remodeling. Following injury to the CNS, fibrosis forma-
tion can alter the biophysical tissue properties and may trigger
a multitude of downstream cellular responses and strongly
influence plasticity and recovery. Indeed, static mechanical
and electrical properties of the cellular microenvironment have
been shown to exert potent effects on mesenchymal stem cell
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regenerative potential.29,30 Spinal cord and hippocampal neu-
rons grown on a soft gel substrate were shown to form 3 times as
many branches compared with neurons grown on stiffer gels.31

Together, these studies suggest that complementary methods to
optimize the biophysical microenvironment (eg, through phar-
macological or cell-based therapies) may be a critical step in
realizing the full potential of rehabilitation protocols after spinal
cord injury, stroke, or traumatic brain injury.

More traditional interventions for CNS trauma involve
activity-dependent therapies. For example, following spinal
cord injury or stroke, assisted locomotor training is used with
the goal of delivering synchronous input both above and below
a lesion.32,33 As reviewed later, such interventions may also
employ electrical stimulation of the muscles, peripheral nerves,
or spinal cord to activate the affected neuromuscular tissue. In
addition to direct efferent activation, such stimulation often also
results in activation of sensory afferents, providing coordinated
input to the CNS distal to a lesion.32-34

Several methods exist for electrically or magnetically acti-
vating the brain and spinal cord after injury. Methods of
electrical stimulation include application of current to the
dorsal surface of the spinal cord, termed epidural stimulation
(Figure 1). Early human studies are possible because of the off-
label use of stimulators designed to alleviate chronic pain.35-37

Noninvasive methods of spinal stimulation are also possible
using magnetic fields, which have improved spasticity following
spinal cord injury for up to 24 hours.38-40 Magnetic stimulation
of the lumber spinal cord can be triggered by upper extremity

Fig. 1. Illustration of spinal stimulation techniques applied distal to an injury.
Epidural stimulation is applied to the dorsal surface of the spinal cord, adapting an
FDA-approved treatment for chronic pain. Epidural stimulation most likely activates
sensory afferents and dorsal roots to recruit spinal networks below the injury. In the
presence of constant epidural stimulation, people with otherwise complete paral-
ysis can move their joints individually, and have lasting improvements in autonomic
function. Intraspinal microstimulation is applied via thin wires implanted within the
spinal cord to target the intermediate and ventral lamina where the motor neuron
cell bodies are located. Intraspinal microstimulation can evoke functional syner-
gies from select stimulating locations and lead to long-term recovery of function
when applied therapeutically or in an activity-dependent manner. Reprinted with
permission from Mondello et al.45

movement to create an activity-dependent paradigm where step-
ping movements are synchronized with arm swing in spinally
intact volunteers.41

Parallel work in animals uses hair-like wires within the
spinal cord, termed intraspinal microstimulation (Figure 1).
Intraspinal microstimulation can evoke functional synergies for
walking42 and reach/grasp.43,44 Such stimulation can also lead
to long-term improvements in forelimb function in animal
models of spinal cord injury,11 especially when triggered by
residual muscle signals in an activity-dependent paradigm.10

Although intraspinal stimulation is more invasive than epidural
stimulation, it is currently scheduled for the first human exper-
iments and provides much greater specificity of activation that
may benefit the incorporation of regenerative therapies.45

In both the brain and spinal cord, pairing of artificial stimu-
lation can benefit individuals recovering from stroke and spinal
cord injury.46,47 Application of peripheral nerve stimulation fol-
lowed by transcranial magnetic stimulation after an appropriate
latency can reinforce48,49 or inhibit47 connections either within
the intact brain or for subjects recovering from stroke. Similar
mechanism have been applied to the cervical spinal cord after
injury46 to reinforce weak but spared connections bypassing a
lesion. Even stimulation applied directly to the brain surface
improves function in animal models of ischemic stroke.50,51

Furthermore, paired stimulation delivered to the brain or brain
and spinal cord can lead to long-term changes in synaptic
strength in the intact52,53 and injured CNS.54 Building on the
success of constraint-induced therapy,55,56 if such methods of
stimulation can incorporate time or activity dependence, they
may induce long-term plasticity and recovery. Going forward,
efforts are required to ensure that such stimulation methods are
effectively combined with physical therapy, and eventually cel-
lular and regenerative therapies, to optimally improve function
after injury.

Appropriate neural activity is likely a prerequisite for stem
cells to improve function in the damaged CNS. Neural activity
is critical for avoiding cell death following insult,57,58 improves
blood perfusion and the related health of neurons,59 and upreg-
ulates brain-derived neurotrophic factor, which is implicated in
plasticity and recovery.60,61 In contrast, reduced activity such as
that observed in models of spinal muscular atrophy is associated
with reduced axon growth.62 On the basis of this cumulative
evidence, one of the most successful stem cell transplant studies
coupled brief electrical stimulation of the peripheral nerve with
motor neuron cell grafts and demonstrated impressive cell sur-
vival and muscle reinnervation.63 This landmark study suggests
that the combination of regenerative cell therapies and artifi-
cial stimulation may be critical for achieving targeted plasticity
and functional recovery following injuries or degeneration of the
neuromuscular system.

OBSTACLES AND BARRIERS TO REGENERATIVE
REHABILITATION—WHAT IS HOLDING US BACK?

The clinical translation of regenerative medicine approaches
for the enhancement of physical functioning presupposes the
existence of a critical mass of basic scientists working in
close collaboration with rehabilitation clinicians. Unfortunately,
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although interdisciplinary research is conceptually desirable,
there are few opportunities providing rehabilitation scientists
with the resources and training necessary to become engaged
in the field of regenerative medicine. Of the almost 1300 cur-
rently funded studies investigating “stem cell transplantation”
or “tissue engineering” listed on National Institutes of Health
(NIH) reporter, only 8 are housed in rehabilitation departments
(Accessed July, 2016).

One reason for the disconnect between regenerative biology
and rehabilitation studies may be that many rehabilitation pro-
grams lack faculty members with the expertise necessary to
teach principles and concepts in the domain of cellular and
regenerative biology. Physical therapy and occupational therapy
departments are often in schools without basic science research
programs, thereby limiting opportunities for interaction with
basic science colleagues. Similar barriers have impeded those
working in the basic sciences from understanding application
of their work to clinical practice, as they generally have lim-
ited exposure to rehabilitation practice. As a result, regener-
ative medicine scientists may not consider clinically available
approaches, technologies such as robotics and modalities such
as neuromuscular electrical stimulation or ultrasound that may
be beneficial in targeting the mechanotransductive pathways, so
fundamental for driving the tissue regenerative cascade. More-
over, given that functional benefit is the ultimate goal of all trans-
lational regenerative therapies, basic scientists stand to benefit
from the expertise of rehabilitation specialists in functional out-
comes assessment.

There is also a large unmet need for better preclinical models
of rehabilitation. Currently, preclinical models of rehabilita-
tion are limited, and the bulk of the studies employ tread-
mill or wheel running, for example. Yet clinical rehabilitation
consists of much more than just the presence or absence of
exercise, and investigation into combined rehabilitation modal-
ities such as neuromuscular electrical stimulation and ultra-
sound to enhance stem cell transplantation or implantation of
a tissue engineering device is needed. Finally, timing, dosing,
and intensity are all critical variables for both pharmacological
and rehabilitation interventions following CNS injury, and work
is ongoing to determine the optimal paradigm for combining
multiple therapies.64,65

CONCLUSIONS AND CHARGE TO THE FIELD

As is our tradition, rehabilitation practice must contin-
uously evolve such that it may be responsive to scientific
and technological innovations that impact clinical practice.
Undoubtedly, progress in the field of rehabilitation will increase
proportionately with the pace at which rehabilitation profes-
sionals keep up with innovations in medical practice. Just as the
prescription of rehabilitation is the standard of care following
the onset of most musculoskeletal and neurologic injuries
and diseases, it is likely that rehabilitation will necessarily be
the standard of care, as regenerative medicine technologies
increasingly make their way to clinical practice.

To drive knowledge transfer and the technical capabilities
of medical rehabilitation researchers to perform cutting-edge
regenerative rehabilitation investigations, we must begin to

systematically promote the integration of basic scientists with
rehabilitation specialists. We must train rehabilitation clini-
cians who can help oversee the quality, safety, and validity of
these innovative regenerative rehabilitation technologies and
protocols.

In addition, to be effective in this partnership, there is a need
for an improved mechanistic understanding by which mechan-
ical forces and modulation of the tissue microenvironment (eg,
through exercise and modalities) may be used to optimize out-
comes following a regenerative medicine intervention. Molec-
ular and cellular mechanisms must be the foundation upon
which clinical regenerative rehabilitation protocols are derived,
and a better understanding of these mechanisms will allow for
the more rational design of clinical protocols that elicit targeted
and specific cellular and tissue responses. In the absence of these
guiding mechanisms, clinical protocols will be left to a trial-and-
error approach, an approach that is ineffective in terms of clinical
outcomes as well as economics.

Finally, our ability to use engineered devices to interact
with the neuromuscular system is beginning to accelerate.
Implanted stimulators capable of triggering activity-dependent
stimulation are now in early human studies for essential tremor
and Parkinson disease.66 Experimental devices are already
capable of delivering electrical, magnetic,67 optical,68 and
pharmacological69 stimulation to targeted locations within the
brain and spinal cord, as well as the peripheral nerves and
muscles.70 Optogenetics, or light activation of neurons,71,72

is currently under trial to treat blindness.73 This technique
may soon be combined with stem cell interventions to enable
targeted activation of grafts in situ. Given the current pace
of technological advancement, there is tremendous poten-
tial to leverage engineered solutions to enhance biological
regeneration.

The combination of regenerative therapies such as stem cell
or tissue grafts with methods to induce appropriate mechanical
or electrical stimuli within the injury or diseased site is likely
critical to the success of regenerative rehabilitation. If emerging
technologies can be effectively coupled with sound physical
therapy practice to induce activity-dependent remodeling of
injured tissues, regenerative rehabilitation therapies may soon
dramatically improve plasticity and participation for people with
injuries to the neuromuscular system.
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