Assessing snow and snowmelt runoff in remote mountain ranges

Jeff Dozier, University of California, Santa Barbara

Oregon State University, Valentines Day 2014
KABUL, 21 September 2011 (IRIN) – “The current dry spell sweeping across Afghanistan’s northern, northeastern and western provinces could lead to a large-scale food crisis and the humanitarian community should act quickly to ensure this does not degenerate into a disaster, government and aid officials warn.”

http://www.irinnews.org/Report/93781/
Analysis-Afghan-drought-conditions-could-spell-disaster
Accumulation season, passive microwave
The problem

- In mountains, no reliable real-time method to measure spatially distributed (or basinwide integrated) snow water equivalent
 - Passive microwave sensors have a large spatial footprint and tend to underestimate, which complicates interpretation of the results
 - Numerical weather models, driven by available data, have difficulty predicting precipitation, particularly snowfall and the rain-snow transition
- However, with optical data (MODIS, VIIRS) and energy balance models (driven by NLDAS or GLDAS) we can reconstruct the spatial distribution of snow water equivalent
- OK . . . Then what?
Snow Water Equivalent (fine resolution, accurate, timely)

Yes Analysis at US Army CRREL (Interactive Narrative) (Map Story) (Geoint)

Visualize & narrate historical bracket (automatic)

Concern?
No

Historical narratives (news, intelligence)

SSM/I, AMSR-E, AMSR2

MODIS

Snow Albedo

Snow-Covered Area

Model Snowmelt day-by-day

Downscale

Reconstructed Snow Water Equivalent (fine resolution, accurate, on/after peak, after snow gone)

Solar Radiation
Longwave Radiation
Air Temperature
Humidity
Wind (~)

Downscale

Snow Water Equivalent (coarse resolution, large uncertainty, dry snow only, timely)

Pattern Discovery

Solar Radiation
Longwave Radiation
Air Temperature
Humidity
Wind (~)
Water balance?
Over a year so ? (Only for Reconstruction)
In the Sierra Nevada, where we can compare results to streamflow and surface measurements, passive microwave snow estimates see ~10% of the total volume.
MODIS
Afghan tile: wide swath (2300 km), 500 m pixels, daily coverage
Reconstructed
SWE
Spectra with 7 MODIS “land” bands
Fractional snow cover from MODIS

\[R_\lambda = \epsilon_\lambda + \sum_{k=1}^{N} f_k R_{\lambda,k} \]
Viewable Snow?

\[f_{SCA} = \frac{f_{SCA}^{(observed)}}{1 - \min(f_{\text{veg}})} \]
Seasonal Progression of f_{veg}, 2000-2006

National Land Cover Dataset, 2001
Vegetation Correction for f_{SCA}

f_{SCA} viewable

f_{SCA} corrected
Cloudy, 20%-80% depending on where/when
Snow covered area, clear day, notice the noise
Noise low-
(clouds) and high-
frequency (sensor)
Sensor viewing angles (larger angle = larger pixels)
Is peak microwave SWE the right number to compare with streamflow?

Snow Water Equivalent (coarse resolution, large uncertainty, dry snow only, timely)

SSM/I, AMSR-E, AMSR2

MODIS

Snow Albedo

Snow-Covered Area

Model Snowmelt day-by-day

Downscale

Solar Radiation
Longwave Radiation
Air Temperature
Humidity
Wind(~)

Reconstructed Snow Water Equivalent (fine resolution, accurate, on/after peak, after snow gone)

Visualize & narrate historical bracket (automatic)

Pattern Discovery

Snow Water Equivalent (fine resolution, accurate, timely)

Analysis at US Army CRREL
(Interactive Narrative)
(Map Story)
(Geoint)

Concern?

Yes

Historical narratives (news, intelligence)

No
Energy balance reconstruction

\[SWE_n = SWE_0 \sum_{j=1}^{n} M_j \]

when \(SWE_n = 0 \), \(SWE_0 = \sum_{j=1}^{n} M_j \)

\[M_j = M_{p_j} \ast f_{SCA_j} \]

\[M_{p_j} = m_Q R_d + r T_D \]
Reconstruction on a grid cell

Daily potential melt f_{SCA} Reconstructed SWE

(A. Kahl Homan et al., *Hyd Proc* 2011)
Downscaling incoming longwave radiation, Tuolumne-Merced River Basins

\[L_A = \varepsilon_A \sigma T_A^4 \]

\[\varepsilon_A = \frac{\sigma T_A^4}{L_A} \]
Energy balance components, Hindu Kush, 2011 April 01
Resulting melt for that day
Reconstructed SWE
Mar 2011
Reconstructed SWE
May 2011
AMSR-E
SWE
May 2011
Persistent sources of uncertainty in passive microwave retrieval of SWE: vegetation, deep snow, sub-grid heterogeneity

- For SWE < 150 mm:
 - RMSE = 32 mm
 - Bias = +8.5 mm
 - Correlation coefficient $r = 0.68$

- For all SWE:
 - RMSE = 43 mm
 - Bias = +1.1 mm
 - Correlation coefficient $r = 0.67$
Hindu Kush, AMSR-E & Reconstruction, basins sorted by Spearman

![Graphs showing reconstructed SWE vs AMSR-E SWE for different basins.]

- **Amu Darya**: $R^2=0.642$, $p=0.810$
- **Helmand**: $R^2=0.242$, $p=0.524$
- **Western**: $R^2=0.036$, $p=0.452$
- **Kunar**: $R^2=0.104$, $p=0.357$
- **Harinod-Murghab**: $R^2=0.002$, $p=0.333$
- **Upper Kabul**: $R^2=0.064$, $p=0.252$
- **Northern**: $R^2=0.117$, $p=-0.119$
- **Upper Helmand**: $R^2=0.008$, $p=-0.216$
Pixel-level comparison in drought years

Drought years in the Sierra and Amu Darya, Afghanistan

- Amu Darya, Afghanistan 2011 $y = 0.31x + 1.90$ ($R^2 = 0.84$)
- Sierra 2007 $y = 0.05x + 9.11$ ($R^2 = 0.25$)
Conclusions

• Reconstruction provides independent spatially distributed data for validation of measurements (e.g., passive microwave) or models (e.g., SNODAS, Central Asian Snow Model)
 • Driven by available data (MODIS or VIIRS, GLDAS or NLDAS)
 • But uncertainty in the starting date
• SWE retrieval from passive microwave data needs improvements to be reliable in the mountains
 • e.g., Tedesco’s neural network approach, but incorporating MODIS-derived snow-covered area