Profiles

Roger Buick [EMAIL]

Professor, Earth & Space Sciences
University of Washington



Research Expertise: geomicrobiology, early life

VPL Focus: Task B: Earth through Time

Homepage: http://earthweb.ess.washington.edu/dwp/people/profile.php?name=buick--roger

Biography:

I am interested in the origin and earliest evolution of life on Earth and how that can be used as an analogue for life elsewhere in the Universe. My research techniques lie at the intersection of geology, biology and chemistry, examining the oldest and best-preserved rocks available. This involves fieldwork in the Australian outback, on the Greenland ice-cap and in the Canadian woods, amongst other places.

Examples of current projects include:

Early evolution of bacterial metabolism - palaeontology and stable-isotope geochemistry of Archaean sedimentary rocks, with the aim of determining when the main forms of microbial metabolism first arose and whether this caused environmental change in the atmosphere and oceans.

Early Archaean atmospheric composition - detrital heavy minerals in Archaean fluvial sandstones, with the aim of determining whether their alteration patterns indicate primordial atmospheric greenhouse effect modulated by carbon dioxide or some other gas in order to counteract the weaker solar luminosity during Earth's early history.

Secular trends in marine nutrient fluxes and their ecological impact - phosphorus and nitrogen geochemistry in sedimentary rocks through time, with the aim of betterquantifying oceanic fluxes and budgets for these elements, identifying temporal trends in their sources and sinks, and determining whether these reflect or influenced ecosystem evolution.

Early evolution of continental crust - trace-element and radiogenic-isotope geochemistry of basalts ~3.5 billion years old across an ancient unconformity in the Pilbara Craton, Australia, with the aim of contraining the primordial growth rate of continental crust, the tectonic environments of the early Earth and the biological impacts of crustal differentiation. 

Molecular fossils from early Precambrian rocks - organic geochemistry of well-preserved Archaean and Palaeoproterozoic hydrocarbons and kerogen, with the aim of discovering organic geochemical biomarkers that constrain the phylogenetic history of microbial ecosystems.

Selected Publications:

2012: Som, S.M, Catling, D.C., Harnmeijer, J.P., Polivka, P.M. & BUICK, R. Air density 2.7 Gyr ago limited to less than twice modern levels by fossil raindrops. Nature, 484, 359-362.

2012: Stüeken, E.E., Catling, D.C. & BUICK, R. Contributions to late Archaean sulphur cycling by life on land. Nature Geoscience, 5, 722-725.

2011: Summons, R.E., Amend, J.P., Bish, D.L., BUICK, R., Cody, G.D., Des Marais, D.J., Dromart, G., Eigenbrode, J.L., Knoll, A.H. & Sumner, D.Y., Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology, 11, 157-181.

2009: Garvin, J., BUICK, R., Anbar, A.D., Arnold, G.L. & Kaufman, A.J., Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science, 323, 1045-1048.

2008: BUICK, R., When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B, 363, 2731-2743.

2007: Anbar, A.D., Duan, Y., Lyons, T.W., Arnold, G.L., Kendall, B., Creaser, R.A., Kaufman, A.J., Gordon, G.W., Scott, C., Garvin, J. & BUICK, R., A whiff of oxygen before the Great Oxidation Event. Science, 317, 1903-1906.

2007: Kaufman, A.J., Johnston, D.T., Farquhar, J., Masterton, A.L., Lyons, T.W., Bates, S., Anbar, A., Arnold, G.L., Garvin, J. & BUICK, R., Astrobiological insights into global biospheric oxygenation and atmospheric evolution. Science, 317, 1900-1903.

2001: Shen, Y., BUICK, R. & Canfield, D.E., Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77-81.

1999: Brocks, J.J., Logan, G.A., BUICK, R. & Summons, R.E., Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033-1036.

1998: Dutkiewicz, A., Rasmussen, B. & BUICK, R., Oil preserved in fluid inclusions in Archaean sandstones. Nature, 395, 885-888.