Building Atomic Bridges Between Dissimilar Materials

1 Olmstead Feb 2010

Future Devices – Interfaces Matter

- Silicon Based Nanoelectronics:
 Join Silicon with things that do what Silicon doesn't do
- Increase speed:

2 Olmstead Feb 2010

♦ Strain electron channel by adding Germanium

Islands and Interdiffusion

2020's

ンシング

- Modulate Light:
 - \diamond Add layers of compound materials

Interface Compounds and Crystal Symmetry

- o Add Magnetic Effects
 - Transition-metal doped oxides and semiconductors

Unwanted Reactions and Phase Segregation

4 Olmstead Feb 2010

Miniaturization

<section-header> Ourseines to Answer When you grow A on B ... • Is there intermixing? • How does B's structure influence A's ? • Does A form a flat film (laminar) or form islands? • Does A have new properties ?

How can we answer these questions?

Ultrahigh Vacuum

- Atmospheric pressure: Surface atoms hit once each 10⁻⁹ s
- \circ 1 layer/second = 1 micron/hour
- Work at ~ 10⁻¹³ atmospheres, grow ~ few layers / minute
- Microscopy with sub-nm resolution
 o Atomic spacing ~ 0.2 0.4 nm
- > Atom-specific structural information
 - Elemental distribution perpendicular to growth direction

6 Olmstead Feb 2010

Experimental tools: Microscopy

- Scanning tunneling microscopy (STM):
 - Electrons tunnel between tip and sample
 - $\circ~$ Measure electronic state corrugation

http://www.nanoscience.de/group_r/stm-spstm/stm/

Real space information

8 Olmstead Feb 2010

No direct information of the elements

Si(100)+ 1 ML Arsenic 100 x 400 nm²

0.385 nm

Silicon Lattice

0.235 nm

0.14 nm

Experimental Tool: Photoemission Spectroscopy

A Few Intrinsic Factors in Heteroepitaxy

> Surface Structure -- Symmetry, Defects

• GaSe vs Ga₂Se₃/Si: Substrate control of crystal structure

- Chemical Reaction Interface Compound Formation
 - o TiO₂/Si: Buffer layer inhibition of interface reaction
- > Impurity Incorporation Solubility Limits, Phase segregation
 - Cr and Mn-doped Ga₂Se₃/Si: Concentration-dependent structure

10 Olmstead Feb 2010

12 Olmstead Feb 2010

Optoelectronics Heteroepitaxy

- Optical Band Gap vs. Lattice Parameter
 GaSe, Ga₂Se₃, Al₂Se₃
 - Matched to Si
 - Non-linear optics
 - Direct band gap
 - Anisotropic
 - Cool growth physics
 - Useful material??

GaSe Bilayer on Si(111)7x7

GaSe Nucleation and Growth on Si(111)

Nucleation on Si(111):GaSe Hexagonal, Layered GaSe

1.1QL on bilayer (3.2HBL coverage)

2.7QL on bilayer (6.5HBL coverage)

17 OINSteade bar 100 nm

- Triangular Islands
- 1 QL high (0.8 nm)
- "Carpet on steps" over substrate steps
 Ga

Change Symmetry: Si(001) vs. Si(111)

Growth on Si(001)

[112]

bare Si(100)

100x100nm², -2V, 0.1nA

19 Olmstead Feb 2010

Zinc-blende Ga_2Se_3 (2.5CBL)

100x100nm², 5.4V, 0.09nA

Nanorod Nucleation and Growth

Large scale 500x500 nm² Scale Bar 25 nm

20 Olmstead Asidimer rows

Sharp, narrow nanoridges. Shape stable with further growth

Ga_2Se_3 Nanoridge Structure $\leftarrow \rightarrow$ Growth

-5.4 V, 0.09 nA, 20x20nm²

- 1 Ga-Se bilayer high
- Corrugation = Ga-Ga distance
- Rods perp. to As dimer rows
- Lateral shift between layers

21 Olmstead Feb 2010 T. Ohta et al, PRL 2005.

23 Olmstead Feb 2010

Al₂Se₃ on Si(001):As

Bulk Al₂Se₃ is hexagonal Can we induce cubic? Does intermixing still occur? Do vacancies align for nanoridges?

Al₂Se₃ Growth on Si(001):As

Interface Structure and Orientation

Al₂Se₃ ridges form || As dimer rows

15x20nm²

24 Olmstead Feb 201012

- derivative
- Ga₂Se₃ ridges form ⊥ As dimer rows

Why? Different Reactivity

Ga₂Se₃: As interdiffuses into Ga₂Se₃
 Al₂Se₃: As stays bonded to Si

A Few Intrinsic Factors in Heteroepitaxy

Surface Structure – Symmetry, Defects

- Chemical Reaction Interface Compound Formation
 - TiO₂/Si: Buffer layer inhibition of interface reaction
- Impurity Incorporation Solubility Limits, Phase segregation
 - Cr and Mn-doped Ga₂Se₃/Si: Concentration-dependent structure

26 Olmstead Feb 2010

Chemical Reactions: Good or Bad?

➤ Bad

- \circ Wrong properties for desired application
- $\circ\,$ Passivate to the point nothing wets the surface

≻ Good

- o Unzip surface reconstruction
- $\circ\,$ Satisfy electron counting at interface
- o Special properties of unique material

TiO₂: Heteroepitaxial Oxide on Silicon

> High K dielectric for transistor as area shrinks

• Ferromagnetic semiconductor for spin-transistor

Rashbah effect: Voltage rotates spin

Scanning Tunneling Microscopy

Co:TiO₂/Ga₂Se₃/As/Si(001)

Photoemission - Si Chemistry

Lend valence electrons to Oxygen --Remaining electrons are more tightly bound

32 Olmstead Feb 2010

A Few Intrinsic Factors in Heteroepitaxy

- Surface Structure -- Symmetry, Defects
 - o GaSe vs Ga₂Se₃/Si: Substrate control of crystal structure
- Chemical Reaction Interface Compound Formation
 - o TiO₂/Si: Buffer layer inhibition of interface reaction
- Impurity Incorporation Solubility Limits, Phase segregation
 - Cr and Mn-doped Ga₂Se₃/Si: Concentration-dependent structure

A Few Intrinsic Factors in Heteroepitaxy

Surface Structure – Symmetry, Defects

- Impurity Incorporation Solubility Limits
 - Cr and Mn-doped Ga₂Se₃/Si: Phase segregation
- 34 Olmstead Feb 2010

33 Olmstead Feb 2010

Can we Make the Buffer Layer Magnetic?

- Doping with transition metals
 - Mn-doped GaAs
 - Ferromagnetic below –100 °C
 - o Cr-doped GaN or TiO₂
 - · Ferromagnetic at room temperature
 - Needs defects to work impurity phases?

Ferromagnetism in Cr-doped Ga₂Se₃

Mn doping – leads to MnSe

38 Olmstead Feb 2010

T. Lovejoy, et al APL 95 (2009) 241907

A Few Intrinsic Factors in Heteroepitaxy

Surface Structure --Symmetry, Defects

Chemical Reaction – Interface Compound Formation

Impurity Incorporation – Phase Segregation

39 Olmstead Feb 2010

102

40 Olmstead Feb 2010