

Introduction to Nanoscience & Molecular Engineering (NME)

René M. Overney

Department of Chemical Engineering
University of Washington
Seattle, Washington 98195

roverney@u.washington.edu http://depts.washington.edu/nanolab/

t.M. Overney University of Washington

Birth of Interfacial and Molecular Sciences

Colloid Science (early 1800s)

Products:

Aerosols of liquid droplets or solid particles Foams Emulsions Sols or suspensions Solid foams, emulsions or suspensions

Thomas Graham

• Surface Science (early 1900s)

Sub-disciplines:

Surface Chemistry Surface Physics Analytical Techniques

Irvin Langmuir & Katharine Blodgett

University of Washington

Bottom-up Approach

Inorganic material synthesis from atoms by means of "atomistic self-assembly".

Si

Molecule:

Ultra-small clusters: 10-100 atoms show strongly deviating molecular structures from the bulk.

E.g.: Si₁₃ (metallic-like close packing)

Si₄₅ (distorted diamond lattice)

Sı₄₅

- - - - - -

U. Rothlisberger, et al., Phys. Rev. Lett. **72**, 665 (1994).

• Quantum Dot:

Small clusters: $\sim 10^3$ - 10^6 atoms (bulk-like structure) but possess discrete excited electronic states if cluster diameter less than the bulk Bohr radius, a_o , (typically < 10 nm)

$$a_o = \frac{\left(\frac{h}{2\pi}\right)^2}{m_o^2}$$

R.M. Overnev

niversity of Washington

Molecular Self-Assembly

involving organic materials

Lipid Bilayer (LB Technique) on silicon oxide surface

R.M. Overney, Phys. Rev. Lett. 72, 3546-3549 (1994)

Self-assembly of $C_{18}ISA$ on HOPG surface

S. De Feyter et al. in Organic Mesoscopic Chemistry, Ed. H. Masuhara et al., Blackwell Science 1999 t.M. Overney University of Washington

Birth of Nanoscience and Nanotechnology

Seeing makes believing: The invention of the Scanning Tunneling Microscope (STM) in Zurich (Switzerland) in 1981 marked the birth of nanoscience and nanotechnology.

Nobel Prize in Physics 1986

The prize was awarded by one half to: **ERNST RUSKA** for his fundamental work in electron optics, and for the design of the first electron microscope.

GERD BINNIG and **HEINRICH ROHRER** for their design of the scanning tunneling microscope.

G. Binnig

H. Rohrer

Quantum Choral Xenon Atoms on Nickel Surface (D.M. Eigler et al., IBM Almaden)

R.M. Overney University of Washington

Scanning Probe Microscopy (SPM)

the Nanoscience Tool

Tools that operate in *real space* with Ångstrom to nanometer spatial resolution, in contrast to scattering techniques, such as for instance the SEM (scanning electron microscope), that operate in the *reciprocal space*.

In principle, SPM systems consist of

- Probe Sensors that are nanosized (accomplished microlithographically),
- Scanning and Feedback Mechanisms that are accurate to the subnanometer level (achieved with piezoelectric material), and
- Highly Sophisticated Computer Controls (obtained with fast DACs (digital analog converters, etc.).

IME Research in Overney's Lab				
	Intra- and Intermolecular Constraints	Interfacial and Dimensional Constraints		
Fundamentals	Side-chain and local backbone relaxations, critical energy barriers (polymers) Molecule-molecule interaction during structuring process (molecular glasses) Cooperativity and energy consumption, cooperative length scale	Relaxations, glass transition, crystallization Self-assembly Glass forming process Local mass transport properties (membranes)		
Materials	- Condensed organic materials - Polymers (polyelectrolytes, conjugated polymers, dendritic-chromophore polymers,) - Molecular glasses - Organic NLO materials - Proteins	- Ultrathin polymer films - Membranes - Nanocomposites - Organic LED materials - Simple alkane liquids		
Impact	Understanding phenomenological properties and processes (e.g., glass transition) Origin of frictional energy dissipation Cognitive approach to material engineering (e.g., towards increase in electro-optical activity in photonics)	LED spectral stability Material phase control (amorphous vs. crystalline) Low frictional dissipation interfaces Origin for transport properties (e.g., PEM fuel cells, reverse selective membranes)		

R.M. Overney University of Washington

Minor in Nanoscience and Molecular Engineering (NME)

Undergraduate Minor in Nanoscience and Molecular Engineering

in departments across CoE and CoA&S

http://depts.washington.edu/nanolab/NUE_NME/NUE_NME.htm

Minor in Nanoscience and Molecular Engineering

NME Mission Statement

To establish an undergraduate, disciplinetailored Minor in Nanoscience and Molecular Engineering within the University of Washington's College of Engineering (CoE) and College of Arts and Sciences (CoA&S) with integration of the wider community that empowers students for subsequent workforce or educational advancement.

10/2009

http://depts.washington.edu/nanolab/NUE_NME/NUE_NME.htm

R.M. Overney

Example: Minor NME Curriculum in ChemE				
Freshman	Sophomore	Junior	Senior	
FSS-197 - Freshmen Sem. Series: NME (1) W 2010	NME 221 Frontiers of Nanosci. and Molecular Engineering FNMI I (1) (planned for 2011)	NME 321 FNMI II (1) (planned for 2012)	NME 421 FNMI (III) (1) (planned for 2013)	
Total credits: 21 Need at least another 4 credits; e.g., ChemE455	ChemE 220 / NME 220 Introduction to Molecular and Nanoscale Principles (4)	NME 320 Nanoscience and Molecular Engineering (4) Offered as ChemE 498 in Fall 2009	NME 420 Nano- Ethics (3) (currently under development. Adapted and tailored towards NME Minor)	
The individual department with NME set the Minor requirement. Courses in ChemE ChemE499 (NME approved)		NME 322 Nanosci. and Molecular Eng. Lab (3) (new LAB in MolE Building)	NME 422 – UG Research in NME (3) (consolidated towards NME Minor)	

Minor in Nanoscience and Molecular Engineering

Department/Group	Representative	
Founding Depts.		
ChemE	René Overney	
CHEM.	Philip Reid	
EE	Karl Böhringer	
MSE	Mehmet Sarikaya	
PHYS	Marjorie Olmstead	
Additional Depts.		
AA		
BioE	Dan Ratner	
Biol		
CEE		
CSE		
MechE	Jaehyun "Jae" Chung	
Other Groups		
CWD	Priti Mody-Pan	
CNT	Ethan Allen	
CoE		
CoA&S		
Edmund CC	Mel Cossette	
NSCC	Alissa Agnello	

Current
Departmental
Representatives
& Group
Liaisons
(as of 10/20/09)

0/2009

p://depts.washington.edu/nanolab/NUE_NME/NUE_NME.htm

R.M. Overney

R.M. Overne

Iniversity of Washington

What else is happening on Campus?

regarding NME:

- Institute of Molecular Engineering & Science (MolE) – established early 2010
- Institute will also include current major Nano programs – both research and educational focus
- MolE building construction started in 2009 – first stage finished ~ 2011/12

COLLEGE of ENGINEERING MOLECULAR ENGINEERING BUILDING FROM COURTYARD PRASE SEP.18.2018