Self-assembly from Nano to Milli Scales Prof. Karl F Böhringer, Electrical Engineering

Freshman Seminar – GEN ST 197 D Nanoscience & Molecular Engineering Monday, March 1, 2010

Introduction

- Micro Electro Mechanical Systems (MEMS):
 - Sub-millimeter sized machines typically built in batch fabrication processes derived from integrated circuit (IC) technology
 - Can have broad functionality, including sensing, actuation, computation, and communication

MEMS Scanning Tunneling Microscope [Xu et al. APS'95]

Vibrating ring gyro [Ayazi et al. IEEE MEMS'98]

Micro combination lock [Sandia National Labs]

Introduction

- Micro Electro Mechanical Systems (MEMS):
 - Sub-millimeter sized machines typically built in batch fabrication processes derived from integrated circuit (IC) technology
 - Can have broad functionality, including sensing, actuation, computation, and communication
- Claim:
 - Just like IC's have revolutionized computation, MEMS are revolutionizing sensors and actuators (transducers)
- Challenge:
 - Unlike IC's, MEMS rely on a much broader range of materials, processes, and effects to achieve their optimal functionality

Integrated Circuit Complexity

Motivation

Background:

- Since the 1960's, integrated circuits (ICs) have been growing in complexity by about a factor of two every two years ("Moore's Law").
- Since the 1980's, IC technology has increasingly been adapted to build micro sensors and actuators.

Question:

 How does design methodology and manufacturing technology adapt to this increasing complexity and diversity?

Circuit City

Integrated circuit, microscopic view

City landscape, macroscopic view

© Karl F Böhringer

Top-down and Bottom-up

Integrated circuits:

- "Top-down" centralized design
- Monolithic batch fabrication

Heterogeneous microsystems:

- Separate design & fabrication of functional units
- Precision assembly and customized packaging
 <u>City:</u>
- Decentralized planning and construction
- "Bottom-up" guided growth

Growth and Self-assembly

- Growth processes (crystals, organisms, cities, etc.) tend to be
 - distributed
 - massively parallel
 - stochastic
 - guided by a utility function
- Can we apply this approach to microsystems?
 → Self-assembly (from nano to milli scales)

Definition

Self-assembly:

The autonomous and spontaneous organization of components into patterns or structures.

Self-assembly Across Scales

- Currently, "no-man's-land" for engineered assembly in the micrometer range
 - Conventional robots get very expensive
 - Chemical synthesis cannot produce non-periodic or heterogeneous assemblies

Self-assembly Across Scales

- Goals:
 - High volume, flexible manufacturing
 - Complex heterogeneous microsystem integration

Micro Self-assembly

- Very large numbers of very small components
- Independent parallel fabrication of components
- Fabrication at high density, assembly at lower density
- Hybrid systems built from standard components

Enabling technology for complex integrated microsystems

Programmed Self-assembly

Self-assembly:

autonomous and spontaneous organization of components into patterns or structures

• Programmed self-assembly:

self-assembly process with (spatial and temporal) control over binding mechanisms

- resulting structures can be adjusted on demand
- analogies: flexible robotic assembly; protein synthesis

Programmable Surface

- An object whose surface properties can be controlled with good spatial and temporal resolution
- Crucial for programmed self-assembly

• Surface properties:

- Friction
- Surface forces
- Hydrophobicity (surface tension, contact angle)
- Biological properties (e.g., adhesion of proteins)
- Optical properties (color, transmission of light)
- ...

Goals / Applications

1. Thermoelectric cooling of hot spots

Assembly of p/n materials in checkerboard pattern

Extreme aspect ratio components Tens of μm thin, mm's or cm's side length Ongoing joint work with Intel Corp. / DARPA

Surface Tension Driven Self-assembly

- Dip coating forms adhesive droplet on hydrophobic areas
 - reduce friction
 - provide longer range capillary forces (>>1µm)
 - act as photo- or heat-polymerizable glue

Video: X. Xiong '00

Surface Tension Driven Self-assembly

Driving force for assembly: minimization of surface energy with hydrophobic-hydrophilic interfaces

- Alkanethiol self-assembled monolayer (SAM) on Au forms hydrophobic surface
- Organic lubricant adhesive

[Srinivasan et al.'99, Whitesides et al.'90s]

Programmable Self-assembly

Organization of different parts onto desired locations

Modulation of Surface Energies

Adsorption is accomplished by soaking surfaces in ethanolic alkanethiol solution.

Desorption is accomplished by applying a negative voltage to the Au electrode.

Fabrication of Substrate

SAM Desorption and First Assembly Batch

SAM desorption from left column of sites only

Second Assembly Batch

[X. Xiong et al. Transducers '01, JMEMS '03]

© Karl F Böhringer

Adding Electrical Connectivity

Top view of a fabricated substrate for LED assembly

Adhesive wets Au binding site

Ni electroplating seed is free from adhesive

Fabrication of the Substrate for LED Assembly

Passivation layer (silicon nitride)

Electroplating

Gap between an assembled LED and substrate is $\sim 20\mu m$

Electrical connection established by plated solder

Self-assembled LED with Electrical Connections

[X. Xiong et al., JMEMS '03]

Templated Self-assembly

Templated Self-assembly

Real-time Tracking of Self-assembly

aperture sites: 200; % excess parts: 50%; agitation frequency: 525Hz

Results: Assembly Kinetics

Assembly Kinetics Model

Assemblies with Shape Matching

Self-assembly and gang bonding of chips on 8" wafer (collaboration with ASTAR IME, Singapore)

© Karl F Böhringer

Current / Future Work: Protein and Cell Arrays

Programmable Surfaces for Proteins and Cells:

- Thermoresponsive polymer pNIPAM (poly N-isopropyl acrylamide) binds proteins and cells above 32°C.
- Thin film pNIPAM can be integrated with MEMS.
- Microheaters for protein and cell arrays.
- Programmable IR laser "protein printer."

Current / Future Work: Protein Guided Nanomanufacturing

Orchestrated Structural Evolution (OSE):

- Use combinatorial biology to develop library of peptides.
- Peptides control nucleation, growth rate, and crystallinity of target inorganic materials.
- Place peptide patterns into appropriate aqueous electrolyte.
- Peptides can act as seeds in synthesis of heterogeneous, threedimensional structures.
- Completely automated process from CAD design to optimized seed planting to growth of nano-structures

UW Husky pattern, automatically generated and grown with OSE (with D. Schwartz, UW)

Conclusions

Tools for design, modeling, and manufacture of complex 2D and 3D self-assembled microsystems are becoming available.
They could lead to a paradigm shift in design and manufacture of complex micro and nano systems.

Conclusions

Tools for design, modeling, and manufacture of complex 2D and 3D self-assembled microsystems are becoming available
They could lead to a paradigm shift in design and manufacture of complex micro and nano systems

Manual labor: "0D"

Conveyor belt: "1D"

VLSI: "2D"

3D self-assembly in Nature: Radiolarium I. maritalis

Acknowledgements

- S. Abassi, J. Fang, J. Hoo, K. Wang, X. Xiong (graduate students);
 J. Chang, J. Cheng, Y. Hanein, S. Park, A. Shastry, X. Xiong (postdocs), UW MEMS Laboratory
- W. Wang, S. Jiang, D. Schwartz, UW ChemE
- X. Cheng, B. Ratner, UWEB
- R. Baskaran, Intel
- U. Srinivasan, R. Howe, Berkeley/Stanford
- J. Lienemann, A. Greiner, J. Korvink, Freiburg
- K. Vaidyanathan, ASTAR IME Singapore
- Funding: Intel, NSF, DARPA, NIH, NIJ, Washington Technology Center, JSPS
- Additional support: Agilent, HP, Intel, Microsoft, Tanner, Tektronix

