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Multivariate Analysis
• Multivariate analysis (MVA) methods have been applied to 

complex data systems for years
• Examples of MVA can be found for

– IR
• Anal. Chem. 1991, 63, 936-944; Anal. Chem. 1988, 60, 1202-1208; Anal. Chem. 1988, 

60, 1193-1202; Appl. Spectrosc. 1985, 39, 73-84; Appl. Spectrosc. 1997, 51, 340-345.

– ESCA
• Surf. Interface Anal. 1997, 25, 942-947; Colloid Polym. Sci.1999, 277, 627-636; Surf. 

Interface Anal. 1997, 25, 105-110; Air and Waste 1993, 43, 729-735.

– STM
• Surf. Sci. 1994, 321, 276-286.

– AFM
• Thin Solid Films 1995, 264, 282-290.

– Auger
• J. Appl. Surf. Sci. 1993, 64, 41-57.

– Other Mass Spec
• Anal. Appl. Pyrolysis 1985, 9, 1-17; Anal. Chim. Acta 1997, 348, 389-407; Anal. Chem. 

1997, 69, 4381-4389; Anal. Chem. 1989, 61, 715-719; Anal. Chem. 1983, 55, 81-88.;  Int. 
J. Mass Spectrom. Ion Processes 1989, 89, 111-124.  J. Chromatogr., A 1999, 840, 81-
91; Int. J. Mass Spectrom. Ion Processes 1989, 89, 157-169; Anal. Chim. Acta 1983, 
150, 45-52.



Multivariate Analysis Methods
• Many different methods available

– Principal component analysis (PCA)
– Factor analysis (FA)
– Discriminant analysis (DA)
– Multivariate curve resolution (MCR)
– Partial Least Squares (PLS)

• We will focus on PCA
– Most commonly used method
– Successful with SIMS data
– Forms a basis for many other methods



Background Information
• Data is arranged in matrices

– samples in rows
– variables in columns

• m = number of samples
• n = numbers of variables
• k = number of PCs
• T = scores matrix 
• P = loadings matrix 
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For SIMS data
the “samples” are 
SIMS spectra, or 
more typically the 
integrated areas 
for all peaks for a 
given spectra

•For SIMS data, the “variables” are the 
peaks selected from the spectra
•If an entire spectrum is read in to a matrix 
then, the variables are the individual data 
bins



PCA: Things to know
• PCA assumes linear relationships between variables
• PCA is scale dependent

– variables with larger values look more important

• PCA looks at variance in the data
– It will highlight whatever the largest difference are
– To make sure you are comparing things properly it is common 

to preprocess the data
• Remove any instrument variation, or other non-related 

variance (normalization)
• Make sure data is compared across a common mean 

(centering)
• Make sure data is compared across common variance scale 

(autoscaling, variance scaling, etc)



PCA data Pretreatment

• No standards have been set for data 
pretreatment

• Some common trends include
– normalizing the data (many different ways)
– mean centering for TOF-SIMS spectra
– Autoscaling for TOF-SIMS images





Normalization
• Data normalization helps account for differences in 

the data due
– topography
– sample charging
– instrumental conditions

• Many different methods are commonly used
– Total intensity
– Sum of selected peaks
– Highest peak in spectrum
– User selected peak
– Total intensity minus H and contaminants

• Know assumptions being made
• Understand that normalization removes information from the 

data set



Mean centering

• Mean centering
– Subtracts the mean of 

each column (variable) 
from each column 
element 

– Centers data so that all 
variables vary across a 
common mean of zero



Scaling
• Scaling attempts to account for differences in 

variance scales between variables
• There is some debate about whether TOF-SIMS 

data should be scaled or not
• Autoscaling for SIMS images is common

– Divides mean centered variables by their standard 
deviation

• Results in variables with unit variance

• Other scaling methods have been proposed
– No consensus on what is the “best” way



PCA
• Looks at the variance patterns of a 

data matrix
• Reduces data dimensionality
• Gives simple graphical presentation of 

data
• Determines relationship of samples and 

variables based on the variance in the data
• No external constraints needed
• Original matrix is reconstructed into 

new matrices that define the major 
patterns of the data in multivariate 
space

– SCORES -> Describe relationship 
between samples (spread) as described 
by PC’s

– LOADINGS -> Describe how the 
variables relate to the PC’s



PCA Allows “quick” data summary
• Scores

– Tell relationship between samples
• Are they similar or different?

– Give an idea of the reproducibility of samples
• Loads

– Show which variables are responsible for 
sample differences

– Can help determine sample differences across 
entire peak set



PCA Mathematics
• Variance

– A measure of the spread in the data
–  

• Covariance
– A measure of the degree that two variables 

vary together
• PCA is calculated from the covariance 

matrix
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PCA Methodology
• PCA determines sequential 

orthogonal axes that capture 
the greatest direction of 
variance within the data

• Reduces data dimensionality
• Gives simple graphical presentation of 

data
• Determines relationship of samples and 

variables based on the variance in the 
data

• No external constraints needed

X = T1P1
T + E

X = T2P2
T + E
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var(PC1)>var(PC2)>var(PC3)>...>var(PCk)



PCA Mathematically
• PCA decompositon

– X = t1p1
T + t2p2

T +...+ tkpk
T + E

Pi (loadings) are the eigenvectors of the 
covariance matrix

iii ppX λ=)cov(
λi are the eigenvalues.  They describe the amount of 
variance captured by each tipi pair (PC)



PCA Mathematically Continued
• Original matrix is reconstructed into new 

set of matrices
– X = TPT + E

• T = scores
• P = loadings
• E = residual (random noise)

– One common way of doing PCA is by a 
singular value decomposition

• cov(X) = USVT

– P = V  Eigenvectors (loadings)
– T = US  (scores)
– Sii= sqrt(λi) (λi = eigenvalues)





PCA Graphically



PCA Scores
The Scores are a projection of 
the samples onto the new PC 
axes

Scores tell the relationship 
(spread) between the 
samples

Projection onto PC1 Projection onto PC2



Loadings
The loadings are the direction 
cosines between the new axes 
and the original variables

The loadings tell which variables 
are responsible for the 
separation seen between samples

High Loading means that 
variable had a high influence on 
the separation of the samples

•Cos(90) = 0
•Large angle low 
loading

•Cos(0) = 1
•Small angle high 
loading 



I ran PCA now what do I have?

• A set of PC scores and loadings
– Each PC captures the greatest amount of 

variation in the given direction 
– %var PC1 > PC2 > PC3 > PC4 ... > PCn

• % variance tells relative amount of 
information captured by a given PC, but 
you need to check the scores and loadings 
to determine if the PC contains useful 
information
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•Even PC11 
contains useful 
information about 
the samples even 
though it only 
captures 0.73% of 
the variance in the 
data

•Separates C16 and 
C18 samples



PCA Interpretation

• Most easily visualized by a set of plots of 
the scores and loadings

• Scores and loadings are compared 
together

• Trends seen in the PCA plots should be 
verified by the raw data



PCA Example: Synthetic data





PCA Interpretation

• Samples separated 
on PC1

• Loadings show 
variables responsible 
for separation
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Interpretation
• How to interpret Scores and Loadings 

plots
• How separated are the samples?

– Use 95% confidence limits to check
• Check the raw data!
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PCA of Methyl 
SAM series
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PCA things to consider
• Determines the largest directions of variance 

within the data regardless of what that 
variance is from
– PCA is an unsupervised method (no input to what 

the samples are)
– If 1 sample is contaminated, PCA will likely 

separate that sample from the rest in one of the first 
PC’s

– If sample differences are not the greatest source of 
variance in the data set, PCA may not separate out 
the samples

PCA



PCA things to consider
• The decision to use PCA should be part of 

your experimental plan, not just an 
afterthought after collecting your data

• You should understand what you are 
doing and how it works

• You should understand the assumptions 
made for running PCA

• You should check your results with the 
raw data



For More Information about 
PCA See ...

• JE Jackson (1980) Principal Components and 
Factor Analysis:  Part I - Principal Components. 
Journal of Quality Technology 12:201-213

• JE Jackson (1991) A Users's Guide to Principal 
Components. John Wiley & Sons, Inc.,New York

• S Wold, K Esbensen and P Geladi (1987) 
Principal Components Analysis. Chemometrics 
and Intelligent Laboratory Systems 2:37-52



This presentation is aimed at providing a general overview of principal 
components analysis (PCA) as applied to TOF-SIMS data. This 
introduction is not meant to provide a rigorous explanation of PCA 
mathematics. For this the reader is directed to the LINKS section of this 
website where adequate references are provided for the interested reader.

This site has been put together by the voluntary effort of many people 
with the best intentions of providing accurate, useful information 
regarding MVA of TOF-SIMS data. Any mistakes are purely 
unintentional.
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Multivariate methods have been applied to many different analytical 
techniques over the years. These include, but are not limited to IR, 
ESCA, STM, AFM, Auger and various mass spectrometric techniques. 
The application of multivariate methods to these techniques has been 
largely driven by the need to process large sets of complex data in a 
reasonable amount of time, while maintaining the ability to extract all the 
pertinent chemical information within the data.

As with many of the methods listed above, TOF-SIMS is ideally suited 
for multivariate analysis. A typical TOF-SIMS spectra contains hundreds 
of peaks. The intensities of many of these peaks are correlated due to the 
fact that they come from the same surface species. Determining how 
these peaks are related and how their relative intensities correspond to 
the differences in the given surface chemistries is a challenge well suited 
for multivariate analysis.

Multivariate Analysis
• Multivariate analysis (MVA) methods have been applied to 

complex data systems for years
• Examples of MVA can be found for

– IR
• Anal. Chem. 1991, 63, 936-944; Anal. Chem. 1988, 60, 1202-1208; Anal. Chem. 1988, 

60, 1193-1202; Appl. Spectrosc. 1985, 39, 73-84; Appl. Spectrosc. 1997, 51, 340-345.

– ESCA
• Surf. Interface Anal. 1997, 25, 942-947; Colloid Polym. Sci.1999, 277, 627-636; Surf. 

Interface Anal. 1997, 25, 105-110; Air and Waste 1993, 43, 729-735.

– STM
• Surf. Sci. 1994, 321, 276-286.

– AFM
• Thin Solid Films 1995, 264, 282-290.

– Auger
• J. Appl. Surf. Sci. 1993, 64, 41-57.

– Other Mass Spec
• Anal. Appl. Pyrolysis 1985, 9, 1-17; Anal. Chim. Acta 1997, 348, 389-407; Anal. Chem. 

1997, 69, 4381-4389; Anal. Chem. 1989, 61, 715-719; Anal. Chem. 1983, 55, 81-88.;  Int. 
J. Mass Spectrom. Ion Processes 1989, 89, 111-124.  J. Chromatogr., A 1999, 840, 81-
91; Int. J. Mass Spectrom. Ion Processes 1989, 89, 157-169; Anal. Chim. Acta 1983, 
150, 45-52.



There is an alphabet soup of multivariate analysis methods available for 
data processing. These include factor based methods such as PCA, FA, 
and DA and other methods such as MCR, and neural networks.

This presentation will focus on PCA since it is the most commonly used 
method for TOF-SIMS analysis and because it forms a basis for many 
other methods. PCA is a multivariate analysis method that determines 
the largest directions of variance within a data set. PCA mathematics are 
founded in linear algebra. The PCA solution is determined by finding the 
eigenvectors and eigenvalues of the variance covariance matrix of a data 
set. Graphically PCA is an axis rotation that creates a new set of axes 
that define the major directions of variance within a data set.

The results of PCA are the scores and loadings. The scores give the 
relationship between the samples and tell the amount of each sample on 
the PC axes. The loadings show which variables are responsible for the 
differences seen in the scores plot. Mathematically the loadings are the 
direction cosines between the original variables and the new PC axes. 
The loadings are the weightings given to the original variables to 
produce the new PC axes. The PCA axis rotation enables reducing data 
sets with potentially hundreds of variables down to a few, relatively easy 
to interpret, variables.

Multivariate Analysis Methods
• Many different methods available

– Principal component analysis (PCA)
– Factor analysis (FA)
– Discriminant analysis (DA)
– Multivariate curve resolution (MCR)
– Partial Least Squares (PLS)

• We will focus on PCA
– Most commonly used method
– Successful with SIMS data
– Forms a basis for many other methods



Before we begin looking into PCA, we must first establish some 
definitions. Within this presentation it will be assumed that all data is 
arranged in an m x n matrix where samples (m) are in rows and variables 
(n) are in columns. 'k' will represent the number of PCs in a given PCA 
model. 'T' will represent the scores matrix and 'P' will represent the 
loadings matrix.

Background Information
• Data is arranged in matrices

– samples in rows
– variables in columns

• m = number of samples
• n = numbers of variables
• k = number of PCs
• T = scores matrix 
• P = loadings matrix 



This slide shows the arrangement for a data matrix as discussed in this 
presentation. The 'samples' for TOF-SIMS data will represent spectra, or 
the measured areas of peaks from a given spectrum. The 'variables' will 
be the selected peaks from the given spectra, or the individual data bins 
if the entire spectrum is read into the matrix.

Data Matrix
Variables
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For SIMS data
the “samples” are 
SIMS spectra, or 
more typically the 
integrated areas 
for all peaks for a 
given spectra

•For SIMS data, the “variables” are the 
peaks selected from the spectra
•If an entire spectrum is read in to a matrix 
then, the variables are the individual data 
bins



A few general things to consider before beginning with PCA. First PCA 
assumes a linear relationship between variables. Second, PCA is scale 
dependent. This is an important point to note. This means that variables 
with high relative intensities and higher relative variances will be 
highlighted more in PCA than lower intensity variables. With TOF-
SIMS data this often means that low mass, less chemically specific 
peaks, have higher loadings than high mass, chemically specific peaks, 
solely due to the differences in relative intensity of these peaks. Finally 
PCA looks at variance patterns in the data. It will determine the largest 
sources of variation within a data set, but it doesn't know anything about 
your data. So if the largest source of variation in the data is from noise, 
or a contaminant, PCA will highlight these differences first. 

PCA: Things to know
• PCA assumes linear relationships between variables
• PCA is scale dependent

– variables with larger values look more important

• PCA looks at variance in the data
– It will highlight whatever the largest difference are
– To make sure you are comparing things properly it is common 

to preprocess the data
• Remove any instrument variation, or other non-related 

variance (normalization)
• Make sure data is compared across a common mean 

(centering)
• Make sure data is compared across common variance scale 

(autoscaling, variance scaling, etc)



As with many multivariate methods, it is common to pre-process the 
original data matrix in order to highlight the true chemical differences in 
the samples and not just differences in absolute intensity or differences 
from the mean. There are many different ways to pre-process a data 
matrix. Each of these data pretreatments can affect the results obtained 
from PCA and each method carries with it a set of assumptions. It is 
important to understand what these assumptions are and determine 
whether these assumptions are valid. Currently there are no guidelines as 
to how and when to use one data pretreatment versus another. It is hoped 
that time and effort will be spent on research that will shed light in this 
area.

PCA data Pretreatment

• No standards have been set for data 
pretreatment

• Some common trends include
– normalizing the data (many different ways)
– mean centering for TOF-SIMS spectra
– Autoscaling for TOF-SIMS images



This table illustrates the wide variety of data pretreatments that are being 
used throughout the literature of PCA of TOF-SIMS data. Though each 
of these methods may be valid, it is important to understand when and 
why they should be used.

The next few slides will give a brief overview of several data 
pretreatments and their associated assumptions.



Data normalization is probably one of the most common preprocessing 
methods. Normalization is done to account for differences in the data 
that are due to topography, sample charging, and instrumental conditions. 
There are many different ways to normalize a set of data. These include 
normalizing to the total intensity, to the sum of the intensities of the 
selected peaks, to the highest peak in the spectrum, to a user selected 
peak, or to a given combination of peaks. Each of these methods brings 
with it a set of assumptions. For example if you normalize a set of data to 
the total intensity of each respective spectrum, you are assuming that the 
total intensity of the spectra does not contain useful chemical 
information about the samples. This may or may not be true for a given 
set of data. No matter what normalization method is used, normalization 
removes information from the data set.

Normalization
• Data normalization helps account for differences in 

the data due
– topography
– sample charging
– instrumental conditions

• Many different methods are commonly used
– Total intensity
– Sum of selected peaks
– Highest peak in spectrum
– User selected peak
– Total intensity minus H and contaminants

• Know assumptions being made
• Understand that normalization removes information from the 

data set



Another common data pretreatment is mean centering. Mean centering is 
done by subtracting the mean of each column (variable) from each 
column element. This centers the data so that all variables vary across a 
common mean of zero (as illustrated in the figure above). Mean 
centering makes it so PCA will more likely capture differences in the 
relative intensities of a given set of variables and not differences in the 
means of the variables.

Mean centering

• Mean centering
– Subtracts the mean of 

each column (variable) 
from each column 
element 

– Centers data so that all 
variables vary across a 
common mean of zero



Data scaling is done to account for differences in the variance scales 
between variables Normalization can be considered a scaling operation 
since with normalization we are dividing or multiplying by some value to 
adjust for unwanted variances in the data. One common scaling method 
used with PCA is autoscaling. Autoscaling is done by dividing a mean 
centered data set by the standard deviation of each column. This results 
in a data set where all variables vary between +1 and -1. Autoscaling is 
commonly used when data from different measurement methods are 
combined into one data set and one wants to correct for differences in the 
absolute variance scales of the different methods.

There is still some debate on whether or not SIMS data should be scaled 
and what method is best to use. Some argue that since the intensity of 
peaks in a TOF-SIMS spectrum decreases with increasing mass, simply 
due to the characteristics of the SIMS process and instrumentation, that 
the data has built in differences in variance scales and should be 
autoscaled or log scaled. Others argue that regardless of the differences 
in intensity across a spectrum, all the data comes from the same 
instrument and therefore does not need autoscaling.

For TOF-SIMS images there is evidence that accounting for the Poisson 
nature of the noise in the data gives better results with PCA processing. 

Scaling
• Scaling attempts to account for differences in 

variance scales between variables
• There is some debate about whether TOF-SIMS 

data should be scaled or not
• Autoscaling for SIMS images is common

– Divides mean centered variables by their standard 
deviation

• Results in variables with unit variance

• Other scaling methods have been proposed
– No consensus on what is the “best” way



Regardless of how the data is pretreated, the PCA algorithm is the same. 
PCA looks at the variance patterns within a data matrix. As mentioned 
previously PCA is an axis rotation that captures the directions of greatest 
variance within a data set. The rotation reduces the data dimensionality, 
allowing a large number of potentially correlated variables to be 
described by a few uncorrelated variables.

One nice feature of PCA is that the algorithm does not require external 
constraints or input from the user so it aides in removing user bias from 
that analysis.

PCA reconstructs the original matrix into a set of new matrices, the 
scores, the loadings and residuals. The scores describe the relationship 
between samples as described by the PCs. The loadings describe how the 
original variable related to the new PC axes. The residuals contain the 
left over variance from the data set and are assumed to describe noise in 
the data.

PCA
• Looks at the variance patterns of a 

data matrix
• Reduces data dimensionality
• Gives simple graphical presentation of 

data
• Determines relationship of samples and 

variables based on the variance in the data
• No external constraints needed
• Original matrix is reconstructed into 

new matrices that define the major 
patterns of the data in multivariate 
space

– SCORES -> Describe relationship 
between samples (spread) as described 
by PC’s

– LOADINGS -> Describe how the 
variables relate to the PC’s



The scores and loadings plots generated from PCA allow simple, quick 
determination of the differences within a data set. By looking at a scores 
plot one can determine whether the samples in the data set are similar or 
different. The spread of samples in the scores plot can also give an idea 
of the reproducibility of the samples in the data set. If all the samples are 
tightly grouped together, this suggests the samples are spectrally similar. 
If the samples are spread across the scores plot it suggest there is 
variability across the sample set.

The loadings plot shows which variables are responsible for the 
differences seen between the samples. Loadings plots can typically 
highlight specific sets of peaks that correspond with a given set of 
samples. This often provides chemical insight into the sample 
differences.

PCA Allows “quick” data summary
• Scores

– Tell relationship between samples
• Are they similar or different?

– Give an idea of the reproducibility of samples
• Loads

– Show which variables are responsible for 
sample differences

– Can help determine sample differences across 
entire peak set



PCA is based on looking at variance differences within a data set. 
Variance is a measure of the spread within the data. Covariance is a 
measure of the degree that two variables vary together. PCA is calculated 
from the covariance matrix of a data set. The covariance matrix is 
defined as shown above. This covariance matrix can be thought of as 
containing the covariance of each peak in the data set with all the other 
peaks in the data set. 

PCA Mathematics
• Variance

– A measure of the spread in the data
–  

• Covariance
– A measure of the degree that two variables 

vary together
• PCA is calculated from the covariance 

matrix
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The PCA algorithm calculates each PC axis sequentially. In other words, 
PCA determines the first direction of greatest variance within the data. 
This first PC is then subtracted from the data set and the second PC is 
calculated from the remaining variance in the data. Each sequential PC 
captures the next greatest direction of variance. This is illustrated in the 
figure above. The original data matrix X is reconstructed into the product 
of the scores and the transpose of the loadings from the first PC and a 
residual matrix E that contains all the variance left after subtracting PC1 
from the data matrix. This residual matrix E becomes the new matrix X 
from which the second PC is calculated. This process is continued until 
all the variance in the data is captured. For the resulting PCs the variance 
of PC1 > variance PC2 > variance PC3 >...> variance PCk.

PCA Methodology
• PCA determines sequential 

orthogonal axes that capture 
the greatest direction of 
variance within the data

• Reduces data dimensionality
• Gives simple graphical presentation of 

data
• Determines relationship of samples and 

variables based on the variance in the 
data

• No external constraints needed

X = T1P1
T + E

X = T2P2
T + E

Resi
dual 

beco
mes 

new
 X m

atr
ix

var(PC1)>var(PC2)>var(PC3)>...>var(PCk)



This figures illustrates the PCA decomposition with an equation and a 
simple graphical representation of the matrices and vectors involved. The 
loading values from PCA are the eigenvectors of the covariance matrix. 
The eigenvalues of the covariance matrix describe the amount of 
variance captured by each PC.

PCA Mathematically
• PCA decompositon

– X = t1p1
T + t2p2

T +...+ tkpk
T + E

Pi (loadings) are the eigenvectors of the 
covariance matrix

iii ppX λ=)cov(
λi are the eigenvalues.  They describe the amount of 
variance captured by each tipi pair (PC)



PCA is often calculated from the singular value decomposition of the 
variance covariance matrix. The general formulas for this are shown 
above along with the resulting definitions for the scores and loadings.

PCA Mathematically Continued
• Original matrix is reconstructed into new 

set of matrices
– X = TPT + E

• T = scores
• P = loadings
• E = residual (random noise)

– One common way of doing PCA is by a 
singular value decomposition

• cov(X) = USVT

– P = V  Eigenvectors (loadings)
– T = US  (scores)
– Sii= sqrt(λi) (λi = eigenvalues)



The figures above present one way of visualizing PCA graphically. 
Figure A) shows a set of data from 3 different samples plotted in 3 
dimensional space. It can be seen that the data from these samples are 
clearly separated from each other within this data space. It can also be 
seen that there is some spread within the data points for each group. The 
ellipse in B) is drawn along the major plane of the data so that it 
encompasses the space containing all the data points. The major and 
minor axes of this ellipse are the principal axes of this data space and 
represent the first and second principal component axes..



This figure is shown to further illustrate the concept that PCA is an axis 
rotation. A data set containing 3 sets of samples is plotted in 2 
dimensional space (A). PCA would result in an axis rotation (B). PC1 
would be defined in the greatest direction of variance within the data set. 
For this data set PC1 would follow along the spread between the 3 
sample groups. PC2 would then be placed orthogonal with PC1 and 
would capture the spread within the sample groups. (C). 

PCA Graphically



The score value for a given sample can be visualized graphically as the 
projection of the sample onto the given PC axis. This is illustrated above 
for a set of 3 different colored samples. The projection of the sample is 
defined by drawing a perpendicular line from the sample to the PC axes. 
For the data shown in the figures above it can be seen that the different 
colored samples will be separated from each other on PC1, while they 
will all overlap on PC2. This would suggest that PC1 is able to capture 
differences between the samples while PC2 is capturing some likely 
random variation in the data. 

PCA Scores
The Scores are a projection of 
the samples onto the new PC 
axes

Scores tell the relationship 
(spread) between the 
samples

Projection onto PC1 Projection onto PC2



The loading values are the direction cosines between the new PC axes 
and the original variables. Loadings are the weighting factors used for 
the original variables to get the new PC axes. Since Cos(90) = 0 and 
Cos(0) = 1 that means that a variable with a high loading is highly 
correlated with the given PC axis (the angle between the original variable 
and the PC axis is small). A high loading value means that that variable 
had a high influence on the separation of the samples on that PC axis.

Loadings
The loadings are the direction 
cosines between the new axes 
and the original variables

The loadings tell which variables 
are responsible for the 
separation seen between samples

High Loading means that 
variable had a high influence on 
the separation of the samples

•Cos(90) = 0
•Large angle low 
loading

•Cos(0) = 1
•Small angle high 
loading 



Once you have applied PCA to a given data set you will have a set of 
scores and loadings values. You now have a set of information that can 
potentially aide in interpreting your data set. The question now is where 
to start in digesting this information?

First remember that each PC captures a decreasing amount of variance 
from the data. The percent variance captures by a PC describes the 
relative amount of variance captured, but you will have to check the 
scores and loadings to determine if a PC contains useful information.

There are several criteria that are used in determining how many PCs to 
keep from PCA. The general rule is that you keep all PCs until the 
percent variance captured from one PC to the next does not change 
significantly. The number of PCs retained is most critical if you are using 
PCA to model a set of data that will then be used to project in new data 
for classification. For this type of PCA modeling retaining to many PCs 
can over fit the data, while not retaining enough PCs can make the model 
less robust. When using PCA for data exploration the number of PCs to 
keep depends on which PCs contain potentially useful information (i.e 
not just noise). This decision cannot always be made simply by looking 
at the percent variance captured by a given PC as will be illustrated on 
the next slide.

I ran PCA now what do I have?

• A set of PC scores and loadings
– Each PC captures the greatest amount of 

variation in the given direction 
– %var PC1 > PC2 > PC3 > PC4 ... > PCn

• % variance tells relative amount of 
information captured by a given PC, but 
you need to check the scores and loadings 
to determine if the PC contains useful 
information



The slide above shows PC11 from a series of different chain length self-
assembled monolayers on gold. Even though PC11 only captures 0.73% 
of the variance in the data set, it can be seen in the scores and loadings 
that PC11 clearly separates out the C16 and C18 monolayers (scores 
plot) and captures the unique molecular ion clusters for each thiol 
(loadings plot).

Quick 
Example 
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•Even PC11 
contains useful 
information about 
the samples even 
though it only 
captures 0.73% of 
the variance in the 
data

•Separates C16 and 
C18 samples



In many ways running PCA on a set of data is the simple part of the 
analysis. In most software packages it is as simple as pressing a few 
buttons. Once the program has finished running PCA the real work 
begins. Luckily the basics of PCA interpretation are fairly simple. The 
results from PCA can be interpreted by looking at the scores and 
loadings plots. The scores and loadings should always be looked at 
together since they contain complimentary information. The scores can 
show interesting trends between the samples, but without looking at the 
loadings it will not be known whether those trends make any sense or 
have any real meaning.

One important thing to note is that the trends seen in PCA should always 
be verified with the original data. This means that if you find that PCA 
separates out a set of samples and highlights a given set of peaks as 
having high influence on this separation (high loadings). You should go 
back to the original data and check the trends in the data for these peaks. 
The reason for this is that sometimes there are complex relationships 
going on within the scores and loadings plots, so that some peaks with 
high loadings will only correspond to a subset of samples in the scores 
plot. This will be illustrated further later in this discussion

The 'original data' refers to the data that was input into PCA. So if you 
normalized the data before starting PCA, you should go back to the 
normalized data to check the trends.

PCA Interpretation

• Most easily visualized by a set of plots of 
the scores and loadings

• Scores and loadings are compared 
together

• Trends seen in the PCA plots should be 
verified by the raw data



The following few slides will illustrate how to interpret PCA scores and 
loadings plots using results from a set of simulated data. This data set 
consists of 3 sets of samples (black, blue and green). The data from these 
samples are clearly separated into groups along the PC1 axes as seen in 
the figure above.

The rules for interpreting PCA scores and loadings plots can be 
summarized as follows:
Samples with positive scores on a given PC axis are positively correlated 
with variables with positive loadings on the same PC axis. Samples with 
negative scores are positively correlated with variables with negative 
loadings. This means that, in general, samples with positive scores will 
have higher relative intensities for peaks with positive loadings than 
samples with negative scores. The opposite is also true, samples with 
negative scores will, in general, have higher relative intensities for peaks 
with negative loadings.
It is also true that samples with positive scores are negatively correlated 
with variables with negative loadings and that samples with negative 
scores are negatively correlated with variables with positive loadings.
It is important to note that since PCA looks at differences in the relative 
intensity of variables, even if a variable is negatively correlated with a 
given set of samples, it does not mean that the value of that variable for 
those samples is necessarily zero. It just means that those samples have a 
lower relative intensity than samples that are positively correlated with 
the variable.

PCA Example: Synthetic data



The figures on the right show the PC1 scores and loadings for this 
simulated data set. The scores are shown at the top of the figure and are 
plotted against the sample number. Plotting the scores in this way allows 
us to look at the PC1 scores values (the projection of the data points onto 
the PC1 axis). As seen in the scores plot the different colored samples 
are separated from each other along PC1 with the green samples having 
positive scores and the black samples having negative scores. The 
loadings plot shows that variables 1, 3 and 4 (green variables) have 
positive loadings, while variables 2 and 5 (black variables) have negative 
loadings. This means that variables 1, 3 and 4 correspond more with the 
green samples that have positive scores, and variables 2 and 5 
correspond more with the black samples that have negative scores. 



This figure shows the original normalized data for variables 3 and 5. 
Variable 3 has a high positive loading, meaning that it correspond with 
the green samples with positive scores. As would be expected the 
original data for variable 3 shows that the green samples have the highest 
relative intensity for this variable. Variable 5 has a high negative loading 
corresponding with the black samples that have negative scores. As 
would be expected the black samples show the highest relative intensity 
for variable 5. 

PCA Interpretation

• Samples separated 
on PC1

• Loadings show 
variables responsible 
for separation
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The figures on the right show the data projected onto the PC2 axis. As 
seen in the scores plot (top figure), the scores on PC2 overlap showing 
no clear separation of any samples. The loadings plot shows peaks of all 
colors showing both positive and negative loadings. PC2 therefore is 
capturing the scatter in the data within the data groups. 



The previous slides dealt with an idealized set of samples from simulated 
data. So when you look at real data, how do you decide if a given set of 
samples is truly separated on a scores plot? One good way is to plot the 
95% confidence limits for each group. Information on how to do this can 
be found in the paper by Wagner and Castner (Langmuir 2001, 17, 4649-
4660).

As suggested before, it is always important to check the original data to 
verify the trends seen in the scores and loadings plots. The figures shown 
on this slide are the PC1 scores and loadings plots from TOF-SIMS data 
from a set of mixed monolayers of HS(CH2)15COOH and 
HS(CH2)15CH3. The scores plot is shown as the PC1 scores versus the 
sample number, where the samples are organized in order of increasing 
percent COOH thiol in solution. It can be seen that PCA is able to 
separate out most of the different mixed monolayer surfaces. The 
loadings plot is dominated by the low mass peaks, but it is noted that the 
high mass cluster ions show the expected trends . Peaks from the COOH 
thiol have positive loadings corresponding with samples with positive 
scores (higher concentrations of COOH thiol). Peaks from the CH3 thiol 
have negative loadings, corresponding with samples with negative scores 
(higher concentrations of CH3 thiol). 



The bar charts on top of this slide show the original, normalized, data for 
one of the COOH thiol peaks (positive loading right chart), and one of 
the CH3 thiol peaks (negative loading left chart). As seen in the charts 
the original data follows the trend that would be expected based on the 
appearance of the scores plot. The COOH peak is seen to increase with 
increasing percentage of COOH and the CH3 peak is seen to decrease 
with increasing COOH percentage.

In this case the trends in the loading are pretty clear, but this is not 
always the case as will be illustrated in the next example.

Interpretation
• How to interpret Scores and Loadings 

plots
• How separated are the samples?

– Use 95% confidence limits to check
• Check the raw data!
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The slide above shows the PC1 scores and loadings plots from a set of 
methyl terminated self-assembled monolayers with varying chain lengths 
(from C6 to C18). It can be seen that the PC1 score values increase with 
increasing chain length with one clear outlier. The C9 thiol samples are 
seen to have significantly higher scores than the other samples and 
clearly do not follow the general trend. Looking at the loadings plot it is 
noted that the positive loadings are dominated by the peak at m/z = 73 
(indicative of PDMS). There are also some low mass hydrocarbons that 
have positive loadings. Based solely on the trends seen in the scores plot, 
and what we know about interpreting scores and loadings, it would be 
logical to assume that if we looked at the original data for the peak at m/z 
= 73 we would see that the C9 samples would have the highest relative 
intensity followed by the C18, C16/C15, C14 and so forth. We might 
also expect this to be true if we plotted on of the hydrocarbon peaks (C9 
would have the highest relative intensity followed by C18, C15/C16, 
etc).

On the next slide we will see that this is not the case.

PCA of Methyl 
SAM series
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Here we seen the original, normalized data for the peak a m/z = 73 (top 
bar chart) and m/z = 57 (bottom bar chart). As seen in these bar charts, 
the peaks do not follow the assumed trends. Why is this? It appears that 
PC1 is tracking two major trends in the data. The first is the PDMS 
contamination on the C9 sample. The relative intensity of the peak at m/z 
= 73 is clearly orders of magnitude higher than the other samples. This is 
also true of other PDMS related peaks. PCA looks for variance in the 
data set and this is clearly a large source of variance. At the same time 
there is a large source of variance from the changes induced by the 
increasing chain length of the thiols. This is clearly seen in the bar chart 
for the hydrocarbon peak at m/z = 57. So PC1 is capturing a combination 
of the two sources of variation.

Hopefully this example has shown why it is important to actually check 
the original data and not just assume that the relative intensities of peaks 
highlighted in the loadings plots will follow the trends you expect to see. 
Most of the time they will, but you need to check!
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So to begin to summarize this general overview of PCA, it is important 
to remember that PCA looks for the largest directions of variance within 
a data set. PCA does not know anything about your data. It is an 
unsupervised method. This means that if one of the samples input into a 
data set is contaminated, PCA will likely separate out that sample from 
the rest in one of the first PCs.

This means that you must design your experiments carefully because if 
the differences in your sample chemistries are not the largest sources of 
variance in the data, PCA will not separate your samples as expected. It 
is ideal if you can design your experiments so that you only allow 1 
variable to change across the sample set. Then you can have more 
confidence that the differences highlighted by PCA are due to changes in 
that variable and not random variance within the data.

PCA things to consider
• Determines the largest directions of variance 

within the data regardless of what that 
variance is from
– PCA is an unsupervised method (no input to what 

the samples are)
– If 1 sample is contaminated, PCA will likely 

separate that sample from the rest in one of the first 
PC’s

– If sample differences are not the greatest source of 
variance in the data set, PCA may not separate out 
the samples

PCA



To use PCA properly, PCA should be part of your experimental plan 
from the beginning and not just something you try when all else fails. As 
mentioned on the previous slide, using a well designed experiment can 
make the difference between being able to understand your PCA results 
and simply ending up with a series of plots that show no clear trends.

Before using PCA you should understand what PCA does, how it works, 
and why you are using it. The more you understand, the better your 
ability will be to plan, execute and interpret your results will be.

Learn and understand the assumptions being made when preprocessing 
your data and choosing various options when running PCA.

Always go back to your original data matrix and verify the trends you 
seen in the scores and loadings. Even some well designed systems can 
give complex results showing multiple sources of variance for a given 
PC. 

PCA things to consider
• The decision to use PCA should be part of 

your experimental plan, not just an 
afterthought after collecting your data

• You should understand what you are 
doing and how it works

• You should understand the assumptions 
made for running PCA

• You should check your results with the 
raw data



The references here are a great starting place for learning about PCA. 
They present thorough, approachable introductions to PCA. Also see the 
reference link on the homepage of this website.

For More Information about 
PCA See ...

• JE Jackson (1980) Principal Components and 
Factor Analysis:  Part I - Principal Components. 
Journal of Quality Technology 12:201-213

• JE Jackson (1991) A Users's Guide to Principal 
Components. John Wiley & Sons, Inc.,New York

• S Wold, K Esbensen and P Geladi (1987) 
Principal Components Analysis. Chemometrics 
and Intelligent Laboratory Systems 2:37-52


