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PCA has been successful

• Monolayers
– Graham and Ratner  Langmuir  18 (2002) 5861-5868
– Graham et. al. Langmuir 18 (2002) 1518-1527

• Proteins
– M. S. Wagner† and David G. Castner Langmuir 2001, 17, 4649-4660 & Applied 

Surface Science 203-204 (2003) 698-703
– Lhoest et. al.  JBMR 57 (3): (2001) 432-440 

• Polymers
– Eynde andBetrand Applied Surface Science 141 (1999) 1–20 & SIA 25, (1997)878-

888 

• Imaging
– Wickes Surf. Interface Anal. 2003; 35: 640–648

– Biesinger et. al.  Anal. Chem. 2002, 74, 5711-5716

PDMS



The Use of MVA Methods for TOF-
SIMS is Increasing

M.S. Wagner et. al., Surface Science 570 (2004) 78–97



When Should PCA be Used?
• PCA should be used to help answer questions

– Are surfaces A and B different?
– How does treatment X change the surface chemistry?
– How is fragmentation pattern affected by ____?
– Can TOF-SIMS data distinguish Protein A from      

Protein B?

• The question should be part of the 
experimental design and not an 
afterthought



PCA: 
Polyarylate 

polymer 
with and 
without 

Fibrinogen

Example:
Is sample A 
different from 
Sample B?

Amino Acid Peaks

Polymer Peaks



Steps to PCA

• Plan Experiment and controls
• Collect data 

– (What samples, how many replicates?)
• Calibrate spectra 

– Calibration should be consistent
• Select peaks (Which?)
• Normalize the data (How?)
• Pre-process the data (How?)
• Interpret the results (What are you looking at?)



Plan
• What is the 

question 
you want to 
answer?

• What 
samples do 
you need to 
answer that 
question?

• How many 
samples/ 
replicates 
do you 
need?

Remember PCA will find the main differences 
between any samples

If you input garbage in           

 You will get garbage out!!!



Experimental Design/Data Collection
• Not all systems are well defined, but 

your experimental design can be:
– Think about what you want to learn from 

SIMS
– Simplify the number of variables you are 

dealing with per experiment
– Plan appropriate controls
– Run enough replicates to determine 

reproducibility
• Homogeneous => 3 to 5 spots on 2 

samples
• Inhomogeneous => 5 to 7 spots on 3 to 5 

samples



Proteins adsorbed onto Mica: PCA
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SAMs – typically very homogeneous
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•Different 
chain length 
SAMs
•6 spectra per 
chain length
•Most data 
points overlap 
showing high 
reproducibility



Data calibration
• All spectra in the data set should be calibrated to 

the same peak set
– Be consistent

• Include a high-mass peak if possible
– This will increase the accuracy of identifying high 

mass peaks
• Don't trust autocalibration functions

– They can make mistakes
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to assure consistency



Peak Selection-Which Peaks should you select?
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There can be hundreds of peaks in a set 
of TOF-SIMS spectra.

Each Mass Range... Contains ... Peaks!



Peak Selection-Which Peaks should you select?
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-All Peaks?

-Selected Peaks?  Know why!

-Make sure “key” peaks are 
include in your peak set!

-It is better to start with more peaks 
than to have to go back and reselect 
more.



Peak Selection-Which Peaks should you select?
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-Peak list must include all desired 
peaks across all samples in the data set 
-Spectral overlay is very useful

-That way you can see peaks 
that may only be present in 
one sample versus another
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-To keep high-mass 
resolution of TOF-
SIMS you need to 
select individual 
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x 103



Carefully Set Integration Limits
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If your software 
allows you to set 
integration limits 
manually:

•Overlay spectra 
so you can set 
limits properly 
for all samples
•Set the limits 
tightly around 
the peaks
•Set all limits 
consistently



Data Pretreatment
• Typical data pretreatments include

– Normalization
– Centering
– Scaling

• Pretreatments are done in an attempt to 

maximize differences due to sample 
differences and minimize differences from other 
sources

• Know the assumptions being made
– Are they valid?



Data Normalization

• Normalization is most common data scaling 
method

• Normalization is typically done to remove 
differences in the data due to:
– Sample charging
– Instrument variations

• Attempts to remove variation in the data not due 
to sample differences



• Common Normalization Methods

Good when selecting most all peaks-Total intensity

Good when selecting only a 
subset of peaks (normalization 
must be redone if you remove 
peaks from the data set)

-Sum of selected peaks

Need good reason for 
peak choice
Can introduce user 
bias

-Highest peak in spectra
-User selected peak



Data Centering
• Centering is done to 

remove
– A common offset from the 

data
– Differences in the means 

between samples
• Mean Centering

– Subtracts the mean of each 
variable from each 
measurement from that 
variable

– Makes it so data varies 
across common mean of zero



Other Data Scaling

• Autoscaling
– Divides mean centered data by standard deviation of 

each variable 
– Creates a data set where all variables vary between 

+1 and -1
• Non linear scaling

– Log transformation
• Root Mean Scaling
• Square root scaling
• Optimal scaling



Example
:Mixed 

C10 C18 
SAMs

-Normalized 
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Example
:Mixed 

C10 C18 
SAMs

-Normalized 
Total 
intensity
-Mean 
centered
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Example
:Mixed 

C10 C18 
SAMs

-Normalized 
Total 
intensity
-log10 
transformed
-mean 
centered
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Running PCA

• Data organized in data matrix
• Data should be normalized before running PCA
• Choose appropriate data pretreatment

– These are typically options in the PCA programs
• Run Program
• Extract the information

– Scores
– Loads
– % variance captured for each PC
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For SIMS data
the “samples” are 
SIMS spectra, or 
more typically the 
integrated areas 
for all peaks for a 
given spectra

•For SIMS data, the “variables” are the 
peaks selected from the spectra
•If an entire spectrum is read in to a matrix 
then, the variables are the individual data 
bins



PCA Scores
The Scores are a projection of 
the samples onto the new PC 
axes

Scores tell the relationship 
(spread) between the 
samples

Projection onto PC1 Projection onto PC2



Plotting Scores
• Plotting software may vary
• It is easiest to interpret data in 1 dimension at a 

time
– Plot PC vs Sample
– If samples vary in systematic way you can plot PC vs 

variable of interest
• Sometimes it is necessary to plot 2 PCs against 

each other to see sample separation
• Always show % variance captured for each PC
• Always show where zero is
• Use 95% confidence limits to show significance 

of sample separation



 
PCA Scores Example 1

% Variance is shown

PC scores are plotted against sample number

95% confidence limits 
are shown

Zero line is clearly shown



PCA Scores Example 2
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PCA Loadings
The loadings are the direction 
cosines between the new axes 
and the original variables

The loadings tell which variables 
are responsible for the 
separation seen between samples

High Loading means that 
variable had a high influence on 
the separation of the samples

•Cos(90) = 0
•Large angle low 
loading

•Cos(0) = 1
•Small angle high 
loading 



PCA Loadings

• Plotting software may vary
• It is easiest to interpret data in 1 dimension at a 

time
– Plot PC vs m/z

• This makes it so the loadings look more like a mass 
spectrum

• Always show % variance captured for each PC
• Only label highest loads to maintain clarity

– You can explain other peak loadings in the text of 
your paper or report



Amino acid 
fragments

Polymer 
fragments
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PCA Loadings

% variance is shown

Loadings are plotted versus m/z

Highest 
Loadings 
are labeled

Descriptor is added to 
highlight major 
differences



PCA: Interpretation
• Scores and Loadings are interpreted in Pairs

– PC1 scores with PC1 loadings
– PC2 scores with PC2 loadings 
– Etc...

• Samples with high positive scores on a given PC 
are positively correlated with variables with high 
positive loadings

• This means that in general samples with high 
positive scores on a given PC will have higher 
relative intensities for variables with high 
positive loadings on the same PC



Interpretation
• How to interpret Scores and Loadings plots
• How separated are the samples?

– Use 95% confidence limits to check
• Check the raw data!

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5
- 0 . 0 5

- 0 . 0 4

- 0 . 0 3

- 0 . 0 2

- 0 . 0 1

0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 0 4

0 . 0 5

S a m p l e  N u m b e r

P
ri

n
c

ip
a

l 
C

o
m

p
o

n
e

n
t 

 1
 (

7
6

%
)

0 %  C O O H
1 0 %  C O O H
2 0 %  C O O H
3 0 %  C O O H
4 0 %  C O O H
5 0 %  C O O H
6 0 %  C O O H
7 0 %  C O O H
8 0 %  C O O H
9 0 %  C O O H
1 0 0 %  C O O H

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
- 0 . 3

- 0 . 2

- 0 . 1

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

m / z

L
o

a
d

in
g

C 2 H O          

C 2 H 2 O 2        

[ M - H ]  C O O H    A u 2 [ M - H ]  C O O H

C H            C 2 H           

A u M  C H 3       

A u 2 [ M - H ]  C H 3  

A u [ M - H ] 2  C H 3  

1 2 3 4 5 6 7 8 9 1 0 1 1
0

0 . 0 0 1

0 . 0 0 2

0 . 0 0 3

0 . 0 0 4

0 . 0 0 5

0 . 0 0 6

0 . 0 0 7

0 . 0 0 8

0 . 0 0 9

0 . 0 1

0 %  C O O H   

1 0 %  C O O H  

2 0 %  C O O H  

3 0 %  C O O H  

4 0 %  C O O H  

5 0 %  C O O H  
6 0 %  C O O H  

7 0 %  C O O H  

8 0 %  C O O H  

9 0 %  C O O H  

1 0 0 %  C O O H

s a m p l e n u m b e r

no
rm

al
iz

ed
 c

ou
nt

s
m / z  =  6 5 1 . 1 6 0 3

1 2 3 4 5 6 7 8 9 1 0 1 1
0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2
x  1 0

- 3

0 %  C O O H   

1 0 %  C O O H  

2 0 %  C O O H  

3 0 %  C O O H  

4 0 %  C O O H  5 0 %  C O O H  

6 0 %  C O O H  
7 0 %  C O O H  

8 0 %  C O O H  

9 0 %  C O O H  

1 0 0 %  C O O H

s a m p l e n u m b e r

no
rm

al
iz

ed
 c

ou
nt

s

m / z  =  6 8 1 . 1 3 4 5



PCA of Methyl SAM 
series
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PCA Interpretation Continued
• Scores Plots

– Samples with similar scores are similar (clustered 
together)

– Samples with very different scores are different 
(separated from each other)

• Scatter in the scores for a given sample type 
suggests inhomogeneities in the sample

• Tight grouping of scores for a given sample 
suggests a homogeneous surface



PCA Scores Grouping

Low Scatter = 
homogeneous 
surface

High Scatter = 
in homogeneous 
surface



95% Confidence Limits

• Scores are assumed to follow a normal 
distribution

• t-distribution can be used to calculate confidence 
limits for a subgroup of scores
– run PCA on subgroup
– use eigenvalues from subgroup PCA to determine 

confidence limits
– use loadings to rotate confidence limits back to 

original PC plot
• Shows bounds of groups on PC plots

Wagner, Castner Langmuir 17, 2001, 4649-4660



95% confidence limits
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Q and Hotelling's T2 – Outlier detection
• Q - Variation 

outside of 
model
– sqrt(Q) = 

euclidean 
distance from 
model

• T2 – Variation 
inside the 
model

Sample with high variation 
outside of model – Large Q

Sample with high variation 
inside of model – Large T2Line of constant T2

Jackson, J.E. A User's Guide to Principal Components:  John Wiley & Sons: New York 1991



Conclusions
• PCA has great potential to aid in spectral 

interpretation and analysis
– can aid in determining sample differences
– requires well thought out experiments
– cannot do analysis for you

• Plan your experiments with a central question 
and minimize the number of variables
– This can greatly simplify the interpretation
– Can maximize what you get out of your data
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The Successful application of PCA to TOF-SIMS data come with careful 
planning, execution and interpretation of experiments. PCA is not magic. 
It cannot plan experiments for you or interpret your data for you. It is a 
tool that can enable and facilitate the interpretation of TOF-SIMS data.

Plans to use PCA should start in the initial stages of your experimental 
plan. The samples analyzed, number of samples, and number of spectra 
per sample should be carefully considered in order to maximize the 
possibility of getting good results from PCA. Since PCA captures the 
major directions of variation within a data set, it is important to plan your 
experiment so that the differences seen within your spectra can be 
attributed to the differences in the sample chemistry or structure. One good 
way to do this is to only allow 1 variable to change during each 
experiment. In the absence of contaminants or matrix affects, this type of 
single variable experiment will allow monitoring the changes in the 
fragmentation patter of the data due to this variable.

The use of proper controls is also important. PCA looks for differences in 
the data, so a well designed control can provide clear separation of treated 
and untreated samples.

Finally, careful interpretation of the PCA results is also critical. It is 
important to remember that PCA can determine trends in the data, but it 
cannot predict causality.



PCA has been successful

• Monolayers
– Graham and Ratner  Langmuir  18 (2002) 5861-5868
– Graham et. al. Langmuir 18 (2002) 1518-1527

• Proteins
– M. S. Wagner† and David G. Castner Langmuir 2001, 17, 4649-4660 & Applied 

Surface Science 203-204 (2003) 698-703
– Lhoest et. al.  JBMR 57 (3): (2001) 432-440 

• Polymers
– Eynde andBetrand Applied Surface Science 141 (1999) 1–20 & SIA 25, (1997)878-

888 

• Imaging
– Wickes Surf. Interface Anal. 2003; 35: 640–648

– Biesinger et. al.  Anal. Chem. 2002, 74, 5711-5716

PDMS

PCA has been successfully applied to many different types of samples. 
This slide gives a small sampling of the different sample systems and a 
few references. A more extensive list can be seen on the references page of 
this website.



The Use of MVA Methods for TOF-
SIMS is Increasing

M.S. Wagner et. al., Surface Science 570 (2004) 78–97

The success of these initial studies in the application of multivariate 
methods to TOF-SIMS data has resulted in a significant increase in the 
number of publications where multivariate methods have been used. The 
number of publications has changed from 1 or two a year to more than 15 
in only a few years. This number is bound to increase as more researchers 
realized the potential of these methods to aide in data interpretation. As 
this number rises it is also important that the users of multivariate methods 
understand how to properly apply there methods and interpret the results 
from their data.



When Should PCA be Used?
• PCA should be used to help answer questions

– Are surfaces A and B different?
– How does treatment X change the surface chemistry?
– How is fragmentation pattern affected by ____?
– Can TOF-SIMS data distinguish Protein A from      

Protein B?

• The question should be part of the 
experimental design and not an 
afterthought

Many sample systems are ideal candidates for multivariate methods such 
as PCA. PCA is useful to answer questions such as, why is sample A 
different from sample B? Or how does treatment 'X' change the chemistry 
of a surface. These types of questions have well defined statement and 
lend themselves to hypothesis driven research. If treatment 'X' is an 
oxidative process, one could hypothesize that application of treatment 'X' 
to a surface will cause an increase of oxygen containing groups on a 
surface. PCA of the data from these samples could then be used to track 
the changes in these samples and verify or negate the hypothesis based on 
the differences seen in the data.

When using PCA the question to be answered should be used as part of the 
experimental design and not just an afterthought.



PCA: 
Polyarylate 

polymer 
with and 
without 

Fibrinogen

Example:
Is sample A 
different from 
Sample B?

Amino Acid Peaks

Polymer Peaks

This slide illustrates a quick example of how one sample differs from 
another. The figures show the scores and loadings plots from a polyarylate 
polymer with and without adsorbed fibrinogen. The upper figure shows the 
PC1 scores plot with the scores plotted against the sample number. As 
seen in the figure the two samples are clearly separated as noted by the 
separation of the scores for the spectra of each sample type. The PC1 
loadings show that the separation of these samples is due to the present of 
amino acid peaks on the sample with fibrinogen and polymer peaks for the 
bare polymer surface.

Though this is a simple example, it shows how PCA can be used to 
quickly determine sample differences between a set of samples. This can 
be done without a priori knowledge of the sample set.



Steps to PCA

• Plan Experiment and controls
• Collect data 

– (What samples, how many replicates?)
• Calibrate spectra 

– Calibration should be consistent
• Select peaks (Which?)
• Normalize the data (How?)
• Pre-process the data (How?)
• Interpret the results (What are you looking at?)

There are several steps that should be taken in order to successfully use 
PCA with TOF-SIMS data. These steps are outlined in the figure above. 
Each of these steps are important. Each one will be explained in more 
detail in the slides that follow.



Plan
• What is the 

question 
you want to 
answer?

• What 
samples do 
you need to 
answer that 
question?

• How many 
samples/ 
replicates 
do you 
need?

Remember PCA will find the main differences 
between any samples

If you input garbage in           

 You will get garbage out!!!

As has been mentioned, planning is one of the most important parts of the 
PCA process. Before collecting any data you should know what the 
question is that you are trying to answer. Once the question has been 
determined and your hypothesis about this question has been formed, you 
should then determine what samples are necessary in order to answer that 
question. You should also consider how many replicates of each sample 
you will need.

It is important to note that since PCA looks for the largest directions of 
variance in a data set if you do not plan well, or if your samples contain 
contaminants, then the results obtained from PCA may not make any sense 
or will be very difficult to interpret.

PCA definitely holds to the adage of “garbage in, garbage out”.



Experimental Design/Data Collection
• Not all systems are well defined, but 

your experimental design can be:
– Think about what you want to learn from 

SIMS
– Simplify the number of variables you are 

dealing with per experiment
– Plan appropriate controls
– Run enough replicates to determine 

reproducibility
• Homogeneous => 3 to 5 spots on 2 

samples
• Inhomogeneous => 5 to 7 spots on 3 to 5 

samples

Good experimental design can make the difference between confusion and 
enlightenment. As mentioned before ideal experimental designs are those 
that only allow 1 variable to change at a time. When only 1 variable is 
changed across a data set, you can then use PCA to 'lever' out the gems of 
information from within the sea of TOF-SIMS data (this is illustrated 
graphically in the figure).

One important consideration in using PCA for TOF-SIMS data is the 
number of replicates necessary to determine the reproducibility of the 
samples and any differences between sample sets. The slide above 
illustrates some general guidelines for the number of replicates and spectra 
needed.

For homogeneous samples it is typically adequate to take 3 to 5 spectra 
across 2 samples of a given chemistry for PCA (total of 6 to 10 spectra per 
sample type). This should give enough data to determine sample 
differences with statistical significance.

For samples that are not as homogeneous or that tend to have a lot of spot 
to spot variability, it is recommended to take 5 to 7 spectra on 3 to 5 
replicates (a total of 15 to 21 spectra per sample type).



Proteins adsorbed onto Mica: PCA
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443 spectra,
16 different proteins Wagner & Castner, Langmuir 17 (2001) 4649.

This slides illustrates why non-homogeneous samples require more spectra 
per sample. The figure shows the PC1 vs PC2 scores for a series of 16 
different proteins adsorbed onto mica. The ellipses shown are the 95% 
confidence intervals for each protein. As seen in this scores plot, there is 
significant scatter among the different protein samples. If only a few 
spectra were acquired for each protein, the clustering of the protein types 
and significance of the separation would not have been as clear.

With todays computers and instrumentation taking this volume of data is 
well within reason.



SAMs – typically very homogeneous
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•Different 
chain length 
SAMs
•6 spectra per 
chain length
•Most data 
points overlap 
showing high 
reproducibility

This slides shows an example of PCA from a set of homogeneous samples. 
The figure shows the PC1 scores plotted against the chain length for a set 
of different length alkane thiols self-assembled monolayers on gold. 6 
spectra were taken for each chain length across 2 samples. As seen in the 
figure for many of the chain lengths the diamonds representative of each 
spectra overlap significantly. This means they have very similar scores 
values (low variance), which also means the spectra were very 
reproducible spot to spot.



Data calibration
• All spectra in the data set should be calibrated to 

the same peak set
– Be consistent

• Include a high-mass peak if possible
– This will increase the accuracy of identifying high 

mass peaks
• Don't trust autocalibration functions

– They can make mistakes

Once the data has been collected, it must first be calibrated before 
applying PCA. Calibration is included as a step to successful PCA because 
it is important that all the spectra within a sample set are calibrated 
properly and in the same way.

To aide in the accuracy of high-mass peak identification it is important to 
include a high mass peak in the calibration. Of course it is important to 
know the identity of any peak used in a calibration set. You cannot just 
guess.

To be most accurate, calibration should be done by hand. Autocalibration 
routines often do not work very well. Calibration should be verified by 
checking the spectra. This is illustrated on the next slide.



83.075 83.08 83.085 83.09 83.095 83.1
0

0.5

1

1.5

2

2.5

3 x 10

m/z

C
ou

nt
s

Calibration example

83.0783.07583.0883.08583.0983.09583.1 83.105
0

0.5

1

1.5

2

2.5

3 x 10

m/z
C

ou
nt

s

Initial Calibration
After Checking Calibration 
to assure consistency

This slide shows an overlay plot of several spectra that have all been 
calibrated with the same peak set, using the same criterion of keeping the 
error in the calibration below 10ppm. As seen in the figure on the left, 
even though the spectra were all calibrated in the same way, there is 
significant scatter in the peak positions. After rechecking the calibration it 
was noted that some spectra were not properly calibrated. The figure on 
the left shows the same spectra after rechecking the calibration for all 
spectra. It can be seen that all the spectra overlap as would be expected for 
this mass region.

If this were not corrected, errors could be made in placing the integration 
limits for the peaks in the data set, and variance could be introduced into 
the peak areas that is not due to real sample differences.



Peak Selection-Which Peaks should you select?
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There can be hundreds of peaks in a set 
of TOF-SIMS spectra.

Each Mass Range... Contains ... Peaks!

Once the data has been calibrated one has to decide which peaks to include 
in the data matrix. There are some programs that can read in an entire 
spectrum for PCA. In this case the entire data set is considered by PCA. 
Yet, there are cases where including all the peaks in a set of spectra can 
confound the PCA results and mask sample differences that are 
overwhelmed by substrate or matrix affects.

There can be hundreds of peaks within any given spectrum. The figures 
above show an overlay plot of several spectra from different chain length 
self assembled monolayers. As seen in the figures there are a lot of peaks 
throughout the entire spectrum Many of these peaks can be seen to be 
unique to on sample type (different colors).



Peak Selection-Which Peaks should you select?
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-All Peaks?

-Selected Peaks?  Know why!

-Make sure “key” peaks are 
include in your peak set!

-It is better to start with more peaks 
than to have to go back and reselect 
more.

When starting with a given set of data, how many peaks should be 
included in the data matrix? All? Only some?

When starting with a data set it is often best to start by selecting all the 
peaks within a given set of criteria. For example all the peaks above a 
given intensity or background level could be selected. Selecting more 
peaks from the beginning can save time in the long run since selecting 
peaks and adjusting integration limits can be time consuming. If later in 
the analysis it is determined that some peaks are not necessary, they can 
always be removed from the data matrix. Whereas if the peaks were not 
selected in the original data set, one would have to go back to the original 
data to get the peak areas.

If you do select only a few peaks from a given set of spectra, the reason for 
the peak selection should be understood and stated when reporting the 
results.

Make sure you include “key” peaks in your peak set. For example if your 
sample set contains surfaces that produce unique peak signatures, make 
sure these peaks are included in your selected peaks. This may seem 
obvious, but can be easily overlooked.



Peak Selection-Which Peaks should you select?

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0
0

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5

0 . 0 3

0 . 0 3 5

0 . 0 4

m / z

n
o

rm
a

li
z

e
d

 c
o

u
n

ts

-Peak list must include all desired 
peaks across all samples in the data set 
-Spectral overlay is very useful

-That way you can see peaks 
that may only be present in 
one sample versus another

Since the same peak set must be used for all spectra that are to be used in 
PCA, it is useful to do peak selection from overlaid spectra. This allows 
the user to see peaks from all spectra on the same axis and helps avoid 
missing peaks that only show up in the spectra from 1 sample type within 
the set.
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Peak Selection Continued

-To keep high-mass 
resolution of TOF-
SIMS you need to 
select individual 
peaks

Two distinct peaks

This peak is 
unique to the 
light blue and 
red samples

x 103

Though some programs contain routines to automatically select peaks 
from a spectrum, it is recommended to do peak selected manually. This 
will make sure that all the necessary peaks are properly chosen. Also most 
automatic selection routines are not able to set proper integration limits for 
the peaks. This can cause problems with PCA since improper peak 
integration limits mean that the data input into PCA is not an accurate 
representation of the spectra differences.



Carefully Set Integration Limits
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If your software 
allows you to set 
integration limits 
manually:

•Overlay spectra 
so you can set 
limits properly 
for all samples
•Set the limits 
tightly around 
the peaks
•Set all limits 
consistently

It is important to carefully set all peak integration limits. As seen in the 
figure above, there are clearly 3 peaks in this mass region. The two peaks 
on the right side of the figure overlap partially. To minimize integration of 
the overlapping regions it is necessary to set the peak integration limits in 
tightly around each peak. Since this is necessary for overlapping peaks, it 
should be done for all peaks. This will assure consistent, accurate 
measurement of all peak areas.

Checking peak integration limits can be time consuming, but is necessary 
for accurate measurement of peak areas.



Data Pretreatment
• Typical data pretreatments include

– Normalization
– Centering
– Scaling

• Pretreatments are done in an attempt to 

maximize differences due to sample 
differences and minimize differences from other 
sources

• Know the assumptions being made
– Are they valid?

Before applying MVA methods such as PCA to a data set, it is common to 
preprocess the data. This is done in order to assure that the differences 
found in the data set are from true sample differences, and not simply due 
to differences in the scale or means of the variables included in the data 
set.
All data preprocessing methods carry with them a set of assumptions. 
Even by doing no preproccessing you are assuming that the raw data 
intensities are the best representation of the sample set variation.
Whichever method of data preprocessing is chosen, it is important to 
understand the assumptions being made with the method, and to know 
whether the assumptions made are valid.



Data Normalization

• Normalization is most common data scaling 
method

• Normalization is typically done to remove 
differences in the data due to:
– Sample charging
– Instrument variations

• Attempts to remove variation in the data not due 
to sample differences

Data normalization is probably one of the most common preprocessing 
methods. Normalization is done to account for differences in the data that 
are due to topography, sample charging, and instrumental conditions. 
There are many different ways to normalize a set of data. These include 
normalizing to the total intensity, to the sum of the intensities of the 
selected peaks, to the highest peak in the spectrum, to a user selected peak, 
or to a given combination of peaks. Each of these methods brings with it a 
set of assumptions. For example if you normalize a set of data to the total 
intensity of each respective spectrum, you are assuming that the total 
intensity of the spectra does not contain useful chemical information about 
the samples. This may or may not be true for a given set of data. No matter 
what normalization method is used, normalization removes information 
from the data set.



• Common Normalization Methods

Good when selecting most all peaks-Total intensity

Good when selecting only a 
subset of peaks (normalization 
must be redone if you remove 
peaks from the data set)

-Sum of selected peaks

Need good reason for 
peak choice
Can introduce user 
bias

-Highest peak in spectra
-User selected peak

There are many different ways of normalizing a data set. Normalization is 
typically done by dividing or multiplying the values in the data matrix by a 
given number or set of numbers. Some typical ways of normalizing TOF-
SIMS data include dividing by the total intensity, the sum of selected 
peaks, the highest peak, or to a user selected peak for the given spectrum.
When using a single peak for spectrum normalization, care should be 
taken in the selection of the peak. It is possible that by choosing the wrong 
peak, one may introduce random variation into the data set that would be 
undesirable.
The choice of data normalization is likely to depend on the data set. If 
most all peaks have been selected from a given set of spectra, then 
dividing by the total intensity may be the best choice for normalization. If 
for some reason, only a few selected peaks have been chosen for the data 
set, then normalizing by the sum of selected peaks may be the best choice 
to accentuate the differences between the selected variables. 



Data Centering
• Centering is done to 

remove
– A common offset from the 

data
– Differences in the means 

between samples
• Mean Centering

– Subtracts the mean of each 
variable from each 
measurement from that 
variable

– Makes it so data varies 
across common mean of zero

The many peaks across a set of TOF-SIMS spectra have a wide range of 
different intensities. This means that the mean value for any given peak 
intensity will likely be different for each peak. If one were to use PCA to 
analyze the data from these types of peaks(variables), PCA would then 
likely find differences across the data set due to the means of the variables 
and not the relative variation between the variables.
Mean centering helps avoid this problem by subtracting the mean of each 
variable from each measurement for the given variable. This results in a 
data set where all the variables vary across a common mean of zero. This 
allows looking a the relative intensity differences of the peaks and not just 
differences in the means.



Other Data Scaling

• Autoscaling
– Divides mean centered data by standard deviation of 

each variable 
– Creates a data set where all variables vary between 

+1 and -1
• Non linear scaling

– Log transformation
• Root Mean Scaling
• Square root scaling
• Optimal scaling

Data scaling is done to account for differences in the variance scales 
between variables Normalization can be considered a scaling operation 
since with normalization we are dividing or multiplying by some value to 
adjust for unwanted variances in the data. One common scaling method 
used with PCA is autoscaling. Autoscaling is done by dividing a mean 
centered data set by the standard deviation of each column. This results in 
a data set where all variables vary between +1 and -1. Autoscaling is 
commonly used when data from different measurement methods are 
combined into one data set and one wants to correct for differences in the 
absolute variance scales of the different methods.

There is still some debate on whether or not SIMS data should be scaled 
and what method is best to use. Some argue that since the intensity of 
peaks in a TOF-SIMS spectrum decreases with increasing mass, simply 
due to the characteristics of the SIMS process and instrumentation, that the 
data has built in differences in variance scales and should be autoscaled or 
log scaled. Others argue that regardless of the differences in intensity 
across a spectrum, all the data comes from the same instrument and 
therefore does not need autoscaling.

For TOF-SIMS images there is evidence that accounting for the Poisson 
nature of the noise in the data gives better results from PCA processing. 
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The following few slides illustrate the affects that data preprocessing can 
have on PCA processing of TOF-SIMS data.
The data presented here comes from a set of spectra taken from mixed 
monolayers of decanethiol (C10) and octadecanethiol (C18). The 
monolayers were assembled from different solution percentages of the two 
thiols for >24 hours. This long assembly time assured that the resulting 
monolayers were most likely in a completely assembled, ordered layer.
Typical peaks for these monolayers include (M= HS(CH2)nCH3):
C10 C18
M-H 173.14 285.26
AuM 371.11 483.24
Au2[M-H] 567.07 679.196
Au[M-H]2 543.24 767.5

The plots shown in these and the subsequent figures show the PC1 scores 
(upper plot) plotted against the sample number. Since the samples are 
organized with increasing percentage of C10 thiol, the x-axis can be 
considered as plotting the increase in the C10 percentage in solution.
The data shown on this slide was normalized to the sum of selected peaks 
of the respective spectrum and then mean centered.
As seen in the scores plot PCA is able to separate out some sample 
concentrations, but many of the samples still overlap.
As would be expected the molecular ion clusters for the C10 thiol 
correspond with higher percentages of C10 thiol (samples with positive 
scores), and the molecular ion clusters for the C18 thiol correspond with 
higher percentages of C18 thiol (lower percentages of C10, negative 
scores). It is noted however that many of the low mass peaks have higher 
loading values than the high mass molecular ion clusters.
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The data shown on this slide shows this same data set normalized to the 
total intensity of each spectrum and then mean centered. As seen in the 
scores plot, the sample separation is similar to that seen on the previous 
slide, but the scatter within each sample group has increased significantly.
The loadings only showed minor changes across the peak set.
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This slide shows PCA of the C10/C18 data set after normalization to the 
total intensity, log10 transformation of the data and then mean centering. 
Log10 transformation was done to equalize the scale of the peaks across 
the spectrum.
The scores and loadings plots for this data set show distinct changes. As 
seen in the scores plot, the samples from each solution concentration can 
clearly be separated along the PC1 axis.
Looking at the loadings plot reveals that the direction of the peak loadings 
have not changes, but the absolute value of many of the peaks have 
changed. Most notably, the loadings values of the high mass peaks relative 
to the low mass peaks have increased significantly.
This shows that by reducing the dynamic range of the data, Log10 
transformation accentuates the influence of the lower intensity, high mass 
peaks. In the case of this mixed monolayer data, this allowed better 
separation of the samples since most of the high mass peaks are highly 
characteristic of the C10 and C18 thiols.



Running PCA

• Data organized in data matrix
• Data should be normalized before running PCA
• Choose appropriate data pretreatment

– These are typically options in the PCA programs
• Run Program
• Extract the information

– Scores
– Loads
– % variance captured for each PC

The process of running PCA is outlined on this slide. Firs the data needs to 
be organized in a matrix. The data is then typically normalized. Data 
preprocessing such as mean centering and autoscaling are often options 
provided within packages that perform PCA. After the data set is ready, 
PCA is run using a software package. Once PCA has been executed, the 
scores, loadings, and percent variance captured information should be 
extracted and analyzed.



Data Matrix
Variables

Sa
m

pl
es

1 2 3 ..... n
1
2
3
.
.
.

m

For SIMS data
the “samples” are 
SIMS spectra, or 
more typically the 
integrated areas 
for all peaks for a 
given spectra

•For SIMS data, the “variables” are the 
peaks selected from the spectra
•If an entire spectrum is read in to a matrix 
then, the variables are the individual data 
bins

For PCA the data should be organized into a matrix where the samples are 
organized in rows and the variables are in columns. With TOF-SIMS data, 
the samples are the spectra from where the peak areas were measured. The 
variables are the individual peaks (or data bins) that were integrated from 
the spectra.



PCA Scores
The Scores are a projection of 
the samples onto the new PC 
axes

Scores tell the relationship 
(spread) between the 
samples

Projection onto PC1 Projection onto PC2

Sometimes it helps to look at PCA graphically to understand better what 
the scores and loadings represent. As noted in the tutorial “Introduction to 
PCA”, PCA is an axis rotation that creates a new set of axes that best 
capture the major directions of variation within the data.
The scores are the projection of the samples onto the new PC axes. The 
scores show the relationship between the samples along these new axes.
As seen in the figure above, the projection of a sample onto a given axis is 
determined by drawing a perpendicular line from the sample onto the axis. 
The score value for a sample is the value along the PC where the 
projection intersects the axis.
In the example shown in the figures on this slide, it can be seen that the 
green, blue and black sample groups are fairly well separated along PC1, 
while they completely overlap on PC2.



Plotting Scores
• Plotting software may vary
• It is easiest to interpret data in 1 dimension at a 

time
– Plot PC vs Sample
– If samples vary in systematic way you can plot PC vs 

variable of interest
• Sometimes it is necessary to plot 2 PCs against 

each other to see sample separation
• Always show % variance captured for each PC
• Always show where zero is
• Use 95% confidence limits to show significance 

of sample separation

There are many different ways of plotting the scores from PCA. Each 
software package provides different options for how scores plots can be 
made. It is often common to plot score values from 2 PCs against each 
other. With these types of plots you will be looking at how the samples are 
similar or different along 2 PC axes. For some data sets, this type of plot is 
necessary to see any separation between samples.
For many data sets however, it is easier to look at 1 PC at a time. This can 
be useful for data sets where the sample set is organized in order of 
increasing treatment time or concentration. Plotting a given PC against the 
sample number, or the variable of interest allows monitoring how the 
samples change due to this variable.
Whichever format is used for creating the PCA scores plots, it is important 
that the axes are labeled properly. Always include the PC number and 
percent variance captured for a given axis. It is also useful to clearly show 
where the zero line is along the axes. If possible it is useful to show the 
95% confidence limits for each of the sample groups in the scores plots 
(see Wagner, M. S.; Castner, D. G. Langmuir 2001, 17, 4649-4660).



 
PCA Scores Example 1

% Variance is shown

PC scores are plotted against sample number

95% confidence limits 
are shown

Zero line is clearly shown

The figure above shows an example of a scores plot. As seen in the figure, 
the scores in this example are plotted against the sample number. The PC 
axis is clearly labeled with the PC number and the percent variance 
captured. The score values are plotted along with the 95% confidence 
limits, and the zero line is clearly drawn on the figure. Plotting the scores 
in this way makes it easy to see that the samples in the plot are clearly 
separated along the PC1 axis. 



PCA Scores Example 2
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This slide shows another example of a PCA scores plot. In this example, 
the scores for PC1 and PC2 are plotted against each other. Labels are 
given for each of the sample groups and the 95% confidence limits are also 
shown. The zero lines have been left out to avoid too much clutter in the 
figure. Plotting PC1 versus PC2 was necessary for this data set since it can 
be seen that along either of the individual PC axes, the samples show 
significant overlap, while the sample grouping is clearly seen in the cross 
plot



PCA Loadings
The loadings are the direction 
cosines between the new axes 
and the original variables

The loadings tell which variables 
are responsible for the 
separation seen between samples

High Loading means that 
variable had a high influence on 
the separation of the samples

•Cos(90) = 0
•Large angle low 
loading

•Cos(0) = 1
•Small angle high 
loading 

The PCA loadings are the direction cosine between the new axes and the 
original variables. Loadings are the weighting factors used for the original 
variables to get the new PC axes. A variable with a high loading suggests 
that the variable had a high influence on the separation of the samples. 
This means that the original variable and the new PC axes are more highly 
correlated (smaller angle between the two axes).



PCA Loadings

• Plotting software may vary
• It is easiest to interpret data in 1 dimension at a 

time
– Plot PC vs m/z

• This makes it so the loadings look more like a mass 
spectrum

• Always show % variance captured for each PC
• Only label highest loads to maintain clarity

– You can explain other peak loadings in the text of 
your paper or report

When plotting PCA loadings for TOF-SIMS data it is useful to plot the 
loadings versus m/z. This makes the loadings look more like a mass 
spectrum and allows easier interpretation (since a peak at m/z 196 will 
appear at m/z 196). Many PCA software packages do not plot the loadings 
in this way. Most of them plot the loading versus variable number. These 
types of plots are not visually pleasing and can lead to confusion if not 
labeled properly.
Loadings plots are most easily interpreted by plotting 1 PC at a time 
regardless of how you plotted your scores plots.
As with the scores plots it is important to label all loadings plot clearly 
including the PC number and the percent variance captured. To maintain 
clarity in the plot it is best to only label the peaks with the highest loadings 
in the plot. You can explain other trends in the data in the text of your 
paper or report.
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PCA Loadings

% variance is shown

Loadings are plotted versus m/z

Highest 
Loadings 
are labeled

Descriptor is added to 
highlight major 
differences

This slide shows an example PCA loadings plot. As seen in the figure, the 
loadings are plotted against m/z. The PC axis is clearly labeled. Peak 
labels are provided for the peaks with higher loadings values. It can also 
be seen that a general descriptor has been placed on either side of the PC1 
axis to summarize the types of peaks seen on each side.



PCA: Interpretation
• Scores and Loadings are interpreted in Pairs

– PC1 scores with PC1 loadings
– PC2 scores with PC2 loadings 
– Etc...

• Samples with high positive scores on a given PC 
are positively correlated with variables with high 
positive loadings

• This means that in general samples with high 
positive scores on a given PC will have higher 
relative intensities for variables with high 
positive loadings on the same PC

Interpretation of PCA results is done using the scores and loadings plots 
together. You cannot interpret PCA results by looking at either one alone. 
This is because the two plots contain complimentary information and 
either one without the other is incomplete. For example you can see clear 
separation between samples on a scores plot, but without looking at the 
loadings you will not know which peaks are responsible for the separation 
seen. When looking at the scores and loadings it is important to make sure 
you have the two plots properly matched up (PC1 scores with PC1 
loadings, etc).
The rules for interpreting PCA scores and loadings plots can be 
summarized as follows:
Samples with positive scores on a given PC axis are positively correlated 
with variables with positive loadings on the same PC axis. Samples with 
negative scores are positively correlated with variables with negative 
loadings. This means that, in general, samples with positive scores will 
have higher relative intensities for peaks with positive loadings than 
samples with negative scores. The opposite is also true, samples with 
negative scores will, in general, have higher relative intensities for peaks 
with negative loadings.
It is also true that samples with positive scores are negatively correlated 
with variables with negative loadings and that samples with negative 
scores are negatively correlated with variables with positive loadings.
It is important to note that since PCA looks at differences in the relative 
intensity of variables, even if a variable is negatively correlated with a 
given set of samples, it does not mean that the value of that variable for 
those samples is necessarily zero. It just means that those samples have a 
lower relative intensity than samples that are positively correlated with the 
variable.



Interpretation
• How to interpret Scores and Loadings plots
• How separated are the samples?

– Use 95% confidence limits to check
• Check the raw data!
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This slide shows an example of scores and loadings plots in the lower two 
figures. The upper figures are shown to illustrate how the trends shown in 
the scores and loadings are reflected in the original normalized data.
The bar charts on top of this slide show the original, normalized, data for 
one of the COOH thiol peaks (positive loading right chart), and one of the 
CH3 thiol peaks (negative loading left chart). As seen in the charts the 
original data follows the trend that would be expected based on the 
appearance of the scores plot. The COOH peak is seen to increase with 
increasing percentage of COOH and the CH3 peak is seen to decrease with 
increasing COOH percentage.

In this case the trends in the loading are pretty clear, but this is not always 
the case as will be illustrated in the next example.



PCA of Methyl SAM 
series
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This slide shows a more complex example where more than one trend is 
reflected in the scores and loadings plots. This example is shown to 
illustrate the importance of looking back at the original data to verify the 
trends seen in the PCA plots.
The slide above shows the PC1 scores and loadings plots from a set of 
methyl terminated self-assembled monolayers with varying chain lengths 
(from C6 to C18). It can be seen that the PC1 score values increase with 
increasing chain length with one clear outlier. The C9 thiol samples are 
seen to have significantly higher scores than the other samples and clearly 
do not follow the general trend. Looking at the loadings plot it is noted 
that the positive loadings are dominated by the peak at m/z = 73 
(indicative of PDMS). There are also some low mass hydrocarbons that 
have positive loadings. Based solely on the trends seen in the scores plot, 
and what we know about interpreting scores and loadings, it would be 
logical to assume that if we looked at the original data for the peak at m/z 
= 73 we would see that the C9 samples would have the highest relative 
intensity followed by the C18, C16/C15, C14 and so forth. We might also 
expect this to be true if we plotted on of the hydrocarbon peaks (C9 would 
have the highest relative intensity followed by C18, C15/C16, etc).

On the next slide we will see that this is not the case.
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Here we seen the original, normalized data for the peak a m/z = 73 (top bar 
chart) and m/z = 57 (bottom bar chart). As seen in these bar charts, the 
peaks do not follow the assumed trends. Why is this? It appears that PC1 
is tracking two major trends in the data. The first is the PDMS 
contamination on the C9 sample. The relative intensity of the peak at m/z 
= 73 is clearly orders of magnitude higher than the other samples. This is 
also true of other PDMS related peaks. PCA looks for variance in the data 
set and this is clearly a large source of variance. At the same time there is a 
large source of variance from the changes induced by the increasing chain 
length of the thiols. This is clearly seen in the bar chart for the 
hydrocarbon peak at m/z = 57. So PC1 is capturing a combination of the 
two sources of variation.

Hopefully this example has shown why it is important to actually check 
the original data and not just assume that the relative intensities of peaks 
highlighted in the loadings plots will follow the trends you expect to see. 
Most of the time they will, but you need to check!

One important thing to note is that checking the original data against the 
PCA results is not a simple straight forward task for PCs greater than PC1. 
For PC1 one can simply plot the data values from the matrix that was 
entered into the PCA. For PCs greater than PC1, you will need to subtract 
previous PCs from the data matrix before plotting the “original data” since 
this is what PCA does when calculating each PC.
For example the data analyzed to find PC2 is the original data matrix 
minus PC1. The data analyzed to find PC3 is the original data matrix 
minus PC1 and PC2 and so forth.



PCA Interpretation Continued
• Scores Plots

– Samples with similar scores are similar (clustered 
together)

– Samples with very different scores are different 
(separated from each other)

• Scatter in the scores for a given sample type 
suggests inhomogeneities in the sample

• Tight grouping of scores for a given sample 
suggests a homogeneous surface

PCA scores plots can provide several pieces of information about a sample 
set. First of all the scores can show the relationship between samples (are 
they similar or different). Samples with similar score values implies that 
the samples are similar based on the variables input into PCA. For TOF-
SIMS data this means that samples that are clustered together in a scores 
plot are spectrally similar. Conversely, samples with very different scores 
values are spectrally different from each other.
Scores can also show the reproducibility of the spectra within a given 
sample group. For example, scatter in the scores values for a given set of 
spectra suggests there are inhomogeneities within th samples Tight 
clustering of spectra from a given sample group suggests the sample 
chemistry was homogeneous
Therefore the scores can be used to look for sample difference and to 
determine reproducibility within sample groups.



PCA Scores Grouping

Low Scatter = 
homogeneous 
surface

High Scatter = 
in homogeneous 
surface

The scores plot above shows the scores from a data from a polymer with 
and without adsorbed fibrinogen. As seen in the figure, the red dots 
representing the scores for the samples with adsorbed fibrinogen are all 
lined up with very low scatter, whereas the blue dots from the bare 
polymer show higher scatter suggesting inhomogeneities on the surface.

It should be noted that if there is a lot of scatter in the data, you will need 
to collect more data to be confident of any sample separation seen from 
PCA.



95% Confidence Limits

• Scores are assumed to follow a normal 
distribution

• t-distribution can be used to calculate confidence 
limits for a subgroup of scores
– run PCA on subgroup
– use eigenvalues from subgroup PCA to determine 

confidence limits
– use loadings to rotate confidence limits back to 

original PC plot
• Shows bounds of groups on PC plots

Wagner, Castner Langmuir 17, 2001, 4649-4660

As shown in Wagner, M. S.; Castner, D. G. Langmuir  2001, 17, 4649-
4660, 95% confidence limits can be calculated for each sample group. 
This gives a way of monitoring the significance of separation between 
samples. See the reference given for more information.
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Confidence ellipses

Major and 
minor axes 
of scores for 
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This plot shows an example of a PCA scores plot showing 95% 
confidence ellipses. The major and minor axes of the ellipses are shown to 
illustrate how the confidence ellipses capture the major variations within 
each subgroup within the plane of the scores plot. As outlined on the 
previous slide, this is done by running PCA on the subgroup alone and 
then projecting the data back into the original scores plot.



Q and Hotelling's T2 – Outlier detection
• Q - Variation 

outside of 
model
– sqrt(Q) = 

euclidean 
distance from 
model

• T2 – Variation 
inside the 
model

Sample with high variation 
outside of model – Large Q

Sample with high variation 
inside of model – Large T2Line of constant T2

Jackson, J.E. A User's Guide to Principal Components:  John Wiley & Sons: New York 1991

Q and the Hotellings T2 are two test statistics that can be calculated for 
PCA models to look for outliers.
Q highlights samples with large variation outside of a PCA model.
T2 highlights samples with large variation within a PCA model.
This is illustrated graphically in the figure above.

See the references given for more information about these statistics.



Conclusions
• PCA has great potential to aid in spectral 

interpretation and analysis
– can aid in determining sample differences
– requires well thought out experiments
– cannot do analysis for you

• Plan your experiments with a central question 
and minimize the number of variables
– This can greatly simplify the interpretation
– Can maximize what you get out of your data

PCA is a powerful data analysis tool. Utilizing this power properly 
requires good experimental design, and understanding of how PCA works.
As with most experimentation, time and thought put into the planning of 
the experimental design will greatly increase the possibility of learning 
new and useful insights from the experiment results.


