
The Complexities of The 
Basics of PCA (Part I)

Dan Graham, Ph.D.
NESAC/BIO

University of Washington

An NIH National Center for Research 
Resources

(NIH grant EB-002027)
http://www.nb.uw.edu

NESAC/BIO



Overview
• Why Use Multivariate Methods?

• What are Multivariate Statistics?

• How to use MVA with ToF-SIMS data

• Basic complexities of running PCA 
- step by step

• Basic complexities of displaying 
and interpreting results



WHY?



Why Use Multivariate Statistics?
•Reduce Size of Huge Data Sets

–Keep important information

•Remove User Bias
•Efficiently Use the Data
•Chemical Signatures are Multivariate
•Biological Problems are Multivariate
•Quantitative Analysis
•NOTE: MVA is a tool, not a 

replacement for knowing what you 
are doing



MVA Sounds Cool, Should I 
Always Use It?
• No.  If you only have a few variables, it 

probably doesn’t make sense to use MVA.
• If another method can answer your question, 

then use the other method.
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MVA Can Be Very Useful If:

•You have data sets with a large number 
of samples and variables

•You want to remove potential user bias
•You want to identify samples or predict a 

response based of experimental 
measurements



MVA Is Useful for ToF-SIMS Because 
SIMS Data Is Complicated

• Spectra contain hundreds of peaks
• Images contain thousands of spectra
• Peak intensities can be interrelated
• Matrix effects can cause non-linear changes in 

peak intensities
– Due to sample composition
– Due to the presence of oxides
– Due to the presence of salts

• Peak intensities may or may not correlate with 
surface composition

• Peak intensities may vary due to differential 
sputtering

• Often heavy fragmentation and lack of molecular 
ion signals (assuming you know what signal to 
expect)
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Data Overload

A typical spectral data set 
may have:

-2 to 100 samples
-up to 800 variables 

(peaks)
-both positive and 

negative spectra For images this is further 
compounded:
-256x256 image has

-65536 spectra

This is multiplied by the 
number of slices in a 3D data 
stack – can quickly reach 
millions of spectra



WHAT?



“Multi” “Variate”
• Multivariate = more than 1 variable
• So multivariate analysis pertains to the analysis of 

multiple variables
– Response from multiple measurements/instruments

• XPS, ToF-SIMS, Contact Angle

– Multiple responses from single measurement/instrument
• Multiple ToF-SIMS peak intensities

• MVA – looks at the dependence (covariance) between 
different variables



Multivariate Analysis Methods
• Many different methods available

– Principal component analysis (PCA)
– Factor analysis (FA)
– Discriminant analysis (DA)
– Multivariate curve resolution (MCR)
– Maximum Autocorrelation Factors (MAF)
– Partial Least Squares (PLS)
– PCA-DA, PLS-DA, CA

• We will focus on PCA
– Most commonly used method
– Successful with SIMS data
– Forms the basis for many other methods



When Should MVA be Used?
•MVA should be used to help answer 

questions
– Are surfaces A and B different?
– How does treatment X change the surface chemistry?
– How is fragmentation pattern affected by ____?
– Can TOF-SIMS data distinguish Protein A from      

Protein B?

•The question should be part of the 
experimental design and not an 
afterthought



Multivariate Analysis 
Reducing the Dimensionality of a Problem

A ball rolling down an incline 
plane requires solving 
equations of motion in 2 
dimensions using a traditional 
axes rotation

Slide adapted from slide Bonnie Tyler



Multivariate Analysis 
Reducing the Dimensionality of a Problem

Rotate the axes to creating a new 
coordinate system (ignoring 
gravity) that simplifies the system

PCA is an axis rotation defining a 
new set of axes 

Score = amount of the new 
variables in each sample

Loadings = Contribution of old 
variables to new variables

Slide adapted from slide Bonnie Tyler



MVA Geometrically
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How Axis Rotation Can Help

Peak 1
Image

Peak 2
Image

Computer Generated Image

Slide courtesy of Bonnie Tyler



How Axis Rotation Can Help
Computer Generated Image

Slide courtesy of Bonnie Tyler



How Axis Rotation Can Help
Computer Generated Image

Transformed Variable Image and Histogram

Slide courtesy of Bonnie Tyler



The New Coordinate System
How do we decide how to rotate the axes?

Problem Method

Sources of Variation PCA, MCR, MAF
     in a Data Set

Prediction of Properties  PLS, PCR
      from Data Set

Differences Between Discriminant 
Analysis,HCA, 

     Groups or Classes PLS-DA

Find Features in Noisy MAF
Images
• Choose the method based off the goals of the analysis

– No one method is “Better” than another
– They are all just tools 



Math

•MVA methods are based of linear 
algebra and matrix math

•Good reviews of PCA math can be found 
in the literature
–Chemom. Intell Lab Sys, 1987, 2, 37-52
–J Qual Technol, 1980, 12, 201-213
–Jackson JE, 1991, User’s guide to principal 

components, John Wiley & Sons, NY



Principal Components Analysis

• Variance
• A measure of the spread in the data
 
• Covariance
• A measure of the degree that two 

variables vary together
• PCA is calculated from the covariance 

matrix
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PCA Methodology

• PCA determines 
sequential 
orthogonal axes that 
capture the greatest 
direction of variance 
within the data
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What the Math Means

• Scores ---> “concentration”

• Loadings ---> “spectra”

• However these are not usually “concentrations” or “spectra” of a 
pure component or even an individual physical factor



• Looks at the variance patterns of a 
data matrix

• Reduces data dimensionality

• Gives simple graphical presentation of 
data

• Determines relationship of samples and 
variables based on the variance in the data

• No external constraints needed

• Original matrix is reconstructed into 
new matrices that define the major 
patterns of the data in multivariate 
space

– SCORES -> Describe relationship 
between samples (spread) as described 
by PC’s

– LOADINGS -> Describe how the 
variables relate to the PC’s

PCA



Scores

Projection onto PC1 Projection onto PC2

Scores tell the relationship 
(spread) between the 
samples

The Scores are a 
projection of the samples 
onto the new PC axes



Loadings
The loadings are the 
direction cosines between 
the new axes and the 
original variables

• Cos(90) = 0
Large angle low 

loading
• Cos(0) = 1

Small angle high 
loading 

• High Loading means that 
variable had a high 
influence on the separation 
of the samples

• The loadings tell which variables 
are responsible for the separation 
seen between samples



HOW?



Background Information
•Data is arranged in matrices

–samples in rows
–variables in columns

•m = number of samples
•n = numbers of variables
•k = number of PCs
•T = scores matrix 
•P = loadings matrix 



Data Matrix
Variables
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SIMS spectra, or 
more typically the 
integrated areas 
for all peaks for a 
given spectra

• For SIMS data, the “variables” are the 
peaks selected from the spectra

• If an entire spectrum is read in to a matrix 
then, the variables are the individual data 
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PCA: Things to know
• PCA assumes linear relationships between variables
• PCA is scale dependent

– variables with larger values look more important

• PCA looks at variance in the data
– It will highlight whatever the largest difference are
– To make sure you are comparing things properly it is 

common to preprocess the data
• Remove any instrument variation, or other non-

related variance (normalization)
• Make sure data is compared across a common mean 

(centering)
• Make sure data is compared across common variance 

scale (autoscaling, variance scaling, etc)



Steps to PCA

•Plan Experiment and controls
•Collect data 

–(What samples, how many replicates?)

•Calibrate spectra 
–Calibration should be consistent

•Select peaks (Which?)
•Normalize the data (How?)
•Pre-process the data (How?)
• Interpret the results (What are you looking at?)



Proper ToF-SIMS Analysis 
Requires:

• Good experimental plans (controls)
• Proper sample preparation
• Careful data collection
• Consistent data calibration
• Sound understanding of the 

fundamentals of mass spectral analysis
• Knowledge of how to properly use the 

available tools to help with the analysis



Plan
• What is the 

question 
you want 
to 
answer?

• What 
samples 
do you 
need to 
answer 
that 
question?

• How many 
samples/ 
replicates 
do you 
need?

Remember PCA will find the main differences 
between any samples

If you input garbage in           

 You will get garbage out!!!



Experimental Design/Data 
Collection

•Not all systems are well defined, but 
your experimental design can be:
– Think about what you want to learn 

from SIMS
– Simplify the number of variables you 

are dealing with per experiment
– Plan appropriate controls
– Run enough replicates to determine 

reproducibility
• Homogeneous => 3 to 5 spots on 2 

samples
• Non-homogeneous => 5 to 7 spots on 

3 to 5 samples



SAMs – typically very 
homogeneous

• Different 
chain length 
SAMs

• 6 spectra per 
chain length

• Most data 
points 
overlap 
showing high 
reproducibili
ty
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Proteins adsorbed onto Mica: PCA
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Data calibration
•All spectra in the data set should be 

calibrated to the same peak set
–Be consistent

•Include a high-mass peak if possible
–This will increase the accuracy of 

identifying high mass peaks

•Always double check autocalibration 
functions
–They can make mistakes



Initial Calibration
After Checking Calibration 
to assure consistency

Calibration example



Peak Selection-Which Peaks should you select?
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There can be hundreds of peaks in a set 
of TOF-SIMS spectra.

Each Mass Range... Contains ... Peaks!
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-Peak list must include all peaks 
across all samples in the data set
-Start with all peaks and then reduce 
the data set based on information 
gained and logical hypotheses 

-Spectral overlay is very useful

-That way you can see peaks 
that may only be present in 
one sample versus another

Peak Selection-Which Peaks should you select?



This peak is 
unique to the 
light blue and 
red samples

Two distinct peaks

-To keep high-mass 
resolution of TOF-
SIMS you need to 
select individual 
peaks

-Manual peak 
selection is 
recommended

-It is time 
consuming, but not 
prohibitive

Peak Selection Continued



Carefully Set Integration Limits
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•Overlay spectra 
so you can set 
limits properly 
for all samples
•Set the limits 
tightly around 
the peaks
•Set all limits 
consistently



Data Pretreatment
• Typical data pretreatments include

– Normalization
– Centering
– Scaling

• Pretreatments are done in an attempt to 

maximize differences due to sample 
differences and minimize differences from other 
sources

• Know the assumptions being made
– Are they valid?



PCA data Pretreatment

• No standards have been set for data 
pretreatment

• Some common trends include
– normalizing the data (many different ways)
– Square root transform or divide by the square 

root of the mean and then mean center for 
TOF-SIMS spectra

– Poisson scaling or square root transformation 
for TOF-SIMS images



Normalization
• Data normalization helps account for differences 

in the data due
– topography
– sample charging
– instrumental conditions

• Many different methods are commonly used
– Total intensity
– Sum of selected peaks
– Highest peak in spectrum
– User selected peak
– Total intensity minus H and contaminants

• Know assumptions being made
• Understand that normalization removes information from 

the data set



Normalization
• Data normalization helps account for differences 

in the data due
– topography
– sample charging
– instrumental conditions

• Many different methods are commonly used
– Total intensity
– Sum of selected peaks
– Highest peak in spectrum
– User selected peak
– Total intensity minus H and contaminants

• Know assumptions being made
• Understand that normalization removes information from 

the data set



Mean centering

• Mean centering
– Subtracts the mean of 

each column (variable) 
from each column 
element 

– Centers data so that all 
variables vary across a 
common mean of zero



Scaling

• Scaling attempts to account for differences in 
variance scales between variables
– Poisson scaling (takes into account Poisson noise 

structure that is often seen for SIMS data)
– Dividing by the square root of the mean
– Square root transform
– Many others

• Need to know why you are using a given method
• Need to understand assumptions

– Are the assumptions valid?



Example:
Mixed 

C10 C18 
SAMs

-Normalized 
Sum of 
Selected 
Peaks
-Mean 
Centered
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Example:
Mixed 

C10 C18 
SAMs

-Normalized 
Total 
intensity
-Mean 
centered
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Example:
Mixed 

C10 C18 
SAMs

-Normalized 
Sum of 
selected peaks
-log10 
transformed
-mean 
centered



PCA Data Display and 
Interpretation



Plotting Scores
• Plotting software may vary
• It is easiest to interpret data in 1 dimension at a time

– Plot PC vs Sample
– If samples vary in systematic way you can plot PC vs 

variable of interest

• Sometimes it is necessary to plot 2 PCs against each 
other to see sample separation

• Always show % variance captured for each PC
• Always show where zero is
• Use 95% confidence limits to show significance of 

sample separation



 

PCA Scores Example

% Variance is shown

PC scores are plotted against sample number

95% confidence limits 
are shown

Zero line is clearly shown



PCA Loadings

• Plotting software may vary
• It is easiest to interpret data in 1 dimension at 

a time
– Plot PC vs m/z

• This makes it so the loadings look more like a mass 
spectrum

•Always show % variance captured for each PC
•Only label highest loads to maintain clarity

– You can explain other peak loadings in the text of 
your paper or report



Lipids and 
Lipid
fragments

Hydrocarbon
fragments

PCA Loadings

% variance is shown

Loadings are plotted versus m/z

Highest 
Loadings 
are labelled

Descriptor is added to 
highlight major 
differences



PCA: Interpretation

•A note on negative scores and loadings
– Do not be afraid of negative numbers
– +/- have no intrinsic meaning
– Only important to keep + and – scores and 

loadings together



PCA: Interpretation

x (-1)



PCA: Interpretation

• Scores and Loadings are interpreted in Pairs
– PC1 scores with PC1 loadings
– PC2 scores with PC2 loadings 
– Etc...

• Samples with high positive scores on a given 
PC correspond with variables with high 
positive loadings

•This means that in general samples with high 
positive scores on a given PC will have 
higher relative intensities for variables with 
high positive loadings on the same PC



PCA of Methyl 
SAM series
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PCA Interpretation Continued
•Scores Plots

–Samples with similar scores are similar 
(clustered together)

–Samples with very different scores are 
different (separated from each other)

•Scatter in the scores for a given sample 
type suggests inhomogeneities in the 
sample

•Tight grouping of scores for a given 
sample suggests a homogeneous 
surface



PCA Scores Grouping

Low Scatter = 
homogeneous 
surface

High Scatter = 
in homogeneous 
surface



Software Packages
•Commercial

–SAS
–SPSS
–S Plus
–PLS Toolbox (requires Matlab)

•Open Source or Free
–NB Toolbox (requires Matlab)

• http://mvsa.nb.uw.edu/

–R Project
–Octave
–Scilab



Summary
•What are Multivariate statistics?

– Powerful Tools for
• Dealing with large data sets
• Removing user bias

• Finding patterns and trends
• Building models

– Prediction
– classification

– Hypothesis Generators
– NOT a substitute for good scientific 

methodology
• Well designed experiments
• Replicates and controls
• Validation of hypotheses



• mvsa.nb.uw.edu
– Tutorials
– References
– Links
– Software

NESAC/BIO

djgraham@uw.edu
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This tutorial will cover some of the basic concepts about PCA.  
Though it is focused on PCA, the guidelines provided herein can 
be applied to any multivariate analysis method.  



Overview
• Why Use Multivariate Methods?

• What are Multivariate Statistics?

• How to use MVA with ToF-SIMS data

• Basic complexities of running PCA 
- step by step

• Basic complexities of displaying 
and interpreting results

In this tutorial I will briefly cover why MVA is required and what MVA 
is.  The majority of the tutorial will cover how to use PCA for ToF-
SIMS data starting from collecting data through interpreting the 
PCA results.  As mentioned before, though this focuses on PCA, 
the concepts and methods covered apply to other MVA methods 
too.



WHY?



Why Use Multivariate Statistics?
•Reduce Size of Huge Data Sets

–Keep important information

•Remove User Bias
•Efficiently Use the Data
•Chemical Signatures are Multivariate
•Biological Problems are Multivariate
•Quantitative Analysis
•NOTE: MVA is a tool, not a 

replacement for knowing what you 
are doing

When you collect ToF-SIMS data from a set of samples it is of 
interest to know how the spectra change and in particular which 
peaks are different from sample to sample.  Due to the large 
number of peaks in a typical set of ToF-SIMS spectra, it is often 
difficult to manually find all the changes throughout a data set.  
MVA provides a way to process large data sets, such as ToF-
SIMS spectra, and determine what is changing between samples. 
 Since MVA methods are designed to process large data sets, on 
can look at all the peaks within a ToF-SIMS data set and therefore 
remove user bias introduced by selecting only a few peaks.  This 
more efficiently uses the data and enables finding trends in the 
data that otherwise may have been missed.

MVA is also useful because many problems we try to address with 
ToF-SIMS are multivariate in nature, meaning that multiple peaks 
can track changes on the surface and sometimes there may be 
multiple things changing within a sample set.

Though MVA is a powerful set of tools for data processing, it should 
be remembered that they are ONLY tools.  This means that MVA 
will not analyze your data for you.  It will only provide a way of 
determining where to focus your analysis.  MVA is a set of tools 
that can help you, not do your work for you.



MVA Sounds Cool, Should I 
Always Use It?
• No.  If you only have a few variables, it 

probably doesn’t make sense to use MVA.
• If another method can answer your question, 

then use the other method.
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Some data sets do not require MVA.  For example, if you have previous knowledge about a data set 
that shows that a small set of peaks can be used to track the changes in a given system, MVA may 
not add anything to your analysis.  Also, if you have only taken 1 or 2 spectra on each sample using 
MVA may not make sense.  MVA methods are statistically based methods and therefore you need to 
take sufficient data to adequately describe the variance within your sample set.

Some data sets do not require MVA.  For example, if you have previous 
knowledge about a data set that shows that a small set of peaks can be 
used to track the changes in a given system, MVA may not add anything 
to your analysis.  Also, if you have only taken 1 or 2 spectra on each 
sample using MVA may not make sense.  MVA methods are statistically 
based methods and therefore you need to take sufficient data to 
adequately describe the variance within your sample set.



MVA Can Be Very Useful If:

•You have data sets with a large number 
of samples and variables

•You want to remove potential user bias
•You want to identify samples or predict a 

response based of experimental 
measurements

General slide on some of the benefits of MVA.



MVA Is Useful for ToF-SIMS Because 
SIMS Data Is Complicated

• Spectra contain hundreds of peaks
• Images contain thousands of spectra
• Peak intensities can be interrelated
• Matrix effects can cause non-linear changes in 

peak intensities
– Due to sample composition
– Due to the presence of oxides
– Due to the presence of salts

• Peak intensities may or may not correlate with 
surface composition

• Peak intensities may vary due to differential 
sputtering

• Often heavy fragmentation and lack of molecular 
ion signals (assuming you know what signal to 
expect)
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There is no way around it.  ToF-SIMS data is complicated.  There can be 
multiple factors that can change the relative intensities of peaks within a 
spectrum or image.  These changes can be due to instrumentation, sample 
preparation, sample composition and more.



Data Overload

A typical spectral data set 
may have:

-2 to 100 samples
-up to 800 variables 

(peaks)
-both positive and 

negative spectra For images this is further 
compounded:
-256x256 image has

-65536 spectra

This is multiplied by the 
number of slices in a 3D data 
stack – can quickly reach 
millions of spectra

ToF-SIMS generates a lot of data.  It is of interest to use all of this 
data in order to understand more about the system of interest.



WHAT?



“Multi” “Variate”
• Multivariate = more than 1 variable
• So multivariate analysis pertains to the analysis of 

multiple variables
– Response from multiple measurements/instruments

• XPS, ToF-SIMS, Contact Angle

– Multiple responses from single measurement/instrument
• Multiple ToF-SIMS peak intensities

• MVA – looks at the dependence (covariance) between 
different variables

Multivariate simply implies working with multiple variables.  These 
variables can be anything that is measured.  For ToF-SIMS the 
variables are typically the integrated peak areas or possibly the 
intensities of individual mass bins.  

MVA looks at the covariance between all variables in the system.  
This means it looks at how each variable varies (or changes) 
compared to all the other variables.



Multivariate Analysis Methods
•Many different methods available

– Principal component analysis (PCA)
– Factor analysis (FA)
– Discriminant analysis (DA)
– Multivariate curve resolution (MCR)
– Maximum Autocorrelation Factors (MAF)
– Partial Least Squares (PLS)
– PCA-DA, PLS-DA, CA

•We will focus on PCA
– Most commonly used method
– Successful with SIMS data
– Forms the basis for many other methods

There is a whole alphabet soup of MVA methods.  Many of these are 
variations of factor analysis.  Each of the available methods can 
be useful and were designed to find new ways to process and 
interpret large data sets.  No one method is better than another.  
Each has strengths and weaknesses.  You should choose a 
method based on which one you think will answer the questions 
you are working on.



When Should MVA be Used?
•MVA should be used to help answer 

questions
– Are surfaces A and B different?
– How does treatment X change the surface chemistry?
– How is fragmentation pattern affected by ____?
– Can TOF-SIMS data distinguish Protein A from      

Protein B?

•The question should be part of the 
experimental design and not an 
afterthought

MVA works particularly well when you limit the number of variables 
that are changing in a given system.  Here I refer to external 
variables such as concentration, temperature, or exposure time.  
Variables that you can control during your experiment.  If you limit 
the number of variables you change within a given system to 1, 
then you can interpret your MVA results in reference to that one 
variable.  As always, it is best to have a central question you are 
trying to answer, and to use a well controlled set of samples.  Your 
question should be part of your experimental design.

MVA is also good for determining differences between sets of 
samples.  However, I would caution you on using MVA as a last 
resort to try and figure out something from a confusing data set.  
Without a good experimental design, MVA may only be able to 
confuse you further.  That doesn’t mean that it cannot be helpful 
with unknown samples, just that you need to think about what you 
are doing.



Multivariate Analysis 
Reducing the Dimensionality of a Problem

A ball rolling down an incline 
plane requires solving 
equations of motion in 2 
dimensions using a traditional 
axes rotation

Slide adapted from slide Bonnie Tyler

Many MVA methods involve doing an axis rotation.  Axis rotations 
can be useful to simplify the number of variables within a system.  
For example, for a ball rolling down an inclined plane using a 
standard set of axes (pictured above), you must solve the 
equations of motion in 2 dimensions (ignoring gravity).



Multivariate Analysis 
Reducing the Dimensionality of a Problem

Rotate the axes to creating a new 
coordinate system (ignoring 
gravity) that simplifies the system

PCA is an axis rotation defining a 
new set of axes 

Score = amount of the new 
variables in each sample

Loadings = Contribution of old 
variables to new variables

Slide adapted from slide Bonnie Tyler

If we rotate the axes so that the Y’ axis is parallel to the surface of 
the inclined plane, we can reduce the problem to be 1 
dimensional.

PCA is a type of axis rotation.  The axes of a system are rotated to 
define a new set of axes that capture the major differences 
between the samples.  This axis rotation creates new sets of data 
called the scores and loadings.  The scores tell the amount of the 
new variables in each sample.  The loadings tell the contributions 
of the old variables to the new variables.  We’ll talk more about 
this later.



MVA Geometrically

This slide illustrates how the first 2 PC axes are defined.  The first 
PC axis is rotated so that it captures the largest direction of 
variance within the data.  In the case of this simulated data set, 
the largest variation within the data is the spread of the samples 
along the diagonal through the 3 clouds of data points.  PC1 is 
placed so that it is aligned with these sample differences.  PC2 is 
placed orthogonal to PC1 in the next greatest direction of 
variation.  In this case PC2 is capturing the spread in the samples 
on either side of the PC1 axis.
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How Axis Rotation Can Help

Peak 1
Image

Peak 2
Image

Computer Generated Image

Slide courtesy of Bonnie Tyler

This is a nice example provided by Bonnie Tyler of how axis rotation 
can help.  In this slide two peak images are shown along with the 
intensity histogram of the peak 1 and peak 2 counts.  One can 
just barely make out the square pattern in the peak area images.



How Axis Rotation Can Help
Computer Generated Image

Slide courtesy of Bonnie Tyler

On this slide the peak 1 counts are plotted against the peak 2 
counts.  On this plot it is apparent that there are two clouds of 
data.  If one created a new axis that cuts through the short axis of 
these clouds and then projected the data onto this new axis line 
one could see that the two peaks could be better separated.



How Axis Rotation Can Help
Computer Generated Image

Transformed Variable Image and Histogram

Slide courtesy of Bonnie Tyler

This slide shows the data projected onto the new axis (shown in the 
last slide).  The square pattern can now be easily seen in the 
peak area image.  Also, it can be seen that the histograms for 
both peaks are preserved on the transformed variable space.  So 
all pertinent information about the data set can be captured by 
projecting the data onto this new axis system.



The New Coordinate System
How do we decide how to rotate the axes?

Problem Method

Sources of Variation PCA, MCR, MAF
     in a Data Set

Prediction of Properties  PLS, PCR
      from Data Set

Differences Between Discriminant 
Analysis,HCA, 

     Groups or Classes PLS-DA

Find Features in Noisy MAF
Images
• Choose the method based off the goals of the analysis

– No one method is “Better” than another
– They are all just tools 

How you rotate the axes depends on the goals of the analysis.  This 
slide lists a few examples showing the type of problem to be 
solved, and the possible MVA methods that could be used.

The MVA method used should be based off the goals of the analysis. 
 Remember, no one method is “better” than another.  They are all 
just tools to help you understand your data.  Also, you should 
understand how the methods work and how to interpret the 
results you get before you start using them routinely.



Math

•MVA methods are based of linear 
algebra and matrix math

•Good reviews of PCA math can be found 
in the literature
–Chemom. Intell Lab Sys, 1987, 2, 37-52
–J Qual Technol, 1980, 12, 201-213
–Jackson JE, 1991, User’s guide to principal 

components, John Wiley & Sons, NY

Very nice overviews of PCA mathematics can be found in the articles 
listed above.  It is highly recommended that you read through 
these (and other) articles to get a good understanding of how the 
math works and what it is doing.



Principal Components Analysis

• Variance
• A measure of the spread in the data
 
• Covariance
• A measure of the degree that two 

variables vary together
• PCA is calculated from the covariance 

matrix
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Here I will just cover some basic concepts about PCA math.  First we need to understand what 
variance is.  Variance is a measure of the spread in the data.  You can calculate the variance for a 
given variable using the equation at the top of the slide.  For MVA we want to know how each 
variable varies with respect to all of the other variables. For this we need to calculate the covariance 
matrix.  This matrix contains the variance of all variables with respect to all other variables.  PCA is 
calculated from the covariance matrix.

Here I will just cover some basic concepts about PCA math.  First we need 
to understand what variance is.  Variance is a measure of the spread in 
the data.  You can calculate the variance for a given variable using the 
equation at the top of the slide.  For MVA we want to know how each 
variable varies with respect to all of the other variables. For this we need 
to calculate the covariance matrix.  This matrix contains the variance of 
all variables with respect to all other variables.  PCA is calculated from 
the covariance matrix.



PCA Methodology

• PCA determines 
sequential 
orthogonal axes that 
capture the greatest 
direction of variance 
within the data

X = T1P1T + E
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X = T2P2T + 
E

var(PC1)>var(PC2)>var(PC3)>...>var(PCk)

PCA determines sequential orthogonal axes that capture the greatest directions of variance within the 
data set.  What this means is that PCA first determines the greatest direction of variance within the 
data set and defines the PC1 axis along this direction.  PC1 is then subtracted from the data set and 
the residual matrix (E) becomes the new X axis that is used to find PC2.  So each subsequent PC is 
calculated from the residual found by subtracting all previous PCs from the input data matrix.  At 
some point the residual matrix E contains only noise.

The variance captured in PCA always follows the rule that var(PC1)>var(PC2)>var(PC3)>…>var(PCk)

PCA determines sequential orthogonal axes that capture the greatest 
directions of variance within the data set.  What this means is that PCA 
first determines the greatest direction of variance within the data set and 
defines the PC1 axis along this direction.  PC1 is then subtracted from 
the data set and the residual matrix (E) becomes the new X axis that is 
used to find PC2.  So each subsequent PC is calculated from the residual 
found by subtracting all previous PCs from the input data matrix.  At 
some point the residual matrix E contains only noise.

The variance captured in PCA always follows the rule that 
var(PC1)>var(PC2)>var(PC3)>…>var(PCk)



What the Math Means

• Scores ---> “concentration”

• Loadings ---> “spectra”

• However these are not usually “concentrations” or “spectra” of a 
pure component or even an individual physical factor

Scores can be thought of as an “amount” or “concentration” and loadings can be thought of as 
“spectra”, but not in the sense of pure component or a physical factor.

Scores can be thought of as an “amount” or “concentration” and loadings 
can be thought of as “spectra”, but not in the sense of pure component or 
a physical factor.



• Looks at the variance patterns of a 
data matrix

• Reduces data dimensionality

• Gives simple graphical presentation of 
data

• Determines relationship of samples and 
variables based on the variance in the data

• No external constraints needed

• Original matrix is reconstructed into 
new matrices that define the major 
patterns of the data in multivariate 
space

– SCORES -> Describe relationship 
between samples (spread) as described 
by PC’s

– LOADINGS -> Describe how the 
variables relate to the PC’s

PCA

This slides gives an overview of PCA. The figure on the right 
illustrates how the original data matrix is reconstructed into two 
new matrices (the scores and loadings).  The scores show the 
relationship between the samples and the loadings show which 
variables are responsible for the differences seen between the 
samples.  For example in this simulated data set samples with 
different letters are different from each other since they cluster 
together and are separated from samples with different letters.  It 
can be seen by looking at the scores and loadings that samples b 
correspond more with peaks 1 and 7 (seen in the same quadrant 
as samples b) and samples a and c correspond more with peaks 
4, 2 and 8 (located in the same quadrant as samples a and c).



Scores

Projection onto PC1 Projection onto PC2

Scores tell the relationship 
(spread) between the 
samples

The Scores are a 
projection of the samples 
onto the new PC axes

The scores are a projection of the samples onto the new PC axes.  
So the PC1 scores are found by projecting the samples onto the 
PC1 axis.  The PC2 scores are found by projecting the samples 
onto the PC2 axis.  As can be seen, for this example data set, by 
projecting the samples onto PC1 the samples will be separated 
from each other (they have different scores).  On PC2 the 
samples will overlap with each other.



Loadings
The loadings are the 
direction cosines between 
the new axes and the 
original variables

• Cos(90) = 0
Large angle low 

loading
• Cos(0) = 1

Small angle high 
loading 

• High Loading means that 
variable had a high 
influence on the separation 
of the samples

• The loadings tell which variables 
are responsible for the separation 
seen between samples

The loadings are the direction cosines between the new axes and 
the original variables.  Cosine(0)=1 and cosine(90)=0.  This 
means that variables that are more closely aligned with the new 
PC axes will have a higher loading (smaller angle = larger cosine 
= larger loading).  Variables with larger loadings have a larger 
influence on the separation of the samples on the given PC axis.  
Conversely, variables (peaks) with small loadings have a smaller 
influence on the sample separation.  In the case of a small 
loading, the angle between these variables and the new PC axis 
would be large (large angle = small cosine = small loading).



HOW?

The next section will cover how to collect data, pre-process it and run 
PCA.



Background Information
•Data is arranged in matrices

–samples in rows
–variables in columns

•m = number of samples
•n = numbers of variables
•k = number of PCs
•T = scores matrix 
•P = loadings matrix 

For PCA the data must be arranged in a matrix.  Samples (spectra) 
should be in the rows, and the variables (peak areas) should be in 
columns.

This slide provides definitions that are used later.



Data Matrix
Variables

Sa
m
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For SIMS data
the “samples” are 
SIMS spectra, or 
more typically the 
integrated areas 
for all peaks for a 
given spectra

• For SIMS data, the “variables” are the 
peaks selected from the spectra

• If an entire spectrum is read in to a matrix 
then, the variables are the individual data 
bins
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This slide shows a blank matrix showing that samples should be in 
rows and variables in columns.  For SIMS variables are peak 
areas (or counts from data bins), and samples are spectra.



PCA: Things to know
• PCA assumes linear relationships between variables
• PCA is scale dependent

– variables with larger values look more important

• PCA looks at variance in the data
– It will highlight whatever the largest difference are
– To make sure you are comparing things properly it is 

common to preprocess the data
• Remove any instrument variation, or other non-

related variance (normalization)
• Make sure data is compared across a common mean 

(centering)
• Make sure data is compared across common variance 

scale (autoscaling, variance scaling, etc)

These are important assumption made when running PCA.  
PCA assumes a linear relationship between variables (peaks). This 

may not always be true with ToF-SIMS due to matrix effects. 

PCA is scale dependent.  This means the answer you get will be 
dependent on any pre-processing you do with the data.  Variables 
with larger values will look more important in the loadings plots 
simply due to the magnitude of the variable.  Data pre-processing 
can be done to weight peaks in a way to give more influence to 
different peaks. This also means it is important to understand how 
and why you are pre-processing your data.

PCA looks at variance patterns.  This means it will find differences no 
matter what they are.  What I mean by this is that if you have 
contamination on some of your samples, it is likely that the largest 
PCs will find differences due to the contamination before it finds any 
differences due to your chemistry of interest.  



Steps to PCA

•Plan Experiment and controls
•Collect data 

–(What samples, how many replicates?)

•Calibrate spectra 
–Calibration should be consistent

•Select peaks (Which?)
•Normalize the data (How?)
•Pre-process the data (How?)
• Interpret the results (What are you looking at?)

This is a slide to illustrate the “steps” required to use PCA or any 
other MVA method.



Proper ToF-SIMS Analysis 
Requires:

• Good experimental plans (controls)
• Proper sample preparation
• Careful data collection
• Consistent data calibration
• Sound understanding of the 

fundamentals of mass spectral analysis
• Knowledge of how to properly use the 

available tools to help with the analysis

One should always plan carefully when doing any experiment.  This is 
particularly important when using ToF-SIMS.  Controlling extraneous 
variables and sources of potential variation within a data can be critical to 
the success of an experiment.

Remember MVA methods are just tools, you still need to understand the basics 
of mass spectral analysis.



Plan
• What is the 

question 
you want 
to 
answer?

• What 
samples 
do you 
need to 
answer 
that 
question?

• How many 
samples/ 
replicates 
do you 
need?

Remember PCA will find the main differences 
between any samples

If you input garbage in           

 You will get garbage out!!!

If you put garbage in…you get garbage out.  This slide is to remind 
you that you need to plan your experiments carefully.  



Experimental Design/Data 
Collection

•Not all systems are well defined, but 
your experimental design can be:
– Think about what you want to learn 

from SIMS
– Simplify the number of variables you 

are dealing with per experiment
– Plan appropriate controls
– Run enough replicates to determine 

reproducibility
• Homogeneous => 3 to 5 spots on 2 

samples
• Non-homogeneous => 5 to 7 spots on 

3 to 5 samples

Planning your experiments properly and limiting the number of 
variables that are changing can allow you to pull out information 
from your PCA results that can help you interpret and understand 
your data set.  For this you will need to run appropriate controls 
and collect enough data to adequately model the variance in your 
system.

This is a very important point.  MVA methods are statistically based 
methods.  You must acquire enough data to make sure your 
results are statistically significant.  For homogenous samples 
(very reproducible spectra) 3 to 5 spectra across 2 samples (6 to 
10 spectra total per sample type) is usually sufficient.  For non-
homogenous samples (where the spectra vary a lot), you need to 
take more data.  Usually 5 to 7 spots across 3 to 5 samples is 
sufficient (15 to 35 spectra total per sample type).  It is a good 
idea to repeat your experiments at least twice on separate days.

It is also important to always use 95% confidence limits when plotting 
PCA scores. This can help determine the significance of the 
separation seen between samples.



SAMs – typically very 
homogeneous

• Different 
chain length 
SAMs

• 6 spectra per 
chain length

• Most data 
points 
overlap 
showing high 
reproducibili
ty
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This is an example of very reproducible spectra.  The data shown is 
from a series of alkane thiol monolayers on gold with chain 
lengths varying from 6 to 18.   6 spectra are shown for each 
sample.  As can be seen, for many of the samples the spectra 
almost completely overlap each other.  So 6 spectra per sample is 
sufficient for this type of sample.



Proteins adsorbed onto Mica: PCA
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Modified fromWagner & Castner, Langmuir 17 (2001) 4649.

This slide was adapted from the work of Matt Wagner and Dave Castner.  In 
this slide I have deleted most of the data points from the protein data set 
generated by Matt.  Using this set of data points one could look at the figure 
and conclude that all of the proteins are clearly separated and that the scatter 
in the data is minimal.

However if you at all the data points, the story changes....



This is the full data set from the previous slide.  It can be seen that 
most of the proteins are separated from each other.  However, 
there is significant scatter in the data from many of the proteins.  
For most biological samples (proteins, cells, tissues) you need to 
collect a lot of data in order to truly characterize the variance in 
the systems and extract useful, valid information.  Just a few data 
points is not sufficient.



Data calibration
•All spectra in the data set should be 

calibrated to the same peak set
–Be consistent

•Include a high-mass peak if possible
–This will increase the accuracy of 

identifying high mass peaks

•Always double check autocalibration 
functions
–They can make mistakes

Once the data has been collected, it must first be calibrated before applying 
PCA. Calibration is included as a step to successful PCA because it is 
important that all the spectra within a sample set are calibrated properly 
and in the same way.  To aide in the accuracy of high-mass peak 
identification it is important to include a high mass peak in the 
calibration. Of course it is important to know the identity of any peak 
used in a calibration set. You cannot just guess. To be most accurate, 
calibration should be done by hand. Autocalibration routines often do not 
work very well. Calibration should be verified by checking the spectra. 
This is illustrated on the next slide



Initial Calibration
After Checking Calibration 
to assure consistency

Calibration example

This slide shows an overlay plot of several spectra that have all been
calibrated with the same peak set, using the same criterion of keeping the
error in the calibration below 10ppm. As seen in the figure on the left,
even though the spectra were all calibrated in the same way, there is
significant scatter in the peak positions. After rechecking the calibration it
was noted that some spectra were not properly calibrated. The figure on
the left shows the same spectra after rechecking the calibration for all
spectra. It can be seen that all the spectra overlap as would be expected for
this mass region.
If this were not corrected, errors could be made in placing the integration
limits for the peaks in the data set, and variance could be introduced into
the peak areas that is not due to real sample differences.



Peak Selection-Which Peaks should you select?
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There can be hundreds of peaks in a set 
of TOF-SIMS spectra.

Each Mass Range... Contains ... Peaks!

Once the data has been calibrated one has to decide which peaks to include
in the data matrix. There are some programs that can read in an entire
spectrum for PCA. In this case the entire data set is considered by PCA.
Yet, there are cases where including all the peaks in a set of spectra can
confound the PCA results and mask sample differences that are
overwhelmed by substrate or matrix affects.
There can be hundreds of peaks within any given spectrum. The figures
above show an overlay plot of several spectra from different chain length
self assembled monolayers. As seen in the figures there are a lot of peaks
throughout the entire spectrum Many of these peaks can be seen to be
unique to on sample type (different colors).
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-Peak list must include all peaks 
across all samples in the data set
-Start with all peaks and then reduce 
the data set based on information 
gained and logical hypotheses 

-Spectral overlay is very useful

-That way you can see peaks 
that may only be present in 
one sample versus another

Peak Selection-Which Peaks should you select?

When starting with a given set of data, how many peaks should be
included in the data matrix? All? Only some?
When starting with a data set it is often best to start by selecting all the
peaks within a given set of criteria. For example all the peaks above a
given intensity or background level could be selected. Selecting more
peaks from the beginning can save time in the long run since selecting
peaks and adjusting integration limits can be time consuming. If later in
the analysis it is determined that some peaks are not necessary, they can
always be removed from the data matrix. Whereas if the peaks were not
selected in the original data set, one would have to go back to the original
data to get the peak areas.

If you do select only a few peaks from a given set of spectra, the reason for
the peak selection should be understood and stated when reporting the
results.

Make sure you include “key” peaks in your peak set. For example if your
sample set contains surfaces that produce unique peak signatures, make
sure these peaks are included in your selected peaks. This may seem
obvious, but can be easily overlooked.

Since the same peak set must be used for all spectra that are to be used in
PCA, it is useful to do peak selection from overlaid spectra. This allows
the user to see peaks from all spectra on the same axis and helps avoid
missing peaks that only show up in the spectra from 1 sample type within
the set.



This peak is 
unique to the 
light blue and 
red samples

Two distinct peaks

-To keep high-mass 
resolution of TOF-
SIMS you need to 
select individual 
peaks

-Manual peak 
selection is 
recommended

-It is time 
consuming, but not 
prohibitive

Peak Selection Continued

Though some programs contain routines to automatically select peaks
from a spectrum, it is recommended to do peak selected manually. This
will make sure that all the necessary peaks are properly chosen. Also most
automatic selection routines are not able to set proper integration limits for
the peaks. This can cause problems with PCA since improper peak
integration limits mean that the data input into PCA is not an accurate
representation of the spectra differences.



Carefully Set Integration Limits
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C3H6If your software allows 
you to set integration 
limits manually:

•Overlay spectra 
so you can set 
limits properly 
for all samples
•Set the limits 
tightly around 
the peaks
•Set all limits 
consistently

It is important to carefully set all peak integration limits. As seen in the
figure above, there are clearly 3 peaks in this mass region. The two peaks
on the right side of the figure overlap partially. To minimize integration of
the overlapping regions it is necessary to set the peak integration limits in
tightly around each peak. Since this is necessary for overlapping peaks, it
should be done for all peaks. This will assure consistent, accurate
measurement of all peak areas.

Checking peak integration limits can be time consuming, but is necessary
for accurate measurement of peak areas.



Data Pretreatment
• Typical data pretreatments include

– Normalization
– Centering
– Scaling

• Pretreatments are done in an attempt to 

maximize differences due to sample 
differences and minimize differences from other 
sources

• Know the assumptions being made
– Are they valid?

Before applying MVA methods such as PCA to a data set, it is common to
preprocess the data. This is done in order to assure that the differences
found in the data set are from true sample differences, and not simply due
to differences in the scale or means of the variables included in the data
set.

All data preprocessing methods carry with them a set of assumptions.
Even by doing no preproccessing you are assuming that the raw data
intensities are the best representation of the sample set variation.
Whichever method of data preprocessing is chosen, it is important to
understand the assumptions being made with the method, and to know
whether the assumptions made are valid.



PCA data Pretreatment

• No standards have been set for data 
pretreatment

• Some common trends include
– normalizing the data (many different ways)
– Square root transform or divide by the square 

root of the mean and then mean center for 
TOF-SIMS spectra

– Poisson scaling or square root transformation 
for TOF-SIMS images

This slide summarizes some general trends for data pre-processing, 
however no real standards have been developed.



Normalization
• Data normalization helps account for differences 

in the data due
– topography
– sample charging
– instrumental conditions

• Many different methods are commonly used
– Total intensity
– Sum of selected peaks
– Highest peak in spectrum
– User selected peak
– Total intensity minus H and contaminants

• Know assumptions being made
• Understand that normalization removes information from 

the data set

Data normalization is probably one of the most common preprocessing
methods. Normalization is done to account for differences in the data that
are due to topography, sample charging, and instrumental conditions.
There are many different ways to normalize a set of data. These include
normalizing to the total intensity, to the sum of the intensities of the
selected peaks, to the highest peak in the spectrum, to a user selected peak,
or to a given combination of peaks. Each of these methods brings with it a
set of assumptions. For example if you normalize a set of data to the total
intensity of each respective spectrum, you are assuming that the total
intensity of the spectra does not contain useful chemical information about
the samples. This may or may not be true for a given set of data. No matter
what normalization method is used, normalization removes information
from the data set.



Normalization
• Data normalization helps account for differences 

in the data due
– topography
– sample charging
– instrumental conditions

• Many different methods are commonly used
– Total intensity
– Sum of selected peaks
– Highest peak in spectrum
– User selected peak
– Total intensity minus H and contaminants

• Know assumptions being made
• Understand that normalization removes information from 

the data set

There are many different ways of normalizing a data set. Normalization is
typically done by dividing or multiplying the values in the data matrix by a
given number or set of numbers. Some typical ways of normalizing 

TOFSIMS
data include dividing by the total intensity, the sum of selected
peaks, the highest peak, or to a user selected peak for the given spectrum.
When using a single peak for spectrum normalization, care should be
taken in the selection of the peak. It is possible that by choosing the wrong
peak, one may introduce random variation into the data set that would be
undesirable.

The choice of data normalization is likely to depend on the data set. If
most all peaks have been selected from a given set of spectra, then
dividing by the total intensity may be the best choice for normalization. If
for some reason, only a few selected peaks have been chosen for the data
set, then normalizing by the sum of selected peaks may be the best choice
to accentuate the differences between the selected variables.



Mean centering

• Mean centering
– Subtracts the mean of 

each column (variable) 
from each column 
element 

– Centers data so that all 
variables vary across a 
common mean of zero

The many peaks across a set of TOF-SIMS spectra have a wide range of
different intensities. This means that the mean value for any given peak
intensity will likely be different for each peak. If one were to use PCA to
analyze the data from these types of peaks(variables), PCA would then
likely find differences across the data set due to the means of the variables
and not the relative variation between the variables.

Mean centering helps avoid this problem by subtracting the mean of each
variable from each measurement for the given variable. This results in a
data set where all the variables vary across a common mean of zero. This
allows looking a the relative intensity differences of the peaks and not just
differences in the means.



Scaling

• Scaling attempts to account for differences in 
variance scales between variables
– Poisson scaling (takes into account Poisson noise 

structure that is often seen for SIMS data)
– Dividing by the square root of the mean
– Square root transform
– Many others

• Need to know why you are using a given method
• Need to understand assumptions

– Are the assumptions valid?

Data scaling is done to account for differences in the variance scales
between variables Normalization can be considered a scaling operation
since with normalization we are dividing or multiplying by some value to
adjust for unwanted variances in the data. One common scaling method
used with PCA is autoscaling. Autoscaling is done by dividing a mean
centered data set by the standard deviation of each column. This results in
a data set where all variables vary between +1 and -1. Autoscaling is
commonly used when data from different measurement methods are
combined into one data set and one wants to correct for differences in the
absolute variance scales of the different methods.

There is still some debate on whether or not SIMS data should be scaled
and what method is best to use. Some argue that since the intensity of
peaks in a TOF-SIMS spectrum decreases with increasing mass, simply
due to the characteristics of the SIMS process and instrumentation, that the
data has built in differences in variance scales and should be autoscaled or
log scaled. Others argue that regardless of the differences in intensity
across a spectrum, all the data comes from the same instrument and
therefore does not need autoscaling.

For TOF-SIMS images there is evidence that accounting for the Poisson
nature of the noise in the data gives better results from PCA processing.
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The following few slides illustrate the affects that data preprocessing can
have on PCA processing of TOF-SIMS data.
The data presented here comes from a set of spectra taken from mixed
monolayers of decanethiol (C10) and octadecanethiol (C18). The
monolayers were assembled from different solution percentages of the two
thiols for >24 hours. This long assembly time assured that the resulting
monolayers were most likely in a completely assembled, ordered layer.
Typical peaks for these monolayers include (M= HS(CH2)nCH3):
C10 C18
M-H 173.14 285.26
AuM 371.11 483.24
Au2[M-H] 567.07 679.196
Au[M-H]2 543.24 767.5

The plots shown in these and the subsequent figures show the PC1 scores
(upper plot) plotted against the sample number. Since the samples are
organized with increasing percentage of C10 thiol, the x-axis can be
considered as plotting the increase in the C10 percentage in solution.
The data shown on this slide was normalized to the sum of selected peaks
of the respective spectrum and then mean centered.
As seen in the scores plot PCA is able to separate out some sample
concentrations, but many of the samples still overlap.
As would be expected the molecular ion clusters for the C10 thiol
correspond with higher percentages of C10 thiol (samples with positive
scores), and the molecular ion clusters for the C18 thiol correspond with
higher percentages of C18 thiol (lower percentages of C10, negative
scores). It is noted however that many of the low mass peaks have higher
loading values than the high mass molecular ion clusters.
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SAMs
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The data shown on this slide shows this same data set normalized to the
total intensity of each spectrum and then mean centered. As seen in the
scores plot, the sample separation is similar to that seen on the previous
slide, but the scatter within each sample group has increased significantly.
The loadings only showed minor changes across the peak set.



Example:
Mixed 

C10 C18 
SAMs

-Normalized 
Sum of 
selected peaks
-log10 
transformed
-mean 
centered

This slide shows PCA of the C10/C18 data set after normalization to the
Sum of selected peaks, log10 transformation of the data and then mean 

centering.
Log10 transformation was done to equalize the scale of the peaks across
the spectrum.
The scores and loadings plots for this data set show distinct changes. As
seen in the scores plot, the samples from each solution concentration can
clearly be separated along the PC1 axis.
Looking at the loadings plot reveals that the direction of the peak loadings
have not changes, but the absolute value of many of the peaks have
changed. Most notably, the loadings values of the high mass peaks relative
to the low mass peaks have increased significantly.
This shows that by reducing the dynamic range of the data, Log10
transformation accentuates the influence of the lower intensity, high mass
peaks. In the case of this mixed monolayer data, this allowed better
separation of the samples since most of the high mass peaks are highly
characteristic of the C10 and C18 thiols.



PCA Data Display and 
Interpretation

The following slides will cover the basics of PCA data display and 
interpretation.



Plotting Scores
• Plotting software may vary
• It is easiest to interpret data in 1 dimension at a time

– Plot PC vs Sample
– If samples vary in systematic way you can plot PC vs 

variable of interest

• Sometimes it is necessary to plot 2 PCs against each 
other to see sample separation

• Always show % variance captured for each PC
• Always show where zero is
• Use 95% confidence limits to show significance of 

sample separation

There are many different ways of plotting the scores from PCA. Each
software package provides different options for how scores plots can be
made. It is often common to plot score values from 2 PCs against each
other. With these types of plots you will be looking at how the samples are
similar or different along 2 PC axes. For some data sets, this type of plot is
necessary to see any separation between samples.
For many data sets however, it is easier to look at 1 PC at a time. This can
be useful for data sets where the sample set is organized in order of
increasing treatment time or concentration. Plotting a given PC against the
sample number, or the variable of interest allows monitoring how the
samples change due to this variable.
Whichever format is used for creating the PCA scores plots, it is important
that the axes are labeled properly. Always include the PC number and
percent variance captured for a given axis. It is also useful to clearly show
where the zero line is along the axes. If possible it is useful to show the
95% confidence limits for each of the sample groups in the scores plots
(see Wagner, M. S.; Castner, D. G. Langmuir 2001, 17, 4649-4660).



 

PCA Scores Example

% Variance is shown

PC scores are plotted against sample number

95% confidence limits 
are shown

Zero line is clearly shown

The figure above shows an example of a scores plot. As seen in the figure,
the scores in this example are plotted against the sample number. The PC
axis is clearly labeled with the PC number and the percent variance
captured. The score values are plotted along with the 95% confidence
limits, and the zero line is clearly drawn on the figure. Plotting the scores
in this way makes it easy to see that the samples in the plot are clearly
separated along the PC1 axis.



PCA Loadings

• Plotting software may vary
• It is easiest to interpret data in 1 dimension at 

a time
– Plot PC vs m/z

• This makes it so the loadings look more like a mass 
spectrum

•Always show % variance captured for each PC
•Only label highest loads to maintain clarity

– You can explain other peak loadings in the text of 
your paper or report

When plotting PCA loadings for TOF-SIMS data it is useful to plot the
loadings versus m/z. This makes the loadings look more like a mass
spectrum and allows easier interpretation (since a peak at m/z 196 will
appear at m/z 196). Many PCA software packages do not plot the loadings
in this way. Most of them plot the loading versus variable number. These
types of plots are not visually pleasing and can lead to confusion if not
labeled properly.
Loadings plots are most easily interpreted by plotting 1 PC at a time
regardless of how you plotted your scores plots.
As with the scores plots it is important to label all loadings plot clearly
including the PC number and the percent variance captured. To maintain
clarity in the plot it is best to only label the peaks with the highest loadings
in the plot. You can explain other trends in the data in the text of your
paper or report.



Lipids and 
Lipid
fragments

Hydrocarbon
fragments

PCA Loadings

% variance is shown

Loadings are plotted versus m/z

Highest 
Loadings 
are labelled

Descriptor is added to 
highlight major 
differences

This slide shows an example PCA loadings plot. As seen in the figure, the
loadings are plotted against m/z. The PC axis is clearly labeled. Peak
labels are provided for the peaks with higher loadings values. It can also
be seen that a general descriptor has been placed on either side of the PC1
axis to summarize the types of peaks seen on each side.



PCA: Interpretation

•A note on negative scores and loadings
– Do not be afraid of negative numbers
– +/- have no intrinsic meaning
– Only important to keep + and – scores and 

loadings together

This slide is just to enforce the concept that the + and – on PCA 
score and loadings axis do not have any specific meaning. They 
are only important to keep positive scores with positive loadings 
and negative scores with negative loadings.  



PCA: Interpretation

x (-1)

In this example I show that the data on the left, is exactly the same 
as the data on the right, with the exception that the data on the 
right has been multiplied by -1.  This does not change the 
relationship between the scorse and loadings.  It is however 
important to remember that if you multiply the scores by -1 you 
must also multiply the loadings by -1.



PCA: Interpretation

• Scores and Loadings are interpreted in Pairs
– PC1 scores with PC1 loadings
– PC2 scores with PC2 loadings 
– Etc...

• Samples with high positive scores on a given 
PC correspond with variables with high 
positive loadings

•This means that in general samples with high 
positive scores on a given PC will have 
higher relative intensities for variables with 
high positive loadings on the same PC

Interpretation of PCA results is done using the scores and loadings plots
together. You cannot interpret PCA results by looking at either one alone.
This is because the two plots contain complimentary information and
either one without the other is incomplete. For example you can see clear
separation between samples on a scores plot, but without looking at the
loadings you will not know which peaks are responsible for the separation
seen. When looking at the scores and loadings it is important to make sure
you have the two plots properly matched up (PC1 scores with PC1
loadings, etc).
The rules for interpreting PCA scores and loadings plots can be
summarized as follows:
Samples with positive scores on a given PC axis are positively correlated
with variables with positive loadings on the same PC axis. Samples with
negative scores are positively correlated with variables with negative
loadings. This means that, in general, samples with positive scores will
have higher relative intensities for peaks with positive loadings than
samples with negative scores. The opposite is also true, samples with
negative scores will, in general, have higher relative intensities for peaks
with negative loadings.
It is also true that samples with positive scores are negatively correlated
with variables with negative loadings and that samples with negative
scores are negatively correlated with variables with positive loadings.
It is important to note that since PCA looks at differences in the relative
intensity of variables, even if a variable is negatively correlated with a
given set of samples, it does not mean that the value of that variable for
those samples is necessarily zero. It just means that those samples have a
lower relative intensity than samples that are positively correlated with the
variable.



PCA of Methyl 
SAM series
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This slide shows a more complex example where more than one trend is
reflected in the scores and loadings plots. This example is shown to
illustrate the importance of looking back at the original data to verify the
trends seen in the PCA plots.
The slide above shows the PC1 scores and loadings plots from a set of
methyl terminated self-assembled monolayers with varying chain lengths
(from C6 to C18). It can be seen that the PC1 score values increase with
increasing chain length with one clear outlier. The C9 thiol samples are
seen to have significantly higher scores than the other samples and clearly
do not follow the general trend. Looking at the loadings plot it is noted
that the positive loadings are dominated by the peak at m/z = 73
(indicative of PDMS). There are also some low mass hydrocarbons that
have positive loadings. Based solely on the trends seen in the scores plot,
and what we know about interpreting scores and loadings, it would be
logical to assume that if we looked at the original data for the peak at m/z
= 73 we would see that the C9 samples would have the highest relative
intensity followed by the C18, C16/C15, C14 and so forth. We might also
expect this to be true if we plotted on of the hydrocarbon peaks (C9 would
have the highest relative intensity followed by C18, C15/C16, etc).



Here we seen the original, normalized data for the peak a m/z = 73 (top bar
chart) and m/z = 57 (bottom bar chart). As seen in these bar charts, the
peaks do not follow the assumed trends. Why is this? It appears that PC1
is tracking two major trends in the data. The first is the PDMS
contamination on the C9 sample. The relative intensity of the peak at m/z
= 73 is clearly orders of magnitude higher than the other samples. This is
also true of other PDMS related peaks. PCA looks for variance in the data
set and this is clearly a large source of variance. At the same time there is a
large source of variance from the changes induced by the increasing chain
length of the thiols. This is clearly seen in the bar chart for the
hydrocarbon peak at m/z = 57. So PC1 is capturing a combination of the
two sources of variation.
Hopefully this example has shown why it is important to actually check
the original data and not just assume that the relative intensities of peaks
highlighted in the loadings plots will follow the trends you expect to see.
Most of the time they will, but you need to check!
One important thing to note is that checking the original data against the
PCA results is not a simple straight forward task for PCs greater than PC1.
For PC1 one can simply plot the data values from the matrix that was
entered into the PCA. For PCs greater than PC1, you will need to subtract
previous PCs from the data matrix before plotting the “original data” since
this is what PCA does when calculating each PC.
For example the data analyzed to find PC2 is the original data matrix
minus PC1. The data analyzed to find PC3 is the original data matrix
minus PC1 and PC2 and so forth.



PCA Interpretation Continued
•Scores Plots

–Samples with similar scores are similar 
(clustered together)

–Samples with very different scores are 
different (separated from each other)

•Scatter in the scores for a given sample 
type suggests inhomogeneities in the 
sample

•Tight grouping of scores for a given 
sample suggests a homogeneous 
surface

PCA scores plots can provide several pieces of information about a sample
set. First of all the scores can show the relationship between samples (are
they similar or different). Samples with similar score values implies that
the samples are similar based on the variables input into PCA. For 

TOFSIMS
data this means that samples that are clustered together in a scores
plot are spectrally similar. Conversely, samples with very different scores
values are spectrally different from each other.
Scores can also show the reproducibility of the spectra within a given
sample group. For example, scatter in the scores values for a given set of
spectra suggests there are inhomogeneities within th samples Tight
clustering of spectra from a given sample group suggests the sample
chemistry was homogeneous
Therefore the scores can be used to look for sample difference and to
determine reproducibility within sample groups.



PCA Scores Grouping

Low Scatter = 
homogeneous 
surface

High Scatter = 
in homogeneous 
surface

The scores plot above shows the scores from a data from a polymer with
and without adsorbed fibrinogen. As seen in the figure, the red dots
representing the scores for the samples with adsorbed fibrinogen are all
lined up with very low scatter, whereas the blue dots from the bare
polymer show higher scatter suggesting inhomogeneities on the surface.
It should be noted that if there is a lot of scatter in the data, you will need
to collect more data to be confident of any sample separation seen from
PCA.



Software Packages
•Commercial

–SAS
–SPSS
–S Plus
–PLS Toolbox (requires Matlab)

•Open Source or Free
–NB Toolbox (requires Matlab)

• http://mvsa.nb.uw.edu/

–R Project
–Octave
–Scilab

There are many programs that can be used to run PCA or other MVA 
methods.  A few are listed on this slide.



Summary
• What are Multivariate statistics?

– Powerful Tools for
• Dealing with large data sets
• Removing user bias

• Finding patterns and trends
• Building models

– Prediction
– classification

– Hypothesis Generators
– NOT a substitute for good scientific 

methodology
• Well designed experiments
• Replicates and controls
• Validation of hypotheses

PCA is a powerful data analysis tool. Utilizing this power properly
requires good experimental design, and understanding of how PCA works.
As with most experimentation, time and thought put into the planning of
the experimental design will greatly increase the possibility of learning
new and useful insights from the experiment results.
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• mvsa.nb.uw.edu
– Tutorials
– References
– Links
– Software
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