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Goal for Data AnalysisGoal for Data Analysis

Concise and accurate 
chemical description
of surface chemistry



Data Processing: ChallengesData Processing: Challenges
 Data overload

– Large spectral and image datasets

 Use of Multivariate Analysis (MVA)
– When is it appropriate?
– Appropriate experimental design?
– Appropriate pre-processing?
– Which MVA method is best?
– Validation of MVA methods?
– Accurate interpretation with physically 

meaningful results?



Data Overload: Too many spectra!Data Overload: Too many spectra!

Number
of

Pixels

Number of Peaks

Number of Pixels
How do we compare multiple spectra on the 

basis of multiple peaks in each spectrum?



Data OverloadData Overload
 Generating data is (relatively) easy…

Efficiently processing the data 
is the challenge!

 Many peaks in a spectrum…
 Peak intensities are correlated…
 Need to process spectra rapidly…
 Images present even more challenges…

− Low signal-to-noise...
− Large number of pixels…
− Comparison of multiple images…



Multivariate Analysis BenefitsMultivariate Analysis Benefits

 Can simplify data analysis…

 Many examples of MVA application to SIMS 
data…
– See Surf. Sci. 570: 78 (2004)

 Requires good understanding of the 
analytical tool…



MVA: Not a Black Box!!!MVA: Not a Black Box!!!

MVA

Garbage In!

Garbage Out!

MVA is:
 An important and useful tool for saving the analyst time and 

money.
 An important and useful tool for maximizing the use of your 

data!

MVA is not:
 A “black-box” tool for data 

analysis.
 A substitute for a skilled analyst.
 A substitute for poor experimental 

design.
 “Magic”.



Before MVA: Data Pre-processingBefore MVA: Data Pre-processing
 Many types of pre-treatment possible:

− Peak selection
− Normalization (this is a type of scaling)
− Mean-centering, Autoscaling, Log-scaling, Mean-

scaling, Poisson-scaling, etc.

 All data pre-treatments involve assumptions about 
the data!

 No standard method exists to determine which is 
best!
− Trial-and-error approach widely used…

 Correct choice depends on the hypothesis being 
tested (and what assumptions you’ve made about 
the data)!

See talk by B. Tyler, Thursday 15-Sept, 11:20am



MVA ToolboxMVA Toolbox
 Pattern Recognition/Factor Analysis

– Principal Component Analysis
– Multivariate Curve Resolution

 Classification
– Neural Networks
– Cluster Analysis

 Regression
– Principal Component Regression
– Partial Least Squares Regression

 Image Analysis



MVA ProcessMVA Process
Experimental design

Data pre-processing

Multivariate analysis

Check with raw data

Interpretation of MVA Results



Pattern RecognitionPattern Recognition



PPrincipal rincipal CComponent omponent AAnalysisnalysis

 PCA decomposes data (X) into scores (S) and 
loadings (L)

 PCs capture orthogonal directions of variance

 PCA commonly used for SIMS data analysis

 For more information: 
– Chemom. Intel. Lab. Syst. 2: 37 (1987)
– J.E. Jackson A User’s Guide to Principal 

Components (1991)

X = SLT + E



PCA is axis rotationPCA is axis rotation
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Adsorbed ProteinsAdsorbed Proteins

No unique, identifying peaks are present in the 
spectra of different adsorbed proteins.

Langmuir 17: 4649 (2001)



Data Pre-processingData Pre-processing
 Amino acid-related peaks selected from 

positive ion spectra (37 total).
– Inclusion of all peaks in 0 ≤ m/z ≤ 200 

prevented discrimination between 
proteins.

 ToF-SIMS spectra normalized to sum of 
selected peaks.
–Assumption: Relative peak intensities are 

chemically important.

 Mean-centered
–Assumption: Variance around mean is 

chemically important.



PCA Reduces DimensionalityPCA Reduces Dimensionality
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PLL-g-PEG MonolayersPLL-g-PEG Monolayers

Nb2O5

OCH3

NH3
+
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Anal. Chem. 76: 1483 (2004)

Polymers adsorb 
electrostatically onto

negatively charged Nb2O5

Grafted PEG chains

Poly(lysine) backbone



Data Pre-processingData Pre-processing

 All peaks selected in 0 ≤ m/z ≤ 300 range 
from positive ion spectra.

 ToF-SIMS spectra normalized to sum of 
selected peaks.
– Assumption: Relative peak intensities are 

chemically important.

 Mean-centered
– Assumption: Variance around mean is 

chemically important.



PC 2 Shows Trends w/ PEG MWPC 2 Shows Trends w/ PEG MW

Decreasing
PEG MW



Loadings Assist InterpretationLoadings Assist Interpretation
59: C3H7O+

103: C5H11O2
+ 

Methoxy endgroup-related peaks 
load positively

(low PEG MW)

45: C2H5O+ 73: C3H5O2
+71: C4H7O+ 

87: C4H7O2
+ 

89: C4H9O2
+

43: C2H3O+

Ethylene glycol-related peaks 
load negatively

(high PEG MW)



Raw Data Confirms PCA ResultsRaw Data Confirms PCA Results
ME Ratio = 

Σ Methoxy Peaks

Σ EG Peaks



PCA RemindersPCA Reminders
• PCA captures orthogonal directions of 

variance in the pre-processed data.

• Scores show the relationship between 
samples.

• Loadings show the relationship between the 
raw data and the PCA results.

• Check the PCA results with the raw data 
(especially later PCs)!



RegressionRegression



Partial Least Squares RegressionPartial Least Squares Regression

 PLSR correlates an independent variable (X) 
with a dependent variable (Y) via regression 
coefficients (B).

 PLSR maximizes correlation between X and Y

 Cross-validation important for selecting 
number of factors retained

 For more information: 
–Anal. Chim. Acta 185: 1 (1986)

Y = BX + E



Plasma-deposited TetraglymePlasma-deposited Tetraglyme

Langmuir 19: 1692 (2003)

H3CO—CH2-CH2-O—CH3
4

 Plasma deposition of tetraglyme monomer 
results in PEG-like plasma polymer.

 Reactor power determines protein resistance 
(higher power = more protein adsorption).

 Combination of positive ion ToF-SIMS and 
XPS measurements

 What differences in surface chemistry result 
in decreased protein resistance?



Data Pre-processingData Pre-processing
 All peaks selected in 0 ≤ m/z ≤ 250 range.

 ToF-SIMS spectra normalized to most intense 
peak.
– Each spectrum  within the range [0 1].

 XPS data concatenated onto ToF-SIMS 
spectra.
– All XPS data within the range [0 1].

 Mean-centered
– Assumption: Variance around mean is 

chemically important.



RegCoeffs Explain Related FactorsRegCoeffs Explain Related Factors
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PLSR RemindersPLSR Reminders
 PLSR maximizes correlation between 

independent and dependent variables for 
model dataset.

 Regression coefficients show how ToF-SIMS 
data relates to dependent variable.

 Cross-validation is critical for selection of 
appropriate number of factors, but model 
dataset must be appropriate for test dataset.

 Check the PLSR results (i.e. regression 
coefficients) with the raw data.



Image AnalysisImage Analysis



Multivariate Curve ResolutionMultivariate Curve Resolution

 MCR resolves the dataset (X) into pure 
component spectra (S) and concentration (C) 
vectors.

 Number of components and initial guess 
required for C or S.

 Alternating least squares with non-negativity 
constraints typically used.

 For more information: 
– Chemom. Intel. Lab. Syst. 73: 105 (2004)

X = CST + E



Etched Polymer (PMMA) FilmEtched Polymer (PMMA) Film
Total Ion Image Si+ Image C4H5O+ Image

Etched region

 Image field of view: 256 µm x 256 µm,
256 x 256 pixels

 Etched region has 24% of total pixels in image.
 Etched region has 2% of total counts in image.

S/N = 3.8 S/N = 34.0



Example: Etched Polymer FilmExample: Etched Polymer Film

 Etched region has 24% of total pixels in image.
 Etched region has 2% of total counts in image.

Etched Region Non-etched Region

Total counts: 5.6 x 105 Total counts: 2.8 x 107



Data Pre-processingData Pre-processing
 All peaks selected in 0 ≤ m/z ≤ 150 range 

from positive ion image.

 ToF-SIMS dataset was scaled to minimize 
Poisson noise.
– Assumption: Noise in data governed by 

Poisson statistics.
– See Surf. Interface Anal. 36: 203 (2004)

 MCR calculated using a ones matrix for initial 
spectra guess (two components fit).

 MCR results back-scaled into original spectral 
space.



MCR: Poisson-scalingMCR: Poisson-scaling
Etched Region Non-etched Region

S/N = 3.9 S/N = 50.2
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MCR RemindersMCR Reminders
 MCR calculates “pure” concentration and 

spectrum vectors, subject to non-negativity 
and other constraints.

 MCR is reasonably robust to initial guess for 
C or S, but…

 MCR only fits the number of components you 
choose (choose well).

 Check the MCR results with the raw data.



Final ThoughtsFinal Thoughts



Remember MVA Design!Remember MVA Design!
Experimental design

Data pre-processing

Multivariate analysis

Check with raw data

Interpretation of MVA Results
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Please note that multivariate analysis simplifies the 
interpretation; it does not interpret the data for you. Also note 
the “careful application” – it is critical that MVA users 
understand the capabilities and limitations of MVA for 
interpreting SIMS data.



OpportunitiesOpportunities

* See talk by N. Winograd, Thursday 15-Sept, 9:40am

Growth
area

Sample
Preparation

Growth
area

Data
Processing

Relatively
mature*

Instrumentation

Data
Acquisition

Relatively
mature

Sample preparation = sectioning, cryopreservation, sugar-coating
Instrumentation = ion sources, MS, electronics, etc.
Data acquisition = automated data collection, large area imaging



Goal for Data AnalysisGoal for Data Analysis

Concise and accurate 
chemical description
of surface chemistry

We’d like to condense the SIMS spectra into something more compact and 
easier to interpret. “Accurate” includes statistically relevant.



Data Processing: ChallengesData Processing: Challenges
 Data overload

– Large spectral and image datasets

 Use of Multivariate Analysis (MVA)
– When is it appropriate?
– Appropriate experimental design?
– Appropriate pre-processing?
– Which MVA method is best?
– Validation of MVA methods?
– Accurate interpretation with physically 

meaningful results?



Data Overload: Too many spectra!Data Overload: Too many spectra!

Number
of

Pixels

Number of Peaks

Number of Pixels
How do we compare multiple spectra on the 

basis of multiple peaks in each spectrum?



Data OverloadData Overload
 Generating data is (relatively) easy…

Efficiently processing the data 
is the challenge!

 Many peaks in a spectrum…
 Peak intensities are correlated…
 Need to process spectra rapidly…
 Images present even more challenges…

− Low signal-to-noise...
− Large number of pixels…
− Comparison of multiple images…



Multivariate Analysis BenefitsMultivariate Analysis Benefits

 Can simplify data analysis…

 Many examples of MVA application to SIMS 
data…
– See Surf. Sci. 570: 78 (2004)

 Requires good understanding of the 
analytical tool…



MVA: Not a Black Box!!!MVA: Not a Black Box!!!

MVA

Garbage In!

Garbage Out!

MVA is:
 An important and useful tool for saving the analyst time and 

money.
 An important and useful tool for maximizing the use of your 

data!

MVA is not:
 A “black-box” tool for data 

analysis.
 A substitute for a skilled analyst.
 A substitute for poor experimental 

design.
 “Magic”.



Before MVA: Data Pre-processingBefore MVA: Data Pre-processing
 Many types of pre-treatment possible:

− Peak selection
− Normalization (this is a type of scaling)
− Mean-centering, Autoscaling, Log-scaling, Mean-

scaling, Poisson-scaling, etc.

 All data pre-treatments involve assumptions about 
the data!

 No standard method exists to determine which is 
best!
− Trial-and-error approach widely used…

 Correct choice depends on the hypothesis being 
tested (and what assumptions you’ve made about 
the data)!

See talk by B. Tyler, Thursday 15-Sept, 11:20am



MVA ToolboxMVA Toolbox
 Pattern Recognition/Factor Analysis

– Principal Component Analysis
– Multivariate Curve Resolution

 Classification
– Neural Networks
– Cluster Analysis

 Regression
– Principal Component Regression
– Partial Least Squares Regression

 Image Analysis

Pick the right tool for the job.



MVA ProcessMVA Process
Experimental design

Data pre-processing

Multivariate analysis

Check with raw data

Interpretation of MVA Results

Once you’re sure the answer makes sense mathematically, you can then 
interpret the results physically.



Pattern RecognitionPattern Recognition



PPrincipal rincipal CComponent omponent AAnalysisnalysis

 PCA decomposes data (X) into scores (S) and 
loadings (L)

 PCs capture orthogonal directions of variance

 PCA commonly used for SIMS data analysis

 For more information: 
– Chemom. Intel. Lab. Syst. 2: 37 (1987)
– J.E. Jackson A User’s Guide to Principal 

Components (1991)

X = SLT + E



PCA is axis rotationPCA is axis rotation
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Adsorbed ProteinsAdsorbed Proteins

No unique, identifying peaks are present in the 
spectra of different adsorbed proteins.

Langmuir 17: 4649 (2001)



Data Pre-processingData Pre-processing
 Amino acid-related peaks selected from 

positive ion spectra (37 total).
– Inclusion of all peaks in 0 ≤ m/z ≤ 200 

prevented discrimination between 
proteins.

 ToF-SIMS spectra normalized to sum of 
selected peaks.
–Assumption: Relative peak intensities are 

chemically important.

 Mean-centered
–Assumption: Variance around mean is 

chemically important.



PCA Reduces DimensionalityPCA Reduces Dimensionality
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PCA provides:
2) Quick comparison of multiple spectra on the basis of multiple peaks in 

each spectrum.
3) This shows that the spectra of the different proteins are different from each 

other.
4) This also shows the relative reproducibility of the spectra of the different 

proteins.
5) Loadings give insight into amino acid composition of the proteins (data not 

shown).



PLL-g-PEG MonolayersPLL-g-PEG Monolayers

Nb2O5

OCH3
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+
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Anal. Chem. 76: 1483 (2004)

Polymers adsorb 
electrostatically onto

negatively charged Nb2O5

Grafted PEG chains

Poly(lysine) backbone



Data Pre-processingData Pre-processing

 All peaks selected in 0 ≤ m/z ≤ 300 range 
from positive ion spectra.

 ToF-SIMS spectra normalized to sum of 
selected peaks.
– Assumption: Relative peak intensities are 

chemically important.

 Mean-centered
– Assumption: Variance around mean is 

chemically important.



PC 2 Shows Trends w/ PEG MWPC 2 Shows Trends w/ PEG MW

Decreasing
PEG MW

PC 1 showed trend with PEG graft density (not shown).
These scores are on PC 2, and show differences in methoxy headgroup 
surface concentration.



Loadings Assist InterpretationLoadings Assist Interpretation
59: C3H7O+

103: C5H11O2
+ 

Methoxy endgroup-related peaks 
load positively

(low PEG MW)

45: C2H5O+ 73: C3H5O2
+71: C4H7O+ 

87: C4H7O2
+ 

89: C4H9O2
+

43: C2H3O+

Ethylene glycol-related peaks 
load negatively

(high PEG MW)

Peaks from poly(L-lysine) (C5H10N+, 84) and Cs+ also load positively (i.e. 
correlated with low MW PEGs) due to thinner PEG layer.



Raw Data Confirms PCA ResultsRaw Data Confirms PCA Results
ME Ratio = 

Σ Methoxy Peaks

Σ EG Peaks

Note that this plot uses the raw data, not the data after PC 1 has been 
subtracted. Correlation of later PCs with the raw data may require the 
variance captured in PC 1 to be subtracted. This can be considered “filtering” 
high directions of variance out to look at more subtle features.



PCA RemindersPCA Reminders
• PCA captures orthogonal directions of 

variance in the pre-processed data.

• Scores show the relationship between 
samples.

• Loadings show the relationship between the 
raw data and the PCA results.

• Check the PCA results with the raw data 
(especially later PCs)!



RegressionRegression



Partial Least Squares RegressionPartial Least Squares Regression

 PLSR correlates an independent variable (X) 
with a dependent variable (Y) via regression 
coefficients (B).

 PLSR maximizes correlation between X and Y

 Cross-validation important for selecting 
number of factors retained

 For more information: 
–Anal. Chim. Acta 185: 1 (1986)

Y = BX + E



Plasma-deposited TetraglymePlasma-deposited Tetraglyme

Langmuir 19: 1692 (2003)

H3CO—CH2-CH2-O—CH3
4

 Plasma deposition of tetraglyme monomer 
results in PEG-like plasma polymer.

 Reactor power determines protein resistance 
(higher power = more protein adsorption).

 Combination of positive ion ToF-SIMS and 
XPS measurements

 What differences in surface chemistry result 
in decreased protein resistance?



Data Pre-processingData Pre-processing
 All peaks selected in 0 ≤ m/z ≤ 250 range.

 ToF-SIMS spectra normalized to most intense 
peak.
– Each spectrum  within the range [0 1].

 XPS data concatenated onto ToF-SIMS 
spectra.
– All XPS data within the range [0 1].

 Mean-centered
– Assumption: Variance around mean is 

chemically important.



RegCoeffs Explain Related FactorsRegCoeffs Explain Related Factors
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PLSR RemindersPLSR Reminders
 PLSR maximizes correlation between 

independent and dependent variables for 
model dataset.

 Regression coefficients show how ToF-SIMS 
data relates to dependent variable.

 Cross-validation is critical for selection of 
appropriate number of factors, but model 
dataset must be appropriate for test dataset.

 Check the PLSR results (i.e. regression 
coefficients) with the raw data.



Image AnalysisImage Analysis



Multivariate Curve ResolutionMultivariate Curve Resolution

 MCR resolves the dataset (X) into pure 
component spectra (S) and concentration (C) 
vectors.

 Number of components and initial guess 
required for C or S.

 Alternating least squares with non-negativity 
constraints typically used.

 For more information: 
– Chemom. Intel. Lab. Syst. 73: 105 (2004)

X = CST + E



Etched Polymer (PMMA) FilmEtched Polymer (PMMA) Film
Total Ion Image Si+ Image C4H5O+ Image

Etched region

 Image field of view: 256 µm x 256 µm,
256 x 256 pixels

 Etched region has 24% of total pixels in image.
 Etched region has 2% of total counts in image.

S/N = 3.8 S/N = 34.0



Example: Etched Polymer FilmExample: Etched Polymer Film

 Etched region has 24% of total pixels in image.
 Etched region has 2% of total counts in image.

Etched Region Non-etched Region

Total counts: 5.6 x 105 Total counts: 2.8 x 107



Data Pre-processingData Pre-processing
 All peaks selected in 0 ≤ m/z ≤ 150 range 

from positive ion image.

 ToF-SIMS dataset was scaled to minimize 
Poisson noise.
– Assumption: Noise in data governed by 

Poisson statistics.
– See Surf. Interface Anal. 36: 203 (2004)

 MCR calculated using a ones matrix for initial 
spectra guess (two components fit).

 MCR results back-scaled into original spectral 
space.



MCR: Poisson-scalingMCR: Poisson-scaling
Etched Region Non-etched Region

S/N = 3.9 S/N = 50.2
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MCR RemindersMCR Reminders
 MCR calculates “pure” concentration and 

spectrum vectors, subject to non-negativity 
and other constraints.

 MCR is reasonably robust to initial guess for 
C or S, but…

 MCR only fits the number of components you 
choose (choose well).

 Check the MCR results with the raw data.



Final ThoughtsFinal Thoughts



Remember MVA Design!Remember MVA Design!
Experimental design

Data pre-processing

Multivariate analysis

Check with raw data

Interpretation of MVA Results

Once you’re sure the answer makes sense mathematically, you can then 
interpret the results physically.
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