Simplifying the Interpretation of ToF-SIMS Spectra and Images using Careful Application of Multivariate Analysis

Matthew S. Wagner The Procter & Gamble Company wagner.ms@pg.com

SIMS XV September 13, 2005

Opportunities

Goal for Data Analysis

Concise and accurate chemical description of surface chemistry

Data Processing: Challenges

- Data overload
 Large spectral and image datasets
- Use of Multivariate Analysis (MVA)
 - When is it appropriate?
 - Appropriate experimental design?
 - Appropriate pre-processing?
 - Which MVA method is best?
 - Validation of MVA methods?
 - Accurate interpretation with physically meaningful results?

Data Overload: Too many spectra!

Data Overload

 Generating data is (relatively) easy...
 Efficiently processing the data is the challenge!

- Many peaks in a spectrum...
- Peak intensities are correlated...
- Need to process spectra rapidly...
- Images present even more challenges...
 - Low signal-to-noise...
 - Large number of pixels...
 - Comparison of multiple images...

Multivariate Analysis Benefits

Can *simplify* data analysis...

Many examples of MVA application to SIMS data...

- See Surf. Sci. 570: 78 (2004)

 Requires good understanding of the analytical tool...

MVA: Not a Black Box!!!

Garbage In!

MVA is not:

- A "black-box" tool for data analysis.
- A substitute for a skilled analyst.
- A substitute for poor experimental design.
- "Magic".

MVA is:

- An important and useful tool for saving the analyst time and money.
- An important and useful tool for maximizing the use of your data!

Before MVA: Data Pre-processing

- Many types of pre-treatment possible:
 - Peak selection
 - Normalization (this is a type of scaling)
 - Mean-centering, Autoscaling, Log-scaling, Meanscaling, Poisson-scaling, etc.
- All data pre-treatments involve assumptions about the data!
- No standard method exists to determine which is best!
 - Trial-and-error approach widely used...
- Correct choice depends on the hypothesis being tested (and what assumptions you've made about the data)!

See talk by B. Tyler, Thursday 15-Sept, 11:20am

MVA Toolbox

 Pattern Recognition/Factor Analysis Principal Component Analysis Multivariate Curve Resolution Classification Neural Networks - Cluster Analysis Regression Principal Component Regression Partial Least Squares Regression Image Analysis

MVA Process

Pattern Recognition

Principal Component Analysis

$X = SL^{T} + E$

- PCA decomposes data (X) into scores (S) and loadings (L)
- PCs capture orthogonal directions of variance
- PCA commonly used for SIMS data analysis
- For more information:
 Chemom. Intel. Lab. Syst. 2: 37 (1987)
 J.E. Jackson A User's Guide to Principal Components (1991)

PCA is axis rotation

Adsorbed Proteins

No unique, identifying peaks are present in the spectra of different adsorbed proteins.

Langmuir 17: 4649 (2001)

Data Pre-processing

- Amino acid-related peaks selected from positive ion spectra (37 total).
 - Inclusion of all peaks in $0 \le m/z \le 200$ prevented discrimination between proteins.

 ToF-SIMS spectra normalized to sum of selected peaks.

 Assumption: Relative peak intensities are chemically important.

Mean-centered

 Assumption: Variance around mean is chemically important.

PCA Reduces Dimensionality

PLL-g-PEG Monolayers

Grafted PEG chains

- Poly(lysine) backbone

Polymers adsorb electrostatically onto negatively charged Nb₂O₅

Anal. Chem. 76: 1483 (2004)

Data Pre-processing

- All peaks selected in $0 \le m/z \le 300$ range from positive ion spectra.
- ToF-SIMS spectra normalized to sum of selected peaks.
 - Assumption: Relative peak intensities are chemically important.
- Mean-centered
 - Assumption: Variance around mean is chemically important.

PC 2 Shows Trends w/ PEG MW

Loadings Assist Interpretation

Raw Data Confirms PCA Results

PCA Reminders

- PCA captures orthogonal directions of variance in the *pre-processed* data.
- Scores show the relationship between samples.
- Loadings show the relationship between the raw data and the PCA results.
- Check the PCA results with the raw data (especially later PCs)!

Partial Least Squares Regression

Y = BX + E

- PLSR correlates an independent variable (X) with a dependent variable (Y) via regression coefficients (B).
- PLSR maximizes correlation between X and Y
- Cross-validation important for selecting number of factors retained

For more information:
 - Anal. Chim. Acta 185: 1 (1986)

Plasma-deposited Tetraglyme

 $H_3CO - (CH_2 - CH_2 - O) - CH_3$

- Plasma deposition of tetraglyme monomer results in PEG-like plasma polymer.
- Reactor power determines protein resistance (higher power = more protein adsorption).
- Combination of positive ion ToF-SIMS and XPS measurements

 What differences in surface chemistry result in decreased protein resistance?
 Langmuir 19: 1692 (2003)

Data Pre-processing

- All peaks selected in $0 \le m/z \le 250$ range.
- ToF-SIMS spectra normalized to most intense peak.

- Each spectrum within the range [0 1].

- XPS data concatenated onto ToF-SIMS spectra.
 All XPS data within the range [0 1].
- Mean-centered

 Assumption: Variance around mean is chemically important.

RegCoeffs Explain Related Factors

PLSR Reminders

- PLSR maximizes correlation between independent and dependent variables for model dataset.
- Regression coefficients show how ToF-SIMS data relates to dependent variable.
- Cross-validation is critical for selection of appropriate number of factors, but model dataset must be appropriate for test dataset.
- Check the PLSR results (i.e. regression coefficients) with the raw data.

Image Analysis

Multivariate Curve Resolution

$X = CS^{T} + E$

- MCR resolves the dataset (X) into pure component spectra (S) and concentration (C) vectors.
- Number of components and initial guess required for C or S.
- Alternating least squares with non-negativity constraints typically used.
- For more information:
 Chemom. Intel. Lab. Syst. 73: 105 (2004)

Etched Polymer (PMMA) Film

Total Ion Image

Si⁺ Image

S/N = 3.8

$C_4H_5O^+$ Image

S/N = 34.0

Etched region

 Image field of view: 256 μm x 256 μm, 256 x 256 pixels

Etched region has 24% of total pixels in image.

Etched region has 2% of total counts in image.

Example: Etched Polymer Film

Etched Region Non-etched Region 10 10 41: C₃H₅⁺ 69: C₄H₅O⁺ 8 8 59: C₂H₃O₂ Intensity (x 10⁴ counts) 28: Si⁺ Intensity (x 10⁵ counts) 6 6 4 4 45: SiOH⁺ 15: CH3⁺ 2 2 0 25 25 50 75 0 50 75 100 125 0 100 125 150 150 m/zm/z Total counts: 5.6×10^5 Total counts: 2.8×10^7

- Etched region has 24% of total pixels in image.
- Etched region has 2% of total counts in image.

Data Pre-processing

- All peaks selected in $0 \le m/z \le 150$ range from positive ion image.
- ToF-SIMS dataset was scaled to minimize Poisson noise.
 - Assumption: Noise in data governed by Poisson statistics.
 - See Surf. Interface Anal. 36: 203 (2004)
- MCR calculated using a ones matrix for initial spectra guess (two components fit).
- MCR results back-scaled into original spectral space.

MCR: Poisson-scaling

Etched Region

S/N = 3.9

Non-etched Region

S/N = 50.2

MCR Reminders

- MCR calculates "pure" concentration and spectrum vectors, subject to non-negativity and other constraints.
- MCR is reasonably robust to initial guess for C or S, but...
- MCR only fits the number of components you choose (choose well).
- Check the MCR results with the raw data.
Final Thoughts

Remember MVA Design!

Acknowledgements

<u>Funding</u>

- National ESCA and Surface Analysis Center for Biomedical Problems (NIH Grant EB002027)
- National Institute of Standards and Technology

Collaborators

- D. Graham, D. Castner, University of Washington
- S. Pasche, M. Textor, ETH-Zurich
- M. Shen, T. Horbett, B. Ratner, University of Washington

Literature Cited

- Surface Science **570**: 78-97 (2004)
- Chemometrics and Intelligent Laboratory Systems
 2: 37 (1987)
- J.E. Jackson, A User's Guide to Principal Components, John Wiley & Sons: New York (1991)
- Analytica Chimica Acta **185**: 1 (1986)
- Chemometrics and Intelligent Laboratory Systems
 73: 105 (2004)
- Surface and Interface Analysis 36: 203 (2004)
- Langmuir **17**: 4649 (2001)
- Analytical Chemistry **76**: 1483 (2004)
- Langmuir **19**: 1692 (2003)

Simplifying the Interpretation of ToF-SIMS Spectra and Images using Careful Application of Multivariate Analysis

Matthew S. Wagner The Procter & Gamble Company wagner.ms@pg.com

SIMS XV September 13, 2005

Please note that multivariate analysis *simplifies* the interpretation; it does not interpret the data for you. Also note the "careful application" – it is critical that MVA users understand the capabilities and limitations of MVA for interpreting SIMS data.

Sample preparation = sectioning, cryopreservation, sugar-coating Instrumentation = ion sources, MS, electronics, etc. Data acquisition = automated data collection, large area imaging

Goal for Data Analysis

Concise and accurate chemical description of surface chemistry

We'd like to condense the SIMS spectra into something more compact and easier to interpret. "Accurate" includes statistically relevant.

Data Processing: Challenges

- Data overload
 - Large spectral and image datasets
- Use of Multivariate Analysis (MVA)
 - When is it appropriate?
 - Appropriate experimental design?
 - Appropriate pre-processing?
 - Which MVA method is best?
 - Validation of MVA methods?
 - Accurate interpretation with physically meaningful results?

Data Overload

 Generating data is (relatively) easy...
 Efficiently processing the data is the challenge!

- Many peaks in a spectrum...
- Peak intensities are correlated...
- Need to process spectra rapidly...
- Images present even more challenges...
 - Low signal-to-noise...
 - Large number of pixels...
 - Comparison of multiple images...

Multivariate Analysis Benefits

- Can *simplify* data analysis...
- Many examples of MVA application to SIMS data...
 - See Surf. Sci. 570: 78 (2004)
- Requires good understanding of the analytical tool...

MVA: Not a Black Box!!!

Garbage In![

Garbage Out!

MVA is not:

- A "black-box" tool for data analysis.
- A substitute for a skilled analyst.
- A substitute for poor experimental design.
- "Magic".

MVA is:

- An important and useful tool for saving the analyst time and money.
- An important and useful tool for maximizing the use of your data!

Before MVA: Data Pre-processing

- Many types of pre-treatment possible:
 - Peak selection
 - Normalization (this is a type of scaling)
 - Mean-centering, Autoscaling, Log-scaling, Meanscaling, Poisson-scaling, etc.
- All data pre-treatments involve assumptions about the data!
- No standard method exists to determine which is best!
 - Trial-and-error approach widely used...
- Correct choice depends on the hypothesis being tested (and what assumptions you've made about the data)!
 - See talk by B. Tyler, Thursday 15-Sept, 11:20am

MVA Toolbox

- Pattern Recognition/Factor Analysis
 - Principal Component Analysis
 - Multivariate Curve Resolution
- Classification
 - Neural Networks
 - Cluster Analysis
- Regression
 - Principal Component Regression
 - Partial Least Squares Regression
- Image Analysis

Pick the right tool for the job.

Once you're sure the answer makes sense mathematically, you can then interpret the results physically.

Pattern Recognition

Principal Component Analysis

$X = SL^{T} + E$

- PCA decomposes data (X) into scores (S) and loadings (L)
- PCs capture orthogonal directions of variance
- PCA commonly used for SIMS data analysis
- For more information:
 - Chemom. Intel. Lab. Syst. 2: 37 (1987)
 - J.E. Jackson *A User's Guide to Principal Components* (1991)

Data Pre-processing

- Amino acid-related peaks selected from positive ion spectra (37 total).
 - Inclusion of all peaks in $0 \le m/z \le 200$ prevented discrimination between proteins.
- ToF-SIMS spectra normalized to sum of selected peaks.
 - Assumption: Relative peak intensities are chemically important.
- Mean-centered
 - Assumption: Variance around mean is chemically important.

PCA Reduces Dimensionality

PCA provides:

- 2) Quick comparison of multiple spectra on the basis of multiple peaks in each spectrum.
- 3) This shows that the spectra of the different proteins are different from each other.
- 4) This also shows the relative reproducibility of the spectra of the different proteins.
- 5) Loadings give insight into amino acid composition of the proteins (data not shown).

PLL-g-PEG Monolayers

Anal. Chem. 76: 1483 (2004)

Grafted PEG chains

· Poly(lysine) backbone

Polymers adsorb electrostatically onto negatively charged Nb₂O₅

Data Pre-processing

- All peaks selected in $0 \le m/z \le 300$ range from positive ion spectra.
- ToF-SIMS spectra normalized to sum of selected peaks.
 - Assumption: Relative peak intensities are chemically important.
- Mean-centered
 - Assumption: Variance around mean is chemically important.

PC 1 showed trend with PEG graft density (not shown).

These scores are on PC 2, and show differences in methoxy headgroup surface concentration.

Loadings Assist Interpretation

Peaks from poly(L-lysine) (C5H10N+, 84) and Cs+ also load positively (i.e. correlated with low MW PEGs) due to thinner PEG layer.

Note that this plot uses the raw data, not the data after PC 1 has been subtracted. Correlation of later PCs with the raw data may require the variance captured in PC 1 to be subtracted. This can be considered "filtering" high directions of variance out to look at more subtle features.

PCA Reminders

- PCA captures orthogonal directions of variance in the *pre-processed* data.
- Scores show the relationship between samples.
- Loadings show the relationship between the raw data and the PCA results.
- Check the PCA results with the raw data (especially later PCs)!

Partial Least Squares Regression

Y = BX + E

- PLSR correlates an independent variable (X) with a dependent variable (Y) via regression coefficients (B).
- PLSR maximizes correlation between X and Y
- Cross-validation important for selecting number of factors retained
- For more information:
 Anal. Chim. Acta 185: 1 (1986)

Plasma-deposited Tetraglyme

 $H_3CO - CH_2 - CH_2 - O - CH_3$

- Plasma deposition of tetraglyme monomer results in PEG-like plasma polymer.
- Reactor power determines protein resistance (higher power = more protein adsorption).
- Combination of positive ion ToF-SIMS and XPS measurements
- What differences in surface chemistry result in decreased protein resistance?

Langmuir 19: 1692 (2003)

Data Pre-processing

- All peaks selected in $0 \le m/z \le 250$ range.
- ToF-SIMS spectra normalized to most intense peak.

– Each spectrum within the range [0 1].

XPS data concatenated onto ToF-SIMS spectra.

- All XPS data within the range [0 1].

- Mean-centered
 - Assumption: Variance around mean is chemically important.

RegCoeffs Explain Related Factors

PLSR Reminders

- PLSR maximizes correlation between independent and dependent variables for model dataset.
- Regression coefficients show how ToF-SIMS data relates to dependent variable.
- Cross-validation is critical for selection of appropriate number of factors, but model dataset must be appropriate for test dataset.
- Check the PLSR results (i.e. regression coefficients) with the raw data.

Image Analysis

Multivariate Curve Resolution

$X = CS^{T} + E$

- MCR resolves the dataset (X) into pure component spectra (S) and concentration (C) vectors.
- Number of components and initial guess required for C or S.
- Alternating least squares with non-negativity constraints typically used.
- For more information:
 Chemom. Intel. Lab. Syst. 73: 105 (2004)

Etched Polymer (PMMA) Film

- Image field of view: 256 μm x 256 μm, 256 x 256 pixels
- Etched region has 24% of total pixels in image.
- Etched region has 2% of total counts in image.
Example: Etched Polymer Film

- Etched region has 24% of total pixels in image.
- Etched region has 2% of total counts in image.

Data Pre-processing

- All peaks selected in $0 \le m/z \le 150$ range from positive ion image.
- ToF-SIMS dataset was scaled to minimize Poisson noise.
 - Assumption: Noise in data governed by Poisson statistics.
 - See Surf. Interface Anal. 36: 203 (2004)
- MCR calculated using a ones matrix for initial spectra guess (two components fit).
- MCR results back-scaled into original spectral space.

MCR Reminders

- MCR calculates "pure" concentration and spectrum vectors, subject to non-negativity and other constraints.
- MCR is reasonably robust to initial guess for C or S, but...
- MCR only fits the number of components you choose (choose well).
- Check the MCR results with the raw data.

Final Thoughts

Once you're sure the answer makes sense mathematically, you can then interpret the results physically.

Acknowledgements

Funding

- National ESCA and Surface Analysis Center for Biomedical Problems (NIH Grant EB002027)
- National Institute of Standards and Technology

Collaborators

- D. Graham, D. Castner, University of Washington
- S. Pasche, M. Textor, ETH-Zurich
- M. Shen, T. Horbett, B. Ratner, University of Washington

Literature Cited

- Surface Science 570: 78-97 (2004)
- Chemometrics and Intelligent Laboratory Systems
 2: 37 (1987)
- J.E. Jackson, A User's Guide to Principal Components, John Wiley & Sons: New York (1991)
- Analytica Chimica Acta **185**: 1 (1986)
- Chemometrics and Intelligent Laboratory Systems
 73: 105 (2004)
- Surface and Interface Analysis 36: 203 (2004)
- Langmuir 17: 4649 (2001)
- Analytical Chemistry **76**: 1483 (2004)
- Langmuir 19: 1692 (2003)