From the Chair

Just as the blossoming trees and increasing daylight mean that Spring has come to the Pacific Northwest, so too arrives the Spring 2018 issue of Neurotransmissions, the UW Department of Neurology’s newsletter for colleagues, alumni and friends. I am proud to share the latest exciting developments in our department, including news on research, clinical resources, and education.

In this issue we spotlight the UW Multiple Sclerosis Center Clinic, based at Northwest Hospital. The Center is co-directed by Dr. Annette Wundes from Neurology and Dr. Gloria Hou from Rehabilitation Medicine. The evaluation and treatment of MS has changed at breakneck speed in the past 10 years, with the introduction of many new potent biologic therapies. Dr. Wundes and her team of neurologists, physiatrists, and other allied professionals possess the expertise to assess each patient with MS and create an individualized treatment plan that best takes advantage of the improved efficacy these novel drugs offer—while skirting potential complications they may bring. Read about this tremendous group of clinicians on page two.

We welcome the newest member of UW Neurology leadership on page four. Mark Wainwright, MD, PhD has arrived in Seattle from Northwestern University in Chicago to take on the role of Head of Pediatric Neurology at Seattle Children’s, a position ably filled by Sid Gospe, MD, PhD for many years until last June. Mark brings to the Division expertise in pediatric neurocritical care, an area that is achieving growing recognition and importance, especially with the increasing use of bedside electrophysiological monitoring in the ICU setting. Mark is a great addition to our faculty and we look forward to further growth in the pediatric division under his leadership.

Continued on page 8
The field of multiple sclerosis (MS) and other CNS demyelinating diseases is rapidly evolving. The advent of newer, more potent disease-modifying treatments (DMTs) for MS that have become available can present a dizzying array of choices for the non-specialist clinician. And with new information that has emerged on the molecular basis of demyelinating disease, MS can now be more readily differentiated from its mimics, such as neuromyelitis optica spectrum disease or myelin oligodendrocyte glycoprotein (MOG)-antibody associated entities.

The UW Medicine Multiple Sclerosis Center is a multi-disciplinary clinic specialized to meet these challenges posed by patients with MS and other CNS demyelinating diseases. Since 2012, the UW MS Center, at its new location at the Northwest Hospital campus, has been providing services to patients and collaborating with local providers across the entire WWAMI region to address the needs of this complex patient cohort.

A team of providers with extensive training and experience in MS and related disorders provide a comprehensive focus on the patient, beginning with accurate diagnosis, continuing to optimal DMT choice and management, and including symptom management and rehabilitation. They see patients ranging from those at initial diagnosis to those with very advanced disease; every effort is made to address their individual needs according to their disease stage and severity. The UW MS Center’s team consists of neurologists with expertise in MS, a rehabilitation physician, a nurse practitioner, a vocational counselor, a social worker, MS-trained nurses, infusion nurses, and a pharmacist. A dedicated infusion suite and pharmacy are integrated parts of the UW MS Center. A monthly patient program available on-site and by webinar is offered. Because of the breadth of clinical expertise available, the National MS Society has awarded the UW MS Center the “Partners in MS Care” designation for the highest level of comprehensive MS care.

Disease modifying strategies for MS have become quite complex: newer agents offer opportunities to optimize disease control, but may pose greater risks. Here a thorough analysis of patient-specific disease trajectory in the context of patients’ other health information allows our neurologists to guide patients and partnering community providers towards an individualized treatment plan. Pamela Davies, ARNP, Teaching Associate of Neurology, with extensive experience in chronic pain and chronic disease management, has recently joined the team for optimal management and safety surveillance of patients. Our pharmacist Deborah Gallaro, RPh, supports providers and patients alike regarding complex medication regimens.

The neurology team works directly with other faculty of the interdisciplinary team, including physiatrist Gloria Hou, MD, co-director of the UW MS Center, rehabilitation psychologists Kevin Alshuler, PhD, Adjunct Assistant Professor of Neurology, Samantha Artherholt, PhD, Tiara Dillworth, PhD, as well as vocational counselor Joe Stuckey. Patients may be co-managed with any of these providers for optimal patient outcome. Community providers taking care of patients with MS can

The UW MS Center proudly supports the annual MS Walk in Seattle, and has been awarded the “Largest Team Award” for multiple years in a row
In the 1970s, after one year of training in internal medicine and three years of clinical neurology, neurologists usually would opt either for private practice or for an academic career. Those planning for an academic career often applied for further research fellowship training to be prepared to do both research and clinical work. In those days, at the University of Washington, there was only one academic track towards promotion, now called the clinician/scientist track. There are now additional clinician/teacher, and clinician tracks. So in the early 1970s, most academic neurologists managed every type of neurologic disorder in the clinics or on the wards. Changes to this pattern occurred quite gradually, so that at the present time it has become the norm for a neurological resident to seek fellowship training in a clinical subspecialty, such as multiple sclerosis or clinical neurophysiology, before moving on to practicing. At the University of Washington, establishment of some of these subspecialties had to wait until the Neurology division became a department in 1996, as the need for appropriately trained faculty members had not yet been met.

**Neuro-oncology.** Dr. Alexander (Alex) Spence joined the Division in 1974. A graduate of the University of Chicago School of Medicine, he trained as a neurologist in the Harvard Longwood program, followed by a stint of military service. He was doing a neuropathology fellowship at Stanford, where he became interested in the pathogenesis of primary brain tumors. He became the first neuro-oncologist at the University of Washington. Alex joined the Division at about the time that Richard Nixon resigned from the U.S. presidency. Alex Spence was a superb clinician and a devoted researcher into the pathogenesis of brain tumors. He developed a model of glioma in the rat, using tumor-inducing chemicals. He studied tumor metabolism using PET scanning techniques, and then began studies in humans, measuring tumor metabolism and the effects of treatments. He gained the respect of neurosurgeons and radiation oncologists, and led the weekly tumor board meetings. His loss in 2010 was deeply felt. Several neurology residents, including Rich Peterson, Sonia Partap, and Brian Vaillant, were inspired by Alex to enter the field of neuro-oncology.

**Neurogenetics.** Tom Bird finished his neurology residency in 1974. He was a graduate of Cornell School of Medicine, and in 1970 started his training in Seattle as a rotating intern at the University Hospital. After his N1 year he was required to fulfill his military service obligation, having been deferred until then under the Berry Plan. After two years at the Naval Hospital in San Diego, he returned to Seattle and completed his residency. He then took the unusual (at that time) step of undergoing fellowship training in medical genetics under Arno Motulsky, one of the founders of this field. Tom then began his illustrious career with joint appointments in the Divisions of Neurology and Medical Genetics. Though he was a full-time employee of the VAMC, at the UWMC he was allowed to establish the first neurogenetics clinic in the US as a unique resource for neurological patients with genetic diseases. This clinic continues to evaluate patients with genetic disorders affecting the neuromuscular and central nervous systems. Many previously unreported conditions have been studied in the clinic, including the finding of novel mutations for Charcot-Marie-Tooth Disease, familial Alzheimer Disease, and spinocerebellar ataxias. Tom became Chief of Neurology at the Seattle VA Hospital in 1987, serving until 1997 when he was succeeded by Bill Spain. Both Sumie Jayadev and Marie Davis were mentored by Tom. (Please see page 7 for an additional tribute to Tom.)

**Movement disorders.** The finding in the late 1960s that levodopa could remarkably improve the symptoms of patients with Parkinson’s Disease led to a worldwide expansion of interest in movement disorders. Before this time, medical therapy consisted primarily of anticholinergic medications such as trihexyphenidyl, although neurosurgical procedures such as thalamotomy were often successful in improving tremor, limb rigidity, and bradykinesia. At the UW, we participated in clinical trials of other drugs acting to enhance dopaminergic activity, such as entacapone and ropinirole. We established a Parkinson’s Information and Referral Center sponsored by the American Parkinson Disease Association, which allowed the hiring of Maria Linde, a Neurological Nurse Specialist who was instrumental in establishing a local Parkinson’s chapter and patient support groups. With the discovery of the genetic mutation causing Huntington Disease, HD could now be diagnosed.
Beginning in December 2017, Mark Wainwright, MD, PhD, Professor of Neurology, became Head of the Division of Pediatric Neurology, succeeding long-time Head Sid Gospe, MD, PhD, who retired in June 2017. He originally hails from Liverpool, England, and was motivated to emigrate to the US for love: as a college student, he met his future wife in England while she was on an exchange program from the University of Rochester. In the US, he entered an MD/PhD program at the University of Chicago and pursued doctoral research on the molecular properties of the dopamine receptor. As a medical student doing clinical rotations, he had the good fortune to be on-service with Peter Huttenlocher, one of the great figures of child neurology.

“I watched him get on the floor and play with the kids with blocks, and realized, that’s the kind of neurology I wanted to do,” he said.

Following his graduation from Chicago, Dr. Wainwright entered the child neurology program at Duke. During his last year in the program, he discovered he enjoyed practicing in the intensive care environment, and also developed a research interest in neuroprotection in critically ill children. Following his recruitment to Northwestern University (where he remained from 2000 until his move to the UW), he started a lab focused on neuroinflammation and traumatic brain injury. In parallel, he started a pediatric neurocritical care program at Northwestern, which grew from a one-person operation to six faculty, a busy consult service, and a training program which now trains two fellows each year. “Neurological issues impact every child in the ICU,” he said, “and what was key to our success was building a partnership between neurologists and intensivists.”

Dr. Wainwright came to Seattle Children’s because he saw an opportunity “to build on strengths in an already excellent division.” Neurocritical care is one such area where he hopes to recapitulate his success story at Northwestern. He cites other potential growth opportunities in pediatric neuromuscular disease, neuro-oncology, and demyelinating disorders. A novel clinical and research focus will be on a “big data” approach to monitoring children in the ICU using real-time streaming of multiple lines of physiologic data, so to predict those patients at risk for impending clinical deterioration.

Since moving to Seattle from Chicago—albeit just in time for the dreary Pacific Northwest winter—he does laud the climate for being appreciably milder than that of the Windy City. Another difference he noted was the fact that “people stop to let you cross the street—bizarre!” While getting a feel for the Division and setting up a home in anticipation of the move of his wife and possibly his two daughters in their 20s as well to Seattle, Dr. Wainwright does not have much free time at present. But he is harboring ambitions of taking up the bagpipes, so to import a bit of the UK to the PNW.

Continued from page 3

definitively. Developing a movement disorders program with fellowship training had to wait until Dr. Ali Samii joined us in 1996.

Clinical neurophysiology. With the exception of Children's Hospital, where Coldevin Carlson carried out electromyography (EMG) on children, EMGs on the adult services were all performed by the Department of Physical Medicine and Rehabilitation (now Rehabilitation Medicine). Neurology residents were welcomed for EMG training by Drs. Walter Stolov and George Kraft. For full fellowship training, however, trainees usually went elsewhere to programs at UCSD or University of Utah. Not until departmental status was achieved in 1996 was Neurology allowed to carry out EMGs. The first EMGer hired by the Department was Dr. Eric Yuen. He was succeeded by Michael Weiss in 2001. Dr. Weiss has expanded the EMG services with the help of Drs. B. Jane Distad, Eric Kraus, and Leo Wang, sharing the studies with Rehabilitation Medicine.
Residency has flown by, from the first Botox injection at the VA to the last Stroke Code at Harborview. It has been quite a rewarding and humbling experience, and I will forever be grateful to my co-residents and the faculty members for being there every step of the way. It is bittersweet to be leaving Seattle and the UW Neurology family, but I know that I have made lifelong colleagues and friends. For the next step of my career, I will be pursuing a fellowship in Neuro-immunology, and am excited to continue to learn.

Thank you to my co-residents and many faculty mentors for their support during residency. And thank you to my family, without whom I’d never have made it to - much less through - these past few years. Another doctor once said, “all of time and space...where do you want to start?” I’m grateful to have received my start in neurology at UWMC, and to be continuing the journey as one of the Headache fellows next year.
Nadine Waldmann, Budget/fiscal analyst lead

Selected Recent Publications by Neurology Faculty


Genetic Movement Disorders: Etiologies and Pathogeneses


Selected Recent Grant Awards to Neurology Faculty

<table>
<thead>
<tr>
<th>GRANT TITLE</th>
<th>SPONSOR</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial in Subjects with Relapsing MS to Evaluate the Efficacy and Safety of 8115033 as an Add On therapy to Anti-inflammatory disease modifying Therapies</td>
<td>BIOGEN</td>
<td>Wundes</td>
</tr>
<tr>
<td>A Phase 2, Multi-center, Randomized, Double-blind, Placebo Controlled Study in Subjects With Late Prodromal and Early Manifest Huntington’s Disease (HD) to Assess the Safety, Tolerability, Pharmacokinetics, and Efficacy of VX15/2503</td>
<td>VACCINEX</td>
<td>Samii</td>
</tr>
<tr>
<td>West Virginia Stroke Center of Biomedical Research Excellence</td>
<td>NIH / P20</td>
<td>Weinstein</td>
</tr>
<tr>
<td>A Phase 2, Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Tolerability of CK-2127107 in Patients with Amyotrophic Lateral Sclerosis</td>
<td>CYTOKINETICS</td>
<td>Weiss</td>
</tr>
<tr>
<td>Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) consortium</td>
<td>NIH / US4</td>
<td>Domoto-Reilly</td>
</tr>
<tr>
<td>A Study to Model Rates of Change on Neuropsychological Test Measures in Subjects Diagnosed with Behavioral Variant Frontotemporal Dementia and Healthy Subjects</td>
<td>BIOGEN</td>
<td>Domoto-Reilly</td>
</tr>
<tr>
<td>A Phase 2b/3 Randomized, Double-blind, Placebo-Controlled, Parallel Group, Multicenter Study Investigation the Efficacy and Safety of JNJ-54861911 in Subjects who are Asymptomatic at Risk for Developing Alzheimer’s Dementia</td>
<td>JANSSEN</td>
<td>Domoto-Reilly</td>
</tr>
<tr>
<td>Dynamics of Kv channel function in identified populations of pyramidal neurons in neocortex</td>
<td>NIH / R01</td>
<td>Spain</td>
</tr>
<tr>
<td>Genetic Movement Disorders: Etiologies and Pathogeneses</td>
<td>VA MERIT</td>
<td>Zabetian</td>
</tr>
</tbody>
</table>
Joe Zunt, MD, MPH, Professor of Neurology, received a Global Innovation Fund award for his collaborative projects “Using a mobile apps and citizen science to reduce mosquito-borne disease: a pilot project in Peru” and “Global health partnerships in disaster preparedness and response.” In honor of these awards, he was cited by Paul Ramsey, MD, Dean of the School of Medicine, for his “strong commitment to improving health.”

Bruce Ransom, MD, PhD, Professor and Chair of Neurology, was honored with a special issue in the journal Neurochemical Research for his lifetime of achievement in research into the basic biology of neuroglia and the mechanisms of white matter injury during anoxia. The issue editor, Helmut Kettenmann, PhD assembled an international cast of eminent scientists, all with past links to Dr. Ransom, who contributed reviews and reminiscences in his honor. Among the contributors were Bill Catterall, PhD; George Richerson, MD, PhD and Chris Ransom, MD, PhD, Assistant Professor of Neurology; and Steve Waxman, MD, PhD and Joel Black, PhD, who penned an “Ode to glia” for the issue. (They write, “He was great with a tuning fork and reflex hammer / But Bruce also worked on the brain and its glamour.”) Dr. Kettenmann cited the highlights of Bruce’s lifetime of scientific work as being “the first studies of mammalian neurons in the dish, ionic mechanisms of white matter injury, the role of hemichannels on astrocytic glutamate release and the role of astrocytes as glycogen stores for maintaining axonal function.” You'll find these articles and a heartfelt tribute to Dr. Ransom under this reference: Neurochem Res (2017) 42:2437–2441.

Tom Bird, MD, Professor of Neurology, was profiled in Lancet Neurology in the article “Tom Bird: one of the world’s first experts in neurogenetics.” The profile traces Dr. Bird’s beginnings as a genetics fellow with Arno Motulsky, shortly followed by his establishment of the first adult neurogenetics clinic. Seminal achievements in the genetic basis of Charcot-Marie-Tooth disease and early onset Alzheimer’s disease are described, among others. See this wonderful tribute in the February 5th, 2018 issue of the journal. Our neurology faculty took the lion’s share of awards in the Seattle Magazine 2018 Top Doctors list. Honored were Will Longstreth, Jr., MD, Professor of Neurology; Ali Samii, MD, Professor of Neurology; Lynne Taylor, MD, Professor of Neurology; and Michael Weiss, MD, Professor of Neurology. Note that this is Dr. Taylor’s 11th year of being cited in this survey!
Neurology Faculty News

**NEUROLOGY DAY 2018**
Monday, May 21, 2018
7:30am—5:30pm
Cocktail Reception to follow

Lectures will cover cutting edge innovations in:
- Imaging in Dementia
- Hot Topics in Epilepsy
- Multiple Sclerosis
- Neurogenetics
- Neuro-Oncology
- Parkinson’s Disease
- ALS & Neuromuscular Diseases
- Stroke

8 CME CREDITS

**Program Details: bit.ly/uw18neuroday**

A recent grant, publication, or award? Please send it along to Nadine Waldmann (dine33@uw.edu) so we may include it in the next issue of Neurotransmissions.

**Continued from page 1**

On page 7 of this newsletter, please take a look at some of the latest kudos that constantly come the way of our faculty. Tom Bird, MD, was recently lionized in the pages of Lancet Neurology as “one of the world’s first experts in neurogenetics,” while Lynne Taylor, MD collected her 11th consecutive “Top Doctor” award from Seattle Magazine, an honor bestowed by her community neurology peers who vote in this annual survey. Read about these and others of our Neurology faculty being honored for their contributions to patient care and research.

**Continued from page 2**

Consider referring their patients to our allied practitioners for collaborative care—a valuable resource, as providers with their expertise and skill set are not often available in the community setting. Samantha Artherholt, PhD leads groups where patients meet for several weekly sessions focusing on improving self-care skills, cognitive skills or adjusting to a new MS diagnosis. In addition to providing high quality clinical care, the UW MS Center is actively involved in research and training. As such, patients may opt to participate in clinical trials expanding the range of treatment options to control disease activity and possibly promote remyelination. The team is also very actively engaged in research on topics of care delivery models, adjustment to chronic disease, and rehabilitative strategies, with large scale research projects funded by the Patient-Centered Outcomes Research Institute, National MS Society and National Institutes of Health. In addition, Dr. Wundes directs the Clinical MS Fellowship program, which was awarded a competitive multiple-year training grant by the National MS Society. MS fellows participate in the care of our patients, and have gone on to successful careers serving patients with MS throughout the country.