
Chapter 24

Dendrites and disease
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Summary
While the functional properties of dendrites in the normal brain are the main focus of this book, 
there is a long history of research related to changes in dendrites that are associated with certain 
neurological, psychiatric, and developmental disorders. Much of this research has documented 
morphological changes in dendritic structure, but a significant increase in work has appeared since 
the second edition of this book in which changes in dendritic function have been described. In this 
chapter we briefly review some of the research relating structural changes in dendrites to disease, 
sufficient to provide a beginning reference source for readers interested in pursuing the subject 
further. The bulk of this chapter, however, will focus on the current state of knowledge related to 
dendritic “channelopathies.” These are defined as genetic or acquired defects in the normal func-
tion or expression of ion channels (with a focus on voltage-gated ion channels) that are known to 
regulate how neuronal dendrites process and store information. The most specific and detailed 
information is available for epilepsy, which will be discussed at some length, but other data will 
be presented for certain neurodevelopmental disorders (e.g., autism, fragile X syndrome) and dis-
eases of the adult and aging brain. Based on our knowledge of the normal properties of dendrites, 
we provide a framework for understanding how dendritic channelopathies can influence synaptic 
integration and plasticity and thus form the basis of abnormal brain function.

Introduction
Abnormalities in dendritic structure are a characteristic feature of many brain disorders. This is 
perhaps not surprising given the important role of dendrites as the principal site of synaptic con-
tact for neurons. Changes in synaptic function or neuronal circuitry associated with disease might 
thus be expected to produce structural alterations resulting in, for example, loss of spines, changes 
in spine size and shape, reduced dendritic branching patterns, and shortened dendritic lengths. In 
fact, all of these structural changes have been described for different neurological disorders. What 
may be surprising, however, is how varied, extensive, and specific these structural changes are for 
each individually described disease state. In some cases the morphological changes in dendrites 
are actually used as a diagnostic fingerprint for the disorder. Unfortunately, much less is known 
about how these structural changes relate to the functional properties of neurons, such as synaptic 
integration, plasticity, excitability, and firing behaviors.

Neurodevelopmental disorders
Neurodevelopmental disorders (NDDs) are pathologies of the nervous system arising from defects 
in the way the nervous system grows and develops (Meredith, 2014). Such disorders may have 
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a plethora of consequences, including impairment in cognitive functions, speech, attention and 
concentration, social skills, and motor function as well as behavioral disturbances. NDDs often 
manifest in early childhood, leading to perturbations in developmental milestones or difficulties 
with socialization and integration into school. Well-known examples include autism spectrum dis-
orders, intellectual disabilities, and attention-deficit/hyperactivity disorder (ADHD). Many NDDs 
have a strong genetic component, but environmental factors or trauma can also play a role (United 
States Environmental Protection Agency, 2013).

In 1974 Dominick Purpura published a highly influential paper in Science suggesting that den-
dritic spine abnormalities (dysgenesis) formed the basis of certain types of intellectual disability 
(Purpura, 1974). While this was certainly not the first time it had been suggested that changes in 
dendritic morphology were associated with neurological disease (cf. Marin-Padilla, 1972; Scheibel 
and Scheibel, 1973), it nevertheless stimulated significant further research in this area. It is now 
clear that there is a strong correlation between dendritic pathology and intellectual disability; in 
particular, this has been demonstrated for Down, Rett, fragile X (FXS), Williams, and Rubinstein–
Taybi syndromes (Kaufmann and Moser, 2000), and autism spectrum disorders (Hutsler and 
Zhang, 2010; Tang et al., 2014).

In general, these and other developmental disorders (Nitkin, 2000) are characterized by changes 
in dendritic length, branching patterns, and spine number (Fiala et al., 2002). In the case of FXS 
and autism in particular spines are often long and thin. While it would be surprising if the den-
drites were functioning normally under these conditions, it is unclear whether the altered morph-
ology is the primary cause of the disease or rather a compensatory or secondary change to some 
other primary pathology. For example, many of these same changes can occur following deafferen-
tation (Fiala et al., 2002). Nevertheless, it would be interesting and important to better understand 
the physiological consequences of these pronounced and striking changes in dendritic structure 
that are frequently associated with mental retardation.

In addition to the well-described changes in dendritic spine morphology, alterations in the func-
tion and/or expression levels of voltage-gated ion channels are also likely to play a profound role 
in the pathophysiology of a number of NDDs. Although this question has, to date, received scant 
attention, the important role of ion channels in many aspects of dendritic physiology mean that 
any polymorphism/mutation affecting the targeting, modulation, or biophysical properties of ion 
channels are likely to impact on dendritic function. The following sections illustrate the possible 
and known roles that ion channel defects play in disorders of this nature.

Autism spectrum disorders
Autism spectrum disorders (ASDs) comprise a heterogeneous group of disorders that fall under 
the category of pervasive developmental disorders. ASDs are diagnosed by the presence of a triad 
of core behavioral features including defects in social interaction, communication, and repetitive 
or stereotyped behavior. In addition to these endophenotypes, other comorbidities are often pre-
sent, such as an increased risk of epilepsy, defects in sensory information processing, or motor de-
fects and intellectual disability. Recent estimates from the Centers for Disease Control suggest that 
as many as one in seventy children may be affected by this spectrum of disorders. ASDs are sug-
gested to have a strong genetic component; however, in most cases there is not one single genetic 
cause (reviewed in Schmunk and Gargus, 2013). Notable exceptions include well-characterized 
syndromes such as Angelman, Rett, and FXS. Indeed the wide heterogeneity of ASDs is prob-
ably caused by a unique combination of gene polymorphisms, mutations, and interactions with 
environmental factors that underlie the etiology of individual cases (Schmunk and Gargus, 2013). 
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According to the SFARIgene database (a curated list of genes associated with ASD; https://gene.
sfari.org/autdb/HG_Home.do) more than 600 genes have been identified as playing a putative role 
in ASDs, including a substantial number of ion channels of the Ca2+, K+, and Na+ families as well 
as the HCN1 isoform of the hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel 
family.

In particular, voltage-gated Ca2+ channels have been suggested to play an important role in 
ASDs (Krey and Dolmetsch, 2007). Evidence comes from genetic studies in human patients or be-
havioral analysis following deletion or pharmacological ablation of specific subunit types in mice 
(e.g., Jinnah et al., 1999). For example, loss of function of the genes encoding the alpha 1 subunit of 
L-type channels (Cav1.2) or an α2-delta subunit 4 may arise from genomic deletion in ASDs (Smith 
et al., 2012). Rare missense mutations have been identified in the genes encoding the β2-subunit in 
ASDs (Breitenkamp et al., 2014). Likewise, a missense mutation in the gene encoding the T-type 
Ca2+ channel subunit Cav3.2 (Splawski et al., 2006) or polymorphism in the gene encoding Cav3.3 
(Lu et al., 2012) may also contribute to the etiology of ASDs.

T-type Ca2+ channels are expressed in the neocortex, hippocampus, thalamus, and cerebellum 
and exhibit a distinct somato-dendritic pattern of expression depending on the subunit in ques-
tion (McKay et al., 2006). T-type calcium channels are expressed in both the shaft and the spines of 
dendrites in CA1 pyramidal neurons (Christie et al., 1995; Magee and Johnston, 1995; Sabatini and 
Svoboda, 2000), and in dendritic spines of neocortical pyramidal neurons (Koester and Sakmann, 
2000). This pattern of expression suggests an important role in normal dendritic function. L-type 
Ca2+ channels are present in the dendritic shaft of CA1 pyramidal neurons (Christie et al., 1995; 
Magee and Johnston, 1995), and in both dendrites and spines in neocortical pyramidal neurons 
(Markram et al., 1995; Koester and Sakmann, 1998). Thus, the aforementioned mutations are likely 
to have important consequences, which so far have not been explicitly investigated.

Direct evidence for dendritic involvement in the pathophysiology of ASDs comes from analysis 
of the effects of a mutant type of L-type Ca2+ channel in rodent and human pluripotent stem cell-
derived neurons. In both cases, the mutation present in Timothy’s syndrome (TS; a rare mono-
genetic syndromic form of ASD) caused activity-dependent retraction of dendrites (Krey et al., 
2013). Interestingly, this phenomenon was independent of Ca2+ signaling and instead involved 
ectopic activation of the RhoA signaling pathway through impaired interactions between the mu-
tant channel and the RGK protein, Gem. This finding thus points to a novel role for L-type calcium 
channels in dendritic function. In addition, the TS mutation delays the voltage-dependent inacti-
vation of the mutant channel, while at the same time accelerating the kinetics for Ca2+-dependent 
inactivation (Barrett and Tsien, 2008). These alterations in gating properties could cause additional 
changes in excitability, which maybe contribute to the overall pathology of TS (reviewed in Szlap-
czynska et al., 2014).

Intellectual disability
Intellectual disability (ID; or intellectual development disorder) is a pathology encompassing a 
diverse group of disorders whose common feature is compromised mental abilities that impact 
on the individual’s adaptive functioning (American Psychiatric Association, 2013). Diagnosis is 
based on mental function across three core domains (conceptive, social, and practical capacities) 
and may also incorporate a consideration of intelligence quotient (although this is no longer con-
sidered the sole criterion for diagnosis). IDs are considered to have a strong developmental com-
ponent and may be classified as syndromic or non-syndromic based on the presence or absence 
(respectively) of accompanying comorbidities (van Bokhoven, 2011). Much of our understanding 

9780198745273-Stuart.indb   679 05/10/15   3:44 PM

OUP-FIRST UNCORRECTED PROOF, October 5, 2015



Dendrites680

of the mechanisms underlying ID comes from our ability to model these disorders in suitable ani-
mal models. Thus the majority of our understanding of ID comes from a somewhat limited subset 
of disorders (e.g., Rett syndrome, Angelman syndrome, FXS, Down syndrome). Nonetheless, in 
recent years, ID has been investigated in a growing number of novel animal models (e.g., Syn-
GAP1; see Huang, 2009; Clement et al., 2012).

ID is often thought to arise from an underlying defect in synaptic function (e.g., Zoghbi and 
Bear, 2012) or from morphofunctional defects in dendrites or dendritic spines (e.g., as reviewed by 
Ramakers, 2002; Dierssen and Ramakers, 2006; Portera-Cailliau, 2012; Chang et al., 2013). Thus a 
large body of research has focused on these aspects as the causal mechanism, leading to a perhaps 
biased proliferation of models that assume an underlying synaptic cause. However, as mentioned 
above, these changes may be a consequence of altered signaling pathways rather than the causal 
feature of the disorder.

More than 450 genes have been associated with ID (reviewed in van Bokhoven, 2011), in-
cluding a number of ion channel subunits (http://gfuncpathdb.ucdenver.edu/iddrc/iddrc/home.
php). For example, two independent studies reported individual cases in which the deletion of 
CACNAG1 (encoding the T-type calcium channel subunit, Cav3.1) was implicated in a novel 
form of syndromic ID disorder (Preiksaitiene et al., 2012; Harbuz et al., 2013). KCNK9, encod-
ing the two-pore acid-sensitive K+ channel, TASK3, is mutated in a rare syndromic form of ID, 
called Birk–Barel syndrome (Barel et al., 2008). The role of TASK3 in the brain is poorly under-
stood, but the predominantly somato-dendritic expression of this channel (Marinc et al., 2014) 
suggests a role in dendritic function. In this case, the mutation resulted in a de novo inward 
current and an alteration in the sensitivity of the channel to a number of factors including Gαq-
coupled muscarinic receptor activation. Mutations in genes (KCNQ2, KCNQ3, and KCNT1) 
encoding the K+ channel subunits Kv7.2 and Kv7.3 have also been reported in more complex 
disorders involving both epilepsy and ID (Heron et al., 2012; Weckhuysen et al., 2012; Miceli 
et al., 2014). Both Kv7.2 and Kv7.3 are subunits underlying M-type current (for review see Judy 
and Zandi, 2013). Although mainly expressed at the somatic and axonal level (some dendritic 
expression has also been reported—reviewed in Szalpczynska et al., 2014), M-type channels not 
only control initiation of action potentials (APs) and neuronal excitability, but can also regu-
late excitatory postsynaptic potential (EPSP)–spike (E–S) coupling (Brown and Passmore, 2009; 
Shah et al., 2011). Their alterations could therefore also affect dendritic information processing. 
Finally, studies involving either genetic or pharmacological ablation of a number of ion channels 
involved in dendritic information processing support an important role for a number of these 
channels in cognitive function. Moreover, a recent study combining functional brain imaging 
with genetics suggests a strong association between voltage-gated cation channels and cognition 
(Heck et al., 2014).

Fetal alcohol syndrome (FAS)
Early (in utero) exposure to alcohol is known to have profound effects on the cognitive abilities of 
exposed individuals. These effects are caused in part by gross-scale circuit remodeling provoked 
by cell death; however, a cell-dependent mechanism may also partly explain the observed changes. 
Early postnatal exposure of mice to alcohol (modeling the effects of FAS in humans) leads to a re-
duced number and duration of dendritic spikes, consistent with a defect in dendritic electrogenesis 
in L5 neocortical pyramidal neurons (Granato et al., 2012). This effect is likely mediated through 
defects in the function of L-type Ca2+ channels, which have been shown to be important for den-
dritic spikes in these neurons (Almog and Korngreen, 2009).
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Fragile X syndrome
In this sense FXS is perhaps the “prototypic” ID, being the most widely studied inherited ID disor-
der having a monogenic cause. It is also the most common inherited form of autism (Bassell and 
Warren, 2008). Symptoms include ADHD, anxiety and mood disorders, learning and intellectual 
disabilities, seizures, and autistic features. The syndrome is caused by the loss of expression of a 
protein called the fragile X mental retardation protein (FMRP) due to transcriptional silencing of 
the gene FMR1, which encodes FMRP. FMRP is an mRNA-binding protein that represses trans-
lation of the bound mRNA. The lack of FMRP can thus lead to enhanced translation of certain 
mRNAs. FMRP has multiple mRNA targets (Darnell et al., 2011), but it also can bind to other 
proteins and alter their function. A seminal paper by Huber et al. (2002) found an enhancement in 
the metabotropic glutamate receptor-mediated form of synaptic long-term depression in a mouse 
model of FXS in which FMR1 was deleted. This and many subsequent studies led to the so-called 
mGluR theory for FXS (Bear et al., 2004), which suggested an enhancement of the mGluR sig-
naling pathways in FXS. While very attractive, this view of FXS is probably too simplistic, and 
in fact several clinical trials of mGluR antagonists have failed to provide a statistically significant 
improvement over placebo in crossover clinical trials (reviewed in Scharf et al., 2015).

In recent years attention has focused on other FMRP-targeted mRNAs, including those associ-
ated with a number of voltage-gated ion channels that are heavily expressed in dendrites. Among 
the first voltage-gated ion channels identified as a target for FMRP were the L-type Ca2+ chan-
nel, a delayed-rectifier K+ channel, Kv3.1, and Slack (sequence like a Ca2+ activated K+) channel 
(Chen et al., 2003; Meredith et al., 2007; Brown et al., 2010; Strumbos et al., 2010). While Kv3.1 is a 
prominent channel in fast-spiking interneurons, Slack channels are heavily expressed in pyramidal 
neurons and dendrites in the hippocampus and parts of the cortex (Bhattacharjee and Kaczmarek, 
2005). Interestingly, intracellular Na+ (not Ca2+ as is the case for the many types of Ca2+-dependent 
K+ channels) activates Slack channels. Several recent studies have in fact explored the role of one 
type of Ca2+-dependent K+ channel, the BK channel, in FXS. Klyachko and colleagues found that 
FMRP binds directly to the β4 regulatory subunit of BK channels in a translation-independent man-
ner to enhance the calcium sensitivity of the BK channels. The absence of FMRP therefore leads to a 
broadening of the AP and increases in presynaptic transmitter release (Deng et al., 2013). In a recent 
report Zhang et al. (2014) found a similar defect in L2/3 and L5 pyramidal neurons of the sensory 
cortex, both in vitro and in vivo. In addition, the authors described a dendritic hyperexcitability phe-
notype in L5 neurons due to BK (and HCN) channel dysfunction (Fig. 24.1). Several core features 
of this dendritic hyperexcitability and changes in AP firing were rescued with a BK channel opener 
(Fig. 24.1E), as was hypersensitivity to sensory (auditory) stimuli. These findings provide evidence 
for a link between an ion channel alteration and a core symptom of FXS (Zhang et al., 2014).

One of the first predominantly dendritic channels suggested to be abnormally expressed in FXS 
is the fast-inactivating K+ channel Kv4.2 (Gross et al., 2011; Lee et al., 2011). This channel is known 
to be a prominent dendritic channel in a number of cell types including CA1 pyramidal neurons 
in the hippocampus (Hoffman et al., 1997; Johnston et al., 2000). The first two reports suggesting 
a Kv4.2 channelopathy in the mouse model of FXS, however, were somewhat contradictory. One 
suggested a reduction of dendritic Kv4.2 (Gross et al., 2011) and the other an increase (Lee et al., 
2011). A recent third study used a more functional approach by making physiological recordings 
from hippocampal CA1 dendrites (Routh et al., 2013) and concluded that Kv4.2 channels were 
indeed downregulated in FXS, leading to hyperexcitability of the dendrites. The reasons for the 
discrepancies among the studies are not clear, but more recent experiments suggesting that chan-
nelopathies in FXS are specific to both cell types and brain regions may provide some clues.
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Fig. 24.1  Dysfunction of dendritic BKCa channels causes hyperexcitability of neocortical pyramidal 
neurons in a mouse model for fragile X syndrome. (A)–(C) Dendritic calcium measurements were 
performed near the major apical branch-points of L5B pyramidal neurons. (A) Dendritic Ca2+ traces 
accompanying trains of three backpropagating APs at various frequencies in a representative 
wild type (WT) and Fmr1–/y neuron. (B) Average Ca2+ peak amplitudes as a function of AP train 
frequency (Fmr1–/y, n = 18; WT, n = 9; P < 0.05 for a range from 70 to 200 Hz). (C) Average critical 
frequency for the generation of dendritic Ca2+ spikes. (D) Computer simulation of the impact of 
BKCa channel reduction on dendritic excitability. Left: reconstruction of the morphology of a L5B 
pyramidal neuron used for the NEURON® simulations. Right: model responses at the major apical 
branch point (upper traces) and soma (lower traces) for AP trains evoked at the soma at a frequency 
below 70 Hz (left trace) and around the critical frequency (90 Hz; right traces). Red traces represent 
stimulation in a model without BKCa conductance, and the black traces stimulation in a model with 
a BKCa conductance of 3 mS/cm2. Note that the generation of a dendritic spike was associated with 
an increased after-depolarization (ADP, red arrow) in the absence of a BKCa conductance. The green 
trace represents stimulation in a model with a BKCa conductance of 3 mS/cm2 only in the soma and 
the proximal dendrites. This condition is similar to the one without BKCa conductance (red traces), 
indicating the role of more distal dendritic BKCa channels in the dendritic spike generation. (E) 
Dendritic whole-cell recordings were performed at the major branch point. Suppression of dendritic 
calcium spikes (evoked by current wave injections) following local puff application of the specific 
BKCa channel opener BMS-191,011 (100 µM) onto the dendrite of a Fmr1–/y neuron. Data are shown 
as the mean ± SEM **P < 0.01, *P < 0.05 (Fmr1–/y compared with WT). Statistical significance was 
calculated by repeated measure two-way ANOVA (B), or by an unpaired t-test.

Parts B and C adapted with permission from Macmillan Publishers Ltd: Nature Neuroscience, 17(12), Yu Zhang, 
Audrey Bonnan, Guillaume Bony, Isabelle Ferezou, Susanna Pietropaolo, and Melanie Ginger, Dendritic channelo-
pathies contribute to neocortical and sensory hyperexcitability in Fmr1-/y mice, pp. 1701–1709, Figure 4b and c, 
doi: 10.1038/nn.3864 © 2014, Nature Publishing Group.
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As will be discussed more fully in the section on epilepsy, another prominent dendritic channel 
is the HCN channel, or so-called h-channel (Magee 1998, 1999), which in forebrain neurons is 
primarily encoded by HCN1 and HCN2 subunits. One of the first suggestions for a role of HCN1 
channels in FXS came from a study by Brager et al. (2012) in which an upregulation of HCN1 
channels was found to occur in the dendrites of hippocampal CA1 neurons. This was a surprising 
finding, because mGluR signaling has been shown to downregulate HCN channels in CA1 and 
other neurons. In fact, Zhang et al. (2014) and Kalmbach (in preparation) have shown downre-
guation of HCN channels in L5 neurons from both the sensory and prefrontal cortex. This leads 
to the interesting idea that FXS-related channelopathies, for the same ion channel, can have both 
neuron-type and brain-region specificity, and highlights the need to understand FXS and its treat-
ment in a neuron-type/brain-region-specific manner.

Neuropsychiatric disorders
Neuropsychiatric disorders, for example schizophrenia, depression, and bipolar disorder, are com-
plex pathologies, with etiologies that probably involve the convergence of multiple genetic and 
non-genetic factors (Sullivan et al., 2012). Several recent large-scale gene association studies have 
pointed to a role for polymorphisms in voltage-gated ion channels in the pathophysiology of these 
disorders (reviewed in Bhat et al., 2012; Berger and Bartsch, 2014). For example, polymorphisms 
within two genes encoding the L-type calcium channel subunit (Cav1.2) and the β2 subunit of 
voltage-gated calcium channels have been linked with a cluster of psychiatric disorders including 
bipolar disorder, schizophrenia, and depression. Polymorphisms within the β2 subunit were in 
addition associated with ADHD and ASD (Cross-Disorder Group of the Psychiatric Genomics 
Consortium, 2013). A functional cluster of voltage-gated cation channels has also been associated 
with working memory performance in individuals affected by schizophrenia.

Bipolar disorder has also been associated with mutations in the genes encoding Kv7.2 and 
Kv7.3, the major subunits responsible for the slow voltage-gated M-channel (for review see Judy 
and Zandi, 2013). As indicated above, although principally expressed in the soma and axons of 
neurons, M-channels not only control the initiation of APs and neuronal excitability but are also 
capable of regulating E–S coupling (Brown and Passmore, 2009; Shah et al., 2011). Thus any poly-
morphism/mutation that alters their function could conceivably play a role in dendritic informa-
tion processing.

Lastly, BK channels might also be dysregulated in schizophrenia. Post-mortem analysis has 
demonstrated a reduction in BK channel mRNA in the prefrontal cortex of individuals affected by 
this pathology, compared with normal disease-free controls (Zhang et al., 2006). A reduction in the 
activity of BK channels has been associated with increased dendritic excitability (see the subsec-
tion Fragile X syndrome) thus suggesting a link between this finding and dendritic pathophysiol-
ogy in schizophrenia (reviewed in Szlapczynska et al., 2014).

Neuropathic pain
While the pain neuroaxis consists of peripheral nociceptors, spinal cord, and supraspinal areas, 
forebrain structures are also receiving increased attention as possible sites for the central manifes-
tations of chronic pain. In particular, the anterior cingulate cortex (ACC) appears to be consist-
ently activated during nociception and chronic pain states (Wager et al., 2013). An interesting 
recent study used a sciatic nerve injury model in mice to test whether neuronal function in the 
ACC was altered and responsible for the development of neuropathic pain (Santello and Nevian, 
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2015). The results of this study were perhaps somewhat surprising, but not for the channelopathy 
theme of this chapter. The authors found that following neuropathic pain induced by nerve dam-
age there was a specific decrease in dendritic HCN channel function in L5 pyramidal neurons in 
the ACC. The resulting decrease in Ih led to enhanced firing in response to synaptic input, or an 
increase in the overall excitability of these neurons. Because serotonergic inputs, and particularly 
5-HT7 receptors, are enriched in this region of the cortex, they further found that infusion of a 
5-HT7 receptor agonist into the ACC could reverse both the decrease in Ih as well as the pain-
induced hypersensitivity to mechanical touch. They suggest that the chronic pain led to HCN 
channel plasticity in the dendrites of these neurons, a “pain memory,” providing a potential new 
therapeutic target for neuropathic pain.

Neurodegenerative disorders
Neurodegenerative disorders are characterized by a progressive loss of the structure and function 
of neurons, and are typically associated with neuronal death. Neurodegenerative disorders include 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic 
lateral sclerosis (ALS). The most common neurodegenerative disorders, AD and PD, have both 
been linked with ion channel dysfunction, implicating changes in dendritic function in these dis-
orders. In the following we will focus our discussion on PD and AD.

Parkinson’s disease
PD is a common, debilitating, and progressive neurodegenerative condition, and is clinically char-
acterized by motor symptoms including tremor, rigidity, postural instability, and bradykinesia 
(reviewed in Rivlin-Etzion et al., 2006; De Long and Wichmann, 2007; Hammond et al., 2007). 
In addition to these motor symptoms, PD encompasses non-motor symptoms such as cognitive 
and neuropsychiatric defects (Poewe and Luginger, 1999; Politis and Niccolini, 2015). The motor 
symptoms of PD are attributable to the degeneration of dopamine neurons of the substantia nigra 
pars compacta (SNc). In PD the amount of dopamine released in brain regions responsible for 
motor control (e.g., the striatum and globus pallidus) declines, leading to a progressive loss of 
movement. Other, non-dopaminergic systems such as the serotonergic (reviewed in Politis and 
Niccolini, 2015) and cholinergic (Hirsch et al., 1987; Rinne et al., 2008) system have also been 
implicated in PD.

In PD, dopaminergic neurons of the SNc display a decrease in dendritic length, a loss of den-
dritic spines, and several types of dendritic varicosities (Patt et al., 1991). A similar loss of dendritic 
spines has also been found in the medium spiny neurons of the striatum (Villalba and Smith, 
2013). Several studies have provided evidence for a contribution of ion channels to the degen-
eration of SNc dopamine neurons and PD pathology. Among those ion channels are L-type Ca2+ 
channels (Cav1.2 and Cav1.3), T-type Ca2+ channels, metabolically regulated, ATP-sensitive K+ 
channels, and Ca2+-sensitive and voltage-gated A-type K+ channels (reviewed in Dragicevic et al., 
2015). These and other ion channels modulate dendritic function and firing properties, and there-
fore dopamine release by SNc dopamine neurons (reviewed in Dragicevic et al., 2015; see Dufour 
et al., 2014, for a description of the somato-dendritic ion channel landscape of these neurons). Sur-
meier and colleagues found that during pacemaking L-type Ca2+ channels contribute to the gen-
eration of dendritic Ca2+ oscillations and that the impact of these channels increases with distance 
from the soma (Guzman et al., 2010; Dryanovski et al., 2013). The dendritic Ca2+ waves, in turn, 
induce waves of mitochondrial oxidant stress in SNc dopamine neurons and defensive responses 
(Mosharov et al., 2009; Guzman et al., 2010; Surmeier et al., 2011a). Under normal conditions 
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these defensive mechanisms protect SNc neurons, but in vulnerable neurons the Ca2+ buffering 
capacity is insufficient for dealing with the oscillatory Ca2+ load (reviewed in Dragicevic et al., 
2015). Pharmacological inhibition of L-type Ca2+ channel function in SNc dopamine neurons 
promises to be a suitable neuroprotective strategy (Surmeier et al., 2010; Parkinson Study, 2013).

Although the principal target of SNc dopamine neurons is the striatum, the most prominent 
pathophysiology in animal models of late-stage PD and in human patients occurs in the globus 
pallidus (GPe). In late-stage PD the firing patterns of GPe neurons change, resulting in suppression 
of their autonomous activity and the emergence of rhythmic bursting activity within the GPe–
subthalamic nucleus network (reviewed in Rivlin-Etzion et al., 2006; DeLong and Wichmann, 
2007; Hammond et al., 2007). HCN channels are crucial for the pacemaker activity of GPe neurons 
(Chan et al., 2004), and a recent study implicated a downregulation of all four pore-forming HCN 
channel subunits (HCN1–4) as well as of the HCN trafficking protein tetratricopeptide repeat-
containing Rab8b-interacting protein (TRIP8b) in the loss of this feature during PD (Chan et al., 
2011). Autonomous pacemaking of GPe neurons was restored by upregulating HCN2 channel 
expression via viral expression (the channel subunit most affected in PD). This change in firing pat-
terns, however, did not significantly improve motor deficits, suggesting that HCN channel down-
regulation is a homeostatic adaptation of the network pathology rather than a cause. Such changes 
in ion channel expression can act as a homeostatic mechanism (Turrigiano and Nelson, 2004; Frick 
and Johnston, 2005). Subsequently, the authors provided evidence that calcium influx through 
dendritic L-type Ca2+ channels during burst firing activity caused HCN channel downregulation 
(Chan et al., 2011).

Dopamine also has immediate influences on the intrinsic excitability of target neurons by mod-
ulating their ion channels, suggesting that a decline in dopamine levels during PD has additional 
consequences for neuronal/dendritic function. Most of the effects of dopamine on intrinsic excit-
ability implicate protein kinase A (PKA)-dependent modulation of voltage-gated Ca2+, Na+, and 
K+ channels (reviewed in Surmeier et al., 2011b; Tritsch and Sabatini, 2012). The outcome will 
depend on which dopamine receptors are present in these neurons, namely D1-like dopamine 
receptors (D1 and D5) or D2-like dopamine receptors (D2, D3, and D4) (Svenningsson et al., 2004; 
Hernandez-Lopez et al., 2000). For example, spiny projection neurons of the direct pathway ex-
press primarily D1 receptors that increase their intrinsic excitability, while those of the indirect 
pathway express primarily D2 receptors that decrease their intrinsic excitability. These changes 
have direct consequences for synaptic plasticity (reviewed in Surmeier et al., 2011).

Alzheimer’s disease
AD is a progressive and fatal disease, and the most common neurodegenerative disorder. As 
such, AD accounts for the majority of patients experiencing memory loss. The accumulation of 
amyloid-β peptide (Aβ), leading to the formation of so-called amyloid plaques in the brain, is 
believed to be the core pathophysiological mechanism of AD (Hardy and Selkoe, 2002; Ross and 
Poirier, 2004). Several studies have demonstrated abnormal spine and dendritic morphology, 
as well as aberrant dendritic signaling, in AD. The role of dendrites in AD has been highlighted 
in recent reviews (Nestor and Hoffman, 2012; Cochran et al., 2014). The remainder of this sec-
tion on AD is devoted to a discussion of alterations in dendritic excitability due to ion channel 
dysfunction.

Aβ causes aberrant dendritic signaling by selective binding to a variety of receptors as well as 
ion channels within the dendrites (reviewed in Cochran et al., 2014). In addition to this direct 
modulation, some of the putative Aβ receptors are linked to intracellular signaling cascades such 
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as mitogen-activated protein kinase (MAPK) that can alter ion channel function/expression. In the 
following we will focus on the direct consequences of the binding of Aβ to dendritic ion channels.

Abnormal levels of Aβ cause an imbalance of excitation to inhibition (Palop and Mucke, 
2010). Dysfunction of dendritic ion channels may contribute to this imbalance, in particular 
via the effects of Aβ on Ca2+, K+, and Na+ channels that regulate dendritic excitability. Calcium 
dysregulation is a critical component of dysfunction in AD. In neuronal cultures, Aβ induces 
MAPK phosphorylation of Cav1 channels and increased calcium influx through these chan-
nels, thereby causing neurotoxicity. Cav1.2 channels are L-type Ca2+ channels that are located 
both extrasynaptically and in dendritic spines. In an AD mouse model, Cav1.2 is enriched in 
dendrites (Willis et al., 2010), and AD brain tissue shows increased Cav1 expression in the hip-
pocampus (Coon et al., 1999).

More recently, a role for Nav1.1 channels was also found in the pathophysiology of AD (Ver-
ret et al., 2012). In this study, the authors showed a decrease in Nav1.1 subunit expression in 
parvalbumin-positive interneurons of the parietal cortex in both AD patients and a mouse 
model of AD. In the mouse model of AD, this decrease contributed to the reduced gamma 
oscillations and increased network synchrony seen in the mouse model (Verret et al., 2012). 
Together, their results suggest that a decreased expression of Na+ channels in the cortex could 
contribute to the epileptiform activity and seizures observed in AD patients (Verret et al., 2012; 
Vossel et al., 2013). Although Nav1.1 channels are predominantly expressed in the axon initial 
segment, thereby controlling the initiation and propagation of APs (Duflocoq et al., 2008), they 
are also expressed in the somato-dendritic compartment of neocortical and hippocampal pyr-
amidal neurons (Gong et al., 1999), where changes in their expression would alter dendritic 
excitability.

Another Aβ-sensitive ion channel that strongly regulates dendritic excitability is the A-type K+ 
channel (see Nestor and Hoffman, 2012). In hippocampal CA1 pyramidal neurons, these chan-
nels are highly expressed in oblique and distal apical dendrites, where they strongly regulate the 
efficacy of dendritic action potential backpropagation, synaptic summation, and the induction of 
synaptic and non-synaptic forms of plasticity (Hoffman et al., 1997; Frick et al., 2003, 2004; Chen 
et al., 2006; Kim et al., 2007; Losonczy et al., 2008; Makara et al., 2009). In cultured and acutely dis-
sociated hippocampal neurons, as well as in acutely dissociated neurons from the diagonal band of 
Broca nucleus in the basal forebrain, Aβ blocks A-type K+ channels (Good and Murphy, 1996; Xu 
et al., 1998; Jhamandas et al., 2001; Zhang and Yang, 2006). Other studies on cultured cerebellar 
neurons found either an increase in A-type K+ currents or no effect depending on the aggregation 
state (Ramsden et al., 2001; Plant et al., 2006). A-type K+ channels in cultured cortical neurons 
were either reduced or unaffected (Ramsden et al., 2001; Ye et al., 2003). From these studies, it has 
become clear that the brain region, culture condition, application time, and the aggregation state 
and peptide length of Aβ influence the modulation of K+ channels.

The first direct evidence for an effect of Aβ on dendritic excitability was provided by a study by 
Chen (2005). Aβ treatment decreased A-type K+ currents in dendritic membrane patches from 
CA1 pyramidal neurons in acute hippocampal slices. Dendritic currents were more significantly 
affected compared with somatic ones. The reduction in dendritic A-type K+ currents caused an 
increase in the amplitude of backpropagating APs, consistent with their known role in regulating 
this phenomenon. A computational study found that the oblique dendrites would be most pro-
foundly affected by changes in A-type K+ currents (Morse et al., 2010), in agreement with experi-
mental evidence (Frick et al., 2003). Moreover, a decrease in A-type K+ current could contribute to 
the hyperexcitability phenotype found in hippocampal neurons in a mouse model of AD (Busche 
et al., 2012).
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Epilepsy

Ion channelopathy in epilepsy: humans and animal models
Epilepsy, the disease state of spontaneously recurring seizures, is one of the most prevalent neu-
rological conditions, affecting nearly 1% of the population. That ion channel dysfunction lies at 
the root of epilepsy has for decades seemed a self-evident truth. Ion channels, both voltage- and 
ligand-gated, mediate the excitable behavior of neurons, and since seizures result from neuronal 
hyperexcitability, altered biophysical properties or expression of ion channels must form the final 
common pathway of pathological hyperexcitability. This idea has been proven in human epilepsy 
by the discovery of a number of ion channel mutations underlying Mendelian genetic epilepsy, 
beginning with the finding that a mutation in nicotinic acetylcholine receptors causes autosomal 
dominant nocturnal frontal lobe epilepsy (ADNFLE) (Steinlein et al., 1995). Since that first dem-
onstration in 1995, a number of human genetic epilepsy syndromes have been conclusively linked 
to single gene mutations (Mantegazza et al., 2010). Notably, most of these genes code for voltage-
gated or ligand-gated ion channel subunits or presumptive accessory subunits. The importance 
of these findings cannot be overstated: they prove that defects in the expression and function of 
individual ion channel subtypes can produce human genetic epilepsy syndromes.

However, most human epilepsy is of undetermined origin, and not clearly inherited. Are dys-
functional ion channels involved in the pathophysiology of these “idiopathic” epilepsies? A large-
scale candidate gene sequencing study suggests that ion channel mutation is not responsible. 
Sequencing of 237 different ion channel genes found no increase in single nucleotide polymor-
phisms (SNPs) (i.e., putative mutations) when the genomes of people with sporadic epilepsy were 
compared with normal controls (Klassen et al., 2011). This still leaves the possibility that modi-
fication of the expression of those ion channel genes by any of a number of other mechanisms—
transcriptional, translational, or post-translational—may affect neuronal excitability and produce 
epilepsy. Such ion channel modifications may be the final result of signaling cascades set into 
motion by any of the acquired insults to the brain that have a high probability of producing epi-
lepsy, such as head injury, brain tumors, or cerebral hemorrhage. This “acquired channelopathy” 
hypothesis has attracted increasing amounts of experimental support in recent years. And interest-
ingly, some of the ion channels most implicated are highly expressed in the dendrites of pyram-
idal neurons. In this section, we will discuss some of the evidence for dendritic channelopathy in 
epilepsy, in both animal models and humans.

One difficulty in proving that acquired channelopathy plays a causal role in human epilepsy is 
the relative inaccessibility of human brain tissue from patients with epilepsy. Unlike the case with 
genetic epilepsy where a tube of blood is all that is needed to survey a patient’s genome, patients 
with acquired epilepsy do not give up brain tissue for analysis, with the exception of the most se-
verely affected who present for brain surgery to resect the epileptogenic focus. Another equally sig-
nificant problem is the lack of control tissue with which to make comparisons. For the most part, 
our understanding of acquired channelopathies has relied on animal modeling. Animal models 
provide the benefits of being able to study controls, as well as the ability to follow the time course 
of changes in ion channel expression after a neural insult, before spontaneous seizures have arisen.

The most widely used animal models of epilepsy are the post-status epilepticus (SE) models in-
volving induction of SE by pilocarpine or kainic acid. With these protocols, pilocarpine or kainate 
are injected to produce a period of SE lasting about an hour, followed by termination with sedative 
drugs. This period of SE appears to produce foci of excitotoxic damage, particularly in the tem-
poral lobe. The result is a very obvious epileptic phenotype in rodents, with spontaneously recur-
ring convulsive seizures that originate in hippocampal and peri-hippocampal structures (Toyoda 
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et al., 2013). Because seizure onset is from the temporal lobe, the post-SE models appear to best 
replicate temporal lobe epilepsy (TLE), which is the most common epileptic syndrome in adult 
humans. And as in human TLE, the post-SE models show a “latent period” between the insult and 
the development of spontaneous seizures, as well as hippocampal pathology very similar to that 
seen in humans (known as “mesial temporal sclerosis”). A significant drawback to these models is 
the fact that they do not replicate a naturalistic insult: humans are rarely exposed to chemical con-
vulsants. However, it has been argued that post-SE models are relevant because some human cases 
of adult TLE are associated with a history of febrile SE as a child. Additional models of epilepsy 
exist that attempt to reproduce human brain insults such as traumatic injury, stroke, or infection 
but vary in the robustness of their epileptic phenotypes (White, 2002).

There are multiple ways in which acquired alteration of ion channel function might contribute to 
epileptogenesis, either as a fundamental cause of hyperexcitability or as a mediator of the process 
in which spontaneous seizures progressively worsen the course of epilepsy (Ben-Ari et al., 2008). It 
is also possible that some ion channel alterations act to retard the development of epilepsy. When 
interpreting studies of changes in ion channel properties in epilepsy models, it is important to con-
sider whether the changes seen reflect a seizure-dependent process or are set into motion by the 
initial insult and precede the onset of seizures. A further question is whether the changes seen are 
pro-convulsive or homeostatic: do they demonstrably increase the excitability of neurons, or do 
they diminish intrinsic excitability in response to recurrent seizures? With these thoughts in mind, 
we can consider recent evidence for both inherited and acquired ion channel changes in animal 
models of epilepsy, focusing on those species that are highly represented in the dendrites of pyr-
amidal neurons found in the cortex and hippocampus. Whenever possible, we will seek correlation 
with findings in human epilepsy.

Specific dendritic ion channelopathies in epilepsy: HCN channels
HCN channels were originally identified in the sinoatrial node as a key regulator of heart rate, but 
have since been found widely in the brain, with the HCN1 subtype the predominant isoform in 
the neocortex and hippocampus, while the HCN2 subtype, although also found in the neocortex 
and hippocampus, is most highly expressed in subcortical regions such as the thalamus. The bio-
physical properties of these channels, and their contribution to neuronal excitability, are described 
elsewhere in this book. In brief, HCN channels are expressed predominantly in the dendrites of 
pyramidal neurons, including those of the CA1 hippocampus, entorhinal cortex, and neocortex. 
They principally act to diminish the excitability of pyramidal neurons by inhibiting the impact 
of excitatory postsynaptic potentials in distal dendrites. Thus, it would be predicted that epilepsy 
would be associated with loss of expression or function of HCN channels. Of the ion channels with 
predominantly dendritic expression, changes in HCN channels provide some of the most compel-
ling evidence linking altered expression with epilepsy, particularly in animal models. In humans, 
the evidence linking HCN channelopathy with epilepsy is growing, but somewhat conflicting.

A recent study associated HCN1 channel mutations with a syndrome of catastrophic early 
childhood epilepsy characterized by unremitting seizures, intellectual disability, and autism (Nava 
et al., 2014). Six HCN1 missense mutations were identified that were de novo mutations. When 
recombinant HCN1 channels with each of the mutations were exogenously expressed, diverse 
functional effects were seen: three of the mutations abolished Ih, the current mediated by HCN 
channels, whereas in the other three mutants Ih was upregulated via a depolarizing shift in its 
voltage-dependent activation. While interpretation of the functional consequences of these muta-
tions must be cautious (since they were not studied in human brain tissue), this study appears to 
clearly link HCN1 channels and epilepsy. Another report linked a recessive mutation in the human 
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HCN2 gene with a phenotype of generalized epilepsy (DiFrancesco et al., 2011). Together, these 
results suggest that while HCN channels are not a well-recognized cause of Mendelian epilepsy, 
there are links between HCN channel dysfunction and genetic epilepsy in humans.

In acquired epilepsy in humans there is suggestive but inconclusive evidence that HCN chan-
nel expression is altered. HCN channel mRNA expression from temporal lobe resections overall 
showed no significant change in comparison with autopsy controls; however, a subgroup of pa-
tients with the greatest degree of mesial temporal sclerosis had an increase in HCN1 expression 
in the dentate gyrus (DG) (Bender et al., 2003). This finding was surprising, since DG neurons 
normally demonstrate very little Ih; thus this could be interpreted as “compensatory” upregulation 
of HCN1 expression in the most severely affected patients. Other investigators found that the mag-
nitude of Ih measured in neocortical neurons from brain tissue acutely removed during epilepsy 
surgery inversely depended on the pre-surgical baseline frequency of seizures, suggesting that 
more severe epilepsy was associated with a loss of neocortical HCN channel function (Wierschke 
et al., 2010). As mentioned above, the lack of control comparisons makes these findings difficult 
to interpret. Also, whether the changes in HCN channel expression and the magnitude of Ih are a 
cause or a consequence of epilepsy is impossible to establish in these studies.

The above human studies provide suggestive evidence for genetic and acquired HCN channelo-
pathies in epilepsy in humans. Studies in animal models with genetic deletions of HCN channels 
provide a more compelling case that this ion channel may be relevant to epilepsy. Constitutive 
knock-out of the mouse hcn2 gene produces a phenotype of generalized epilepsy, consisting of 
spontaneous absence seizures and generalized 5-Hz spike-wave EEG discharges, most likely re-
sulting from the loss of thalamic HCN2 expression (Ludwig et al., 2003).

Deletion of the hcn1 gene in rodents does not produce epilepsy, as shown in two studies (Huang 
et al., 2009; Santoro et al., 2010). Neither of these studies detected spontaneous seizures in knock-
out animals. However, both studies demonstrated that hcn1 deletion increased the severity of SE 
acutely induced by kainic acid. In addition, the latency period from SE to the occurrence of the 
first spontaneous seizure was shortened to one-sixth of that in wild-type animals, thus demon-
strating an effect of HCN1 channels on epileptogenesis after a brain insult. This study went one 
step further to examine pyramidal neuron excitability in hcn1 knock-out mice. As expected, pyr-
amidal neurons lacking the HCN1 subunit demonstrated both increased intrinsic excitability and 
prolonged excitatory responses to synaptic stimulation. This effect on synaptic transmission may 
reflect the loss of presynaptic HCN1 channels that normally constrain excitatory transmission 
(Huang et al., 2011). Thus, genetic deletion of HCN channels confirms that they exert an inhibitory 
and even anticonvulsant role on cortical and hippocampal excitability under control conditions. 
However, why HCN1 deletion produces cortical and hippocampal hyperexcitability while not pro-
ducing epilepsy is not easily explained. One possible reason is that constitutive deletion of HCN1 
channels leads to compensatory upregulation of a tonic GABAA receptor-mediated current that 
partially suppresses hyperexcitability (Chen et al., 2010).

HCN1 channel expression is also altered during epileptogenesis induced in animals by pilo-
carpine and KA or following hyperthermia-induced SE. One of the first studies to make this 
association found an increase in Ih at the soma of CA1 hippocampal pyramidal neurons after  
hyperthermia-provoked seizures (Chen et al., 2001). Subsequent studies that measured Ih in the 
dendrites, where its expression is greatest, found an acute loss of dendritic expression of HCN 
channels within the first week post-SE (Shah et al., 2004). This loss of expression was maintained in 
chronic epilepsy, and was associated with a hyperpolarizing shift in voltage-dependent gating that 
further downregulated Ih (Jung et al., 2007). Since HCN channels are activated by hyperpolariza-
tion, a hyperpolarizing shift in activation reduces the amount of Ih present at resting potential. 
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Interestingly, when recurrent seizures post-SE were blocked by administration of phenobarbital, 
the altered HCN channel gating reverted to normal while the loss of HCN channel expression 
persisted. This suggested that there are separate mechanisms of HCN channel downregulation in 
epilepsy, some clearly dependent on ongoing seizures and some independent of seizure activity. 
The altered gating of dendritic HCN channels nonetheless produces pyramidal neuron hyperexcit-
ability. This gating change was dependent in part on a loss of p38 mitogen-activated protein kinase 
(p38 MAPK) activity in chronically epileptic animals, suggesting a role for phosphorylation-
dependent mechanisms in maintaining the HCN channelopathy (Jung et al., 2010). Interestingly, 
lamotrigine, a commonly-used anti-epileptic drug, upregulates the gating of HCN channels in pyr-
amidal neuron dendrites, an action that may contribute to its anti-epileptic action (Poolos et al., 
2002).

The mechanisms underlying the loss of expression of HCN1 channels in epilepsy models have 
been studied in great detail, and the insights derived from these investigations may prove import-
ant for understanding how the expression of other ion channels is altered during the development 
of epilepsy following a brain insult. Dendritic HCN1 channelopathy in post-SE models appears to 
depend on several interwoven processes. Within the first hour post-SE, about half of the HCN1 
channels undergo internalization from the dendritic plasma membrane, and are degraded within 
the first day post-SE (Jung et al., 2011). This effectively reduces the number of functional dendritic 
ion channels. Similar alterations in ion channel trafficking to the surface membrane post-SE have 
been described for A-type K+ channels and GABAA receptor subunits, and thus may be a common 
theme in acquired channelopathy (Goodkin et al., 2008; Lugo et al., 2008; Terunuma et al., 2008). 
These latter examples are phosphorylation dependent; a similar mechanism may underlie altered 
trafficking of HCN1 channels in epilepsy, as it has been recently shown that surface expression of 
HCN1 channels under normal conditions is modulated by the activity of protein kinase C (Wil-
liams et al., 2015). Additional possible effectors of defective HCN1 channel trafficking include two 
accessory scaffolding proteins, Trip8b (Lewis et al., 2011; Piskorowski et al., 2011) and filamin A 
(Gravante et al., 2004). Trip8b expression is important for the establishment of the HCN1 channel 
gradient in CA1 pyramidal neuron dendrites, while filamin A appears to increase surface mem-
brane expression of HCN1 channels, at least in heterologous expression systems.

Within the first days post-SE, and persisting into the chronic epilepsy phase, dendritic HCN1 
expression remains diminished. This appears to be a result of reduced production of HCN1 mRNA 
(Brewster et al., 2002). This decrease in transcription appears to depend on the upregulation of 
a master transcriptional regulator, neuron restrictive silencing factor (NRSF) (McClelland et al., 
2011). These results suggest that the development of HCN1 channelopathy is the result of sev-
eral different mechanisms, each with a distinct temporal evolution. Whether these mechanisms 
proceed in a serial fashion, each dependent on signaling in the preceding mechanism, or exist as 
parallel processes, is as yet unknown. The identification of multiple signaling processes underlying 
dendritic HCN channelopathy points to the possibility of therapeutic interventions that might 
prevent or reverse altered HCN channel expression in epilepsy.

K+ channels
In his classic textbook (Hille, 2001) Bertil Hille commented that K+ channels were like the “stops 
on an organ,” able to fine-tune neuronal excitability by their diverse biophysical properties. Perhaps 
not surprisingly, then, K+ channel dysfunction has been demonstrated to underlie certain genetic 
epilepsy syndromes. The most well-understood is the Mendelian syndrome benign familial neona-
tal convulsions (or seizures, BFNC/BFNS), which results from mutation of the genes KCNQ2 and 
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KCNQ3 (Biervert et al., 1998). More recently, cases of catastrophic early childhood epilepsy have 
also been associated with KCNQ2 mutations (Weckhuysen et al., 2012). Other human genetic syn-
dromes with an epileptic phenotype resulting from K+ channel gene mutations include: episodic 
ataxia and epilepsy, due to KCNA1 mutations that produce altered defective Kv1.1 channels; devel-
opmental delay, epilepsy, and neonatal diabetes (DEND), due to mutation in the inward-rectifier 
K+ channel encoded by the gene KCNJ11 (Gloyn et al., 2006); and epilepsy, ataxia, sensorineural 
deafness, and tubulopathy (EAST), due to mutation of another inward rectifier, KCNJ10 (Reichold 
et al., 2010). In humans, there is a single report of a gene mutation leading to loss of functional 
Kv4.2 expression in an individual with epilepsy, a nonsense mutation in the KCND2 gene leading 
to truncation of the Kv4.2 protein (Singh et al., 2006).

Of all the human epilepsy-associated K+ channelopathies, only Kv4.2 has a clear association 
with dendritic physiology. KCNQ2 and KCNQ3 channels are localized primarily to axo-somatic 
compartments (Shah et al., 2008), and it is unclear whether the inward rectifiers implicated in 
human genetic epilepsy have a prominent dendritic localization in pyramidal neurons as they do 
in rodents (Chen and Johnston 2005). However, numerous studies in animal models of acquired 
epilepsy have identified downregulation of Kv4.2 and associated neuronal hyperexcitability. Inter-
estingly, like HCN1, genetic deletion of this ion channel produces neuronal hyperexcitability but 
not epilepsy (Chen et al., 2006; Barnwell et al., 2009).

Like HCN1 channels, Kv4.2 channels mediating the A-type transient K+ current (IA) are also 
expressed at a higher density in distal dendrites of hippocampal pyramidal neurons, albeit with a 
somewhat less extreme gradient (about a seven-fold higher density in the apical dendrites than in 
the soma; Hoffman et al., 1997; Chen and Johnston 2004). The high dendritic density of rapidly 
activating Kv4.2 channels reduces the amplitude of EPSPs, activity-evoked intracellular calcium 
transients, and backpropagating dendritic APs. The discovery of its role in experimental epilepsy 
marked the first determination of a dendritic channelopathy (Bernard et  al., 2004). This work 
found that Kv4.2 expression in chronically epileptic rats post-SE was diminished by about a third, 
as quantified by both protein and mRNA expression. The electrophysiological consequence of the 
loss of IA was increased AP backpropagation in the dendrites, potentially allowing increased open-
ing of other voltage-gated channels such as Ca2+ channels. An interesting additional finding was 
that the remaining Kv4.2 channels were more phosphorylated at a site recognized by the extra-
cellular stimulus-related kinase (ERK), thus diminishing their activity (Hoffman and Johnston 
1998; Yuan et al., 2002). Kv4.2 dysfunction seen in chronic epilepsy recapitulates the theme shown 
for HCN1 channels: multiple mechanisms of channelopathy that result in a loss of channel num-
ber, as well as functional downregulation of the remaining channels. Indeed, subsequent stud-
ies have shown that, like HCN1 channels, IA is acutely downregulated in the first several hours 
post-SE due to internalization from the surface membrane (Lugo et al., 2008). This appears to be 
a phosphorylation-dependent mechanism, involving hyperactivity of the ERK pathway. How the 
acute loss of Kv4.2 expression in the first hour post-SE ultimately develops into a persistent state of 
downregulated Kv4.2 protein and mRNA expression during chronic epilepsy is thus far unknown.

Ca2+ channels
Ca2+ channels hold several associations with genetic epilepsy. Mutations in the CACNA1 gene pro-
ducing the Cav2.1 channel yield the Mendelian syndrome of episodic ataxia, familial hemiplegic 
migraine, and epilepsy. Several polymorphisms in the human CACNA1H gene underlying Cav3.2 
channels have been described in patients with epilepsy (Heron et al., 2004). This latter channel 
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mediates the low-voltage-activated transient calcium current IT. Numerous lines of experimental 
evidence implicate IT in epilepsy and as a target of anti-epileptic drugs.

Transient T-type Ca2+ channels, along with high-voltage-activated R-type channels, are en-
riched in the dendrites of pyramidal neurons compared with their somatic densities (Magee and 
Johnston, 1995, 1997). T-type Ca2+ channels have a long association with experimental epilepsy, 
particularly due to their ability to promote neuronal burst firing by producing a depolarizing cur-
rent that activates at voltages subthreshold to AP firing. Indeed, pharmacological blockers of IT 
such as ethosuximide potently inhibit generalized absence seizures (Tringham et al., 2012). Den-
dritic T-type Ca2+ channels may also be relevant to TLE. CA1 pyramidal neurons develop bursting 
behavior post-SE in conjunction with an increase in dendritic IT (Su et al., 2002; Yaari et al., 2007). 
This increase in IT appears to be mediated solely by Cav3.2, and begins before the onset of spontan-
eous seizures, demonstrating that it is not a consequence of the seizures themselves (Becker et al., 
2008). Cav3.2 upregulation appears to depend on a transcriptional mechanism. Interestingly, mice 
with genetic deletion of Cav3.2 channels become epileptic just as wild-type mice do post-induction 
with pilocarpine, but have a significantly reduced seizure frequency. This suggests that inhibition 
of Cav3.2 channels may exert an antiepileptic action. A similar result was seen in which transient 
pharmacological inhibition of Cav3.2 channels post-SE produced a long-lasting anti-epileptic ef-
fect (Doeser et al., 2015). Despite these intriguing studies linking T-type channels, particularly 
the Cav3.2 isoform, to seizure generation, no studies to date have looked in detail at the density or 
voltage-dependent properties of dendritic T-type channels to determine how these are altered in 
epilepsy.

Other ion channels
Na+ channels have become an intense focus of channelopathy research owing to their involvement 
in two genetic epilepsy syndromes, generalized epilepsy with febrile seizures plus (GEFS+) and 
severe myoclonic epilepsy of infancy (SMEI). They would seem prime suspects in any investiga-
tion of the causes of acquired epilepsy. However, even in their associated genetic syndromes, the 
nature of Na+ channel dysfunction remains unclear: initial evidence from heterologous expres-
sion systems suggested that mutations in Nav1.1 causing GEFS+ produced a toxic gain of func-
tion (an incompletely inactivating Na+ current, INa), yet neurons from transgenic mice containing 
Nav1.1 mutations appear to show a loss of INa only in interneurons, the principal neuron INa being 
unchanged (Martin et  al., 2010). Likewise, hippocampal pyramidal neurons from mice with a 
truncated Nav1.1, mimicking mutations seen in SMEI, show no significant alteration in INa, while 
hippocampal interneurons have a substantial loss of INa and decreased repetitive firing in response 
to stimulation (Yu et al., 2006). Thus there does not appear to be a pathological alteration of den-
dritic Na+ channels in hippocampal pyramidal neurons in these relatively more common genetic 
epilepsies. In models of acquired epilepsy, there is little specific evidence for altered biophysical 
properties of Na+ channels, with AP threshold at the soma appearing unchanged in chronic epi-
lepsy, although dendritic Na+ channels were not specifically examined (Sanabria et al., 2001).

Likewise, ligand-gated GABAergic channels localized to pyramidal neuron dendrites have not 
been specifically implicated in epilepsy. While there is good evidence that GABAergic afferents 
from oriens lacunosum-moleculare interneurons to pyramidal neuron dendrites are diminished 
in chronic epilepsy (Cossart et  al., 2001), there is so far no evidence to suggest that dendritic 
GABAA receptors themselves are altered in experimental or human epilepsy. However, given the 
studies that have shown selective up- and downregulation of GABAA receptor subunits following 
the induction of epilepsy in experimental models (reviewed in Houser et al., 2012), it is possible 
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that significant rearrangements of pyramidal neuron dendritic GABAA receptor subunits may 
occur during epileptogenesis.

Summary
The studies described here focus on one aspect of dendritic physiology implicated in epilepsy. 
Since dendrites comprise the majority of the surface membrane area of pyramidal neurons, it is 
likely that the majority of the cell’s ion channel expression also occurs in dendrites. Perhaps it is no 
surprise then that significant alterations in dendritic ion channel expression and function occur 
during the development of epilepsy. Other aspects of dendritic biology, such as derangements to 
cytoskeletal integrity, may also contribute to neuronal hyperexcitability (Zeng et al., 2007; Casa-
nova et al., 2012). As the signaling mechanisms underlying dendritic channelopathy become better 
understood, it is possible that novel treatments will emerge for reversing or preventing this com-
mon neurological disease.

Conclusions
As outlined in the early sections of this chapter, it is difficult to assess the functional significance 
of the changes in dendritic structure that are associated with certain disease states. Such changes 
could represent the primary mechanisms of the disease or merely be secondary to the loss of syn-
aptic inputs or other brain pathology. This chapter has instead focused on the emerging field of ion 
channelopathies, and specifically, where known, on defects in ion channels known to be expressed 
in dendrites. Dendrites are highly plastic structures. Homeostatic changes in the functional prop-
erties of dendrites can occur (Turrigiano and Nelson, 2004; Frick and Johnston, 2005; Magee and 
Johnston, 2005) that might partially compensate for disease-related alterations in ion channels. It 
is critical to begin to study the physiology of dendrites directly, in both normal and animal models 
of disease, using dendritic recordings and imaging. As discussed above, this has been fruitful for 
epilepsy, FXS, and neuropathic pain, and we should expect significant advances in this area in the 
future for many of the other important and behaviorally relevant neurological and psychiatric 
disorders.
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