
 i 

 
 
 

© Copyright 2019 
 

Yifei Guan 
  



 ii 

 

Study of Laminar Electrohydrodynamic Flows  
 
 
 

Yifei Guan 
 
 
 

A dissertation 
 

submitted in partial fulfillment of the 
 

requirements for the degree of  
 
 
 

Doctor of Philosophy 
 
 
 
 

University of Washington 
 

2019 
 
 

Reading Committee: 
 

Igor Novosselov, Chair  
 

Alberto Aliseda  
 

James Riley  
 
 
 
 

Program Authorized to Offer Degree:  
 

Mechanical Engineering 
 
 
 
 



 iii 

University of Washington 
Abstract 

 

 

 

 
Study of Laminar Electrohydrodynamic Flows  

 
 
 

Yifei Guan 
 
 
 

Chair of the Supervisory Committee: 
Research Assistant Professor Igor Novosselov 

Department of Mechanical Engineering 

 

From a physical perspective, electrohydrodynamic (EHD) flow is driven by collisions of neutral 

molecules with charged species accelerated by an electric field. In modeling, however, this effect 

can be simplified as a three-way coupling between the Navier-Stokes equations, the charge 

transport advection-diffusion equation, and Maxwell’s equations. In the context of an 

electrohydrodynamic flow, this flow acceleration can be used for propulsion, species transport, 

and shear flow modification. Here, these applications are investigated numerically using several 

modeling approaches, including the finite volume method, Lattice Boltzmann method, and finite 

difference method, respectively. Finite volume method is used to model corona discharge 

phenomenon enabling a direct simulation corona-driven flow. Lattice Boltzmann method is used 

to model 2D and 3D electroconvection; the numerical code is parallelized and used for GPU 

computing.  Finite difference method adapts a direct Poisson solver, which accelerates the 

convergence, it is used to model EHD flow in the laminar boundary layer.  
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Chapter 1. INTRODUCTION  

Electrohydrodynamic (EHD) flow is an interdisciplinary science describing the interaction of 

fluids with electric fields. Positive ions are injected into a dielectric fluid in a strong electric field 

between two electrodes; the high-velocity ions transfer their kinetic energy to the neutral molecules 

by collisions that accelerate the flow in the direction of ion drift. This EHD flow propulsion 

phenomenon is used in many practical applications, such as convective cooling 1-6, electrostatic 

precipitators (ESP) 7-10, plasma assisted combustion 11, airflow control 12,13, and as a turbulent 

boundary layer actuators 14.  In this work, we study the EHD flow in the context of atmospheric 

positive corona discharge, laminar boundary layer, and the hydrodynamic instability of EHD 

convection (EC). In Chapter 2, we developed an analytical model for the EHD using a point-to-

ring corona discharge, which is followed by Chapter 3, a numerical model based on a finite volume 

method investigating the same phenomenon. In Chapter 4, we derive a non-dimensional parameter 

X, which is defined as the ratio of electric force to viscous force. In Chapter 5, we study the energy 

transfer efficiency in an EHD propulsion device. Chapter 6 shows the EHD effects on laminar 

boundary layer with the numerical result from a finite difference model. Then we switch gear in 

Chapter 7 to study the laminar EC with and without a cross-flow. The conclusions are presented 

in 1.1, which is followed by Appendices.  

1.1 EHD FLOW INDUCED BY ATMOSPHERIC CORONA DISCHARGE 

Atmospheric corona discharge generates a flow of ions due of a strong electric field between an 

anode and a cathode; the high-velocity ions collide to the neutral air molecules and transfer their 

kinetic energy that accelerates the air in the direction of the ionic drift. When a high voltage is 

applied, the neutral air molecules are broken down by the strong electric field near the corona 

electrode. In a positive corona, the electrons are attracted to the anode; positive ions, such as +
2O

and +O 15-17, drift to the cathode, which generates ionic wind. A quadratic voltage-current ( )I −  

relation was described by Townsend and validated for a coaxial corona discharge 

configuration 18,19. Other corona discharge configurations also follow a quadratic relation with 

modifications due to specific parameters in the configuration, e.g., point-to-pot 15, point-to-plate 
20, point-to-grid 21, sphere-to-plane 22, coaxial cylinders 23,24, wire-cylinder-plate 25, point-to-ring 
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26-28, parallel electrodes 29, multi-electrodes 30, and nonuniform electric fields 31. Guan et al. 32 

developed an analytical model generalizing the ( )I −  relationship independent of the corona 

configuration, which parameterizes one-dimensional flow in the direction of the electric field 

gradient. The ions’ acceleration in the electric field and their interaction with the neutral molecules 

in the ion drift region can be modeled as an external force term (Coulomb force) in the Navier-

Stokes equations (NSE). A two-part model is required: (i) the description of the ion motion in the 

electric field, and (ii) the effect of the ion drift on the neutral gas in the flow acceleration region.  

1.1.1 Analytical model 

The voltage-current ( )I −  relation during the corona discharge characterizes the ion motion 

between the electrodes globally. This phenomenon has been studied since the early 20th century. 

The classic ( )I −  relationship was derived by Townsend 18 in 1914 and validated for a coaxial 

corona configuration. The quadratic relationship has been validated for various corona geometries, 

such as point-to-pot 33,  point-to-plate 20, and point-to-ring 26.  In a point-to ring corona, Giubbilini 

also demonstrated that the ion current is inversely proportional to the point-to-ring distance 26. 

 

Some recent studies modify Townsend’s quadratic relationship to better describe the ( )I −  

relationship for different electrode configurations, e.g., point-to-plate 34,35, point-to-grid 21, point-

to-cylinder36, sphere-to-plane 22, coaxial cylinders 23,24, wire-cylinder-plate 25,37,38, point-to-ring 26-

28, parallel electrodes 29, multi-electrodes 30, and non-uniform electric fields 31. In propulsion 

studies, the electrostatic force has been modeled using various hydrodynamic terms, such as body 

forces 39 or pressure (drag) 7. Typically, the ionic wind velocity is experimentally described as a 

function of the corona anode voltage 28,40-42. Previous experimental study of point-to-ring geometry 

investigated external EHD flow 28; the internal EHD flow can provide more consistent 

measurement and achieve higher velocities due to more efficient axial flow acceleration.  

 

In Chapter 2, we develop an analytical model for corona-driven EHD flow in an axisymmetric 

geometry and validate the model against the experimental measurements in atmospheric 

conditions. The conceptual representation of the EHD system includes (i) gas ionization region, 

(ii) flow acceleration region where unipolar ion motion in the gas medium acts as a body force 

accelerating the flow, and (iii) momentum conservation region dominated by the inertial and 
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viscous terms of the NSE. These regions do not necessarily have clear boundaries; however, they 

can be characterized based on the flow non-dimensional parameters dominant in each of them. The 

model presented in this chapter addresses the flow acceleration behavior resulting from ion 

collisions with neutral air molecules in the ion drift region. During the development, we first obtain 

the relationship between the electric properties of the EHD flow, such as corona voltage  , 

electric field E , and charge density c  for planar, cylindrical, and spherical coordinates. Then, 

the EHD velocity profiles are solved numerically using a Chebyshev spectral method. Finally, the 

analytical model is compared with the experimental data for a point-to-ring corona in an internal 

pipe flow configuration. The model results are compared with the experimental data in the 

acceleration region but overpredict the velocity in the regions away from the axis of the domain. 

In the inertial flow region (away from the centerline), the flow develops under the balance between 

the EHD force, convective flow acceleration, and viscous shear stresses. 

1.1.2 Numerical model 

A better understanding of the multiphysics nature of the EHD flow requires the insight of the 

phenomenon. To correctly predict the flow established by the electric force, the following elements 

need to be considered: (1) the electric field resulting from the potential difference between the 

corona and ground electrodes, as well as its modifications due to the space charge in the high ion 

concentration in the region; (2) the ion motion in the resulting electric field; (3) the interaction 

between the ion drift and the neutral gas in the flow acceleration region; (4) the viscous and 

turbulent stresses; and (5) the effects of developing complex flow patterns as a result of the 

accelerating flow and device geometry. The results of the analytical model can be improved in the 

numerical simulation to describe all EHD flow regions: (1) the application of the EHD force in the 

axial direction neglects the effect of the three-dimensional nature of the electric field (the formation 

of complex flow patterns can be described by the numerical model); and (2) in order to capture the 

pipe flow, an inertial flow region needs to be modeled. 

 

To gain insight into the developing EHD flow, an approach is formulated and implemented in a 

computational fluid dynamics (CFD) simulation that solves for the coupled flow and electric fields 

in the presence of corona discharge. State-of-the-art literature evaluates several corona 

configurations 43-45. Numerical modeling has been applied to the design and analysis of 
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electrostatic precipitators (ESP) 46-49 and heat transfer enhancement 2,4,5,50,51. Previous EHD flow 

models use an iterative approach to (1) calculate the electric field and electric force under 

Kaptzov’s hypothesis 52 or Peek’s law 53, and (2) set a constant space charge on the anode so that 

the solution matches the cathode current from the experimental data. This method requires multiple 

iterations and is therefore inefficient. 

 

In contrast, our modeling approach solves for charge density by introducing a volumetric charge 

flux derived from the anode current directly, as shown in Chapter 3. The charge flux is imposed 

on a “numerical ionization region” determined by the electric field and the thresholds for the onset 

of ionization. The ionization (charge flux) and spatial charge density are two-way coupled to the 

NSE solver, avoiding the iterative procedure for solving the electric field. The electric force acts 

on a volume of fluid, inducing the EHD flow; this ion - bulk flow coupling is similar to previous 

work 2,4,5,43-51.  

 

Chapter 3 is followed by two short chapters in which we performed dimensional analysis and 

energy transfer analysis. In Chapter 4, we proposed a non-dimensional parameter X, which denotes 

the ratio of electric force to viscous force. It may replace the electric-inertia number NEI in non-

equilibrium EHD where charge density is non-uniform in the flow. Later in Chapter 5, we 

formulate the propulsion energy conversion efficiency as a ratio of fluids kinetic power versus 

electric input power. By integrating the outlet velocity profile obtained from CFD and experiments, 

we show that the energy transfer efficiency is a nonlinear function of corona voltage, and for the 

specific point-to-ring corona setup, the transfer efficiency is generally lower than 1%. 

1.2 EHD BOUNDARY LAYER FLOW 

Plasma actuators have been used in boundary layer control 14,54-61. A corona discharge near the 

wall can be used to modify the airflow in the boundary layer, to reduce drag, and to control 

separation on airfoils at higher angles of attack. Velkoff et al. 62 have studied the effect of corona 

discharge on the laminar to turbulent transition point on a flat plate. The transition point shifted by 

43 mm for an external free stream velocity of 53 m/s. Several researchers studied drag reduction 

using corona discharge on a flat plate 63,64. Roth et al.65 used smoke wire flow visualization to show 

that the primary cause of the EHD effect is a combination of mass transport and vortex structures 
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induced by strong paraelectric electric forces on the flow. Moreau and Léger 66,67 studied corona 

discharge on an inclined flat plate at low velocity and have observed a reduction in drag. A 

maximum velocity of 2.75 m/s for 500 µA current and the effect of an external free stream on 

boundary layer profile and pressure distribution has been studied experimentally 66. Moreau et al.68 

further investigated the effect of EHD on a turbulent boundary layer over a flat plate for velocity 

up to 25m/s. 

 

In Chapter 6, we investigate the EHD effect on a laminar boundary layer using a finite difference 

method based on the pressure projection method. First, the numerical approach is validated against 

the analytical solution (Blasius profile 69-71) without charge injection. Then the simulations are 

performed with added EHD flow, the introduction of an electric field and charge injection results 

in a ~10% increase of velocity within the viscous boundary layer.  

 

1.3 HYDRODYNAMIC INSTABILITY OF ELECTROCONVECTION 

As a subset of EHD, electroconvection (EC) is a phenomenon where convective transport is 

induced by unipolar discharge into a dielectric fluid 43,72-90. Both 2D and 3D vortex structures have 

been observed in fluid systems. In considering convection, flow patterns result from a body force 

acting on the fluid, e.g., Rayleigh-Benard convection (RBC) 90-96, Marangoni effects 97-101,  

magneto-convection 102-110, and magnetohydrodynamics convection 111-118. The transition from 3D 

to 2D structures under the influence of shear stress has been observed in the formation of 

atmospheric cloud streets in planetary boundary layers 119-121, and in laboratory RBC studies 122-

126. In electro-convection (EC) phenomena, the convective transport is induced by unipolar 

discharge in a dielectric fluid 43,72-90, and though the forcing term is different from the other 

systems, both 3D and 2D patterns can exist; these are determined by the balance of forces acting 

on the fluid.  

 

The EC stability problem was first analyzed by a reduced non-linear hydraulic model 127,128, and 

by a linear stability analysis without the charge diffusion term 129,130. Atten & Moreau 131 showed 

that, in the weak-injection limit, C<<1, the flow stability is determined by the parameter 2
cT C , 

where C is the charge injection level and cT  is the linear stability threshold for the electric 
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Rayleigh numberT , a ratio between electric force to the viscous force (Eq. (86)). In the space-

charge-limited (SCL) injection (C → ), the flow stability depends on cT  alone 132-134. The effect 

of charge diffusion was investigated by Zhang et al. by employing linear stability analysis on the 

EC problem with a Poiseuille flow 81, and by non-linear analysis using a multiscale method 86. The 

authors found that the charge diffusion has a non-negligible effect on cT , and the transient behavior 

depends on the Reynolds number ( Re ) 81,86. Li et al. performed linear analysis to study convective 

instabilities in Electro-hydrodynamical-Poiseuille flow and found that the ratio of the Coulomb 

force to the viscous force has an impact on the transition of transverse rolls from convective to 

absolute instability 135.  

 

Though the 3D EC stability problem in the presence of shear is complicated, it is somewhat 

analogous to Rayleigh-Bernard convection (RBC) 122-126,136-139.  For example, in cross-flow, the 

suppression of the transverse cells, and the evolution of the longitudinal cells has been reported.  

And in the meteorological application, the addition of cross-flow leads to the formation of cloud 

streets 119. Mohamad et al. used a non-dimensional group 2/Gr Re , the ratio of buoyancy to the 

inertia force, to parametrize the effect of applied shear, where Gr is the Grashof number 126. For 

2/ 10Gr Re  , the impact of the cross-flow is insignificant, while for 2/ 0.1Gr Re  , the effect of 

the buoyancy can be neglected. Reduced nonlinear models such as Ginzburg-Landau equations are 

used to study the transitional behavior of RBC cells 122-125.  

 

Numerical modeling can be used to g insight into the behavior of EC vortices.  Early work has 

shown that infinite difference modeling, strong numerical diffusivity can lead to an incorrect 

prediction of stability criteria 73. Several other numerical approaches have been developed, 

including the particle-in-cell method 140, the finite-volume method with flux-corrected transport 
141 or the total variation diminishing scheme 74,77,83-85, and the method of characteristics 43. Luo et 

al. showed that a unified Lattice Boltzmann model (LBM) predicts the linear and finite amplitude 

stability criteria of the subcritical bifurcation in the EC flow for both 2D and 3D flow scenarios 87-

90. This unified LBM transforms the elliptic Poisson equation into a parabolic reaction-diffusion 

equation and introduces artificial coefficients to control the evolution of the electric potential.  A 

segregated solver was proposed that combines a two-relaxation time (TRT) LBM modeling of the 
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fluid and charge transport, and a Fast Fourier Transform Poisson solver for the electric field 142. 

Related to vortex structure transition with the addition of cross-flow, 2D finite-volume simulations 

of Poiseuille flow have demonstrated that the value of cT  is a function of Re  and the ion mobility 

parameter, M 82. More recently, 2D numerical simulations have been used to parameterize the 

flow transition from stable EC vortex pairs to the base cross-flow scenario 143. 

 

In the context of EC, for a large electric Rayleigh number (T ) the system can transform from a 

steady EC convection into a chaotic state before the flow develops into turbulence. The chaotic 

theory was first introduced by Lorenz 144 with a reduced model by retaining the first few Fourier 

modes of the convection model proposed by Saltzman 145,146. The chaotic EC sees applications in 

enhancing heat and mass transfer 83,147-153, mixing in microfluidics 154-157, pattern selection in 

spatially extended systems 158, and random number generator 159. The chaotic EC phenomenon 

was first observed and analyzed by Atten and colleagues 72,160. They characterized two types of 

behaviors of the power spectra of the intensity fluctuations accounting for two scenarios: 

dominating viscous force or inertia. Later Perez and Castellanos discovered that chaotic mixing of 

charges occurs even with low Reynolds number and therefore the laminar chaotic mixing is the 

origin of EC chaos and hydrodynamic turbulence 161. Since then, many researchers have 

investigated the chaotic EC experimentally in nematic liquid crystal 162-168. To quantify the chaotic 

EC, Castellanos and Perez showed that the maximal Lyapunov exponents are linearly dependent 

on the average velocity amplitude 169. Tsai and colleagues proposed a local-power-law scaling 

theory of electric Nusselt number (Ne) with respect to electric Rayleigh number T 164,165. More 

recently, researchers showed that the electro-osmosis effect in micro-devices also contributes to 

the EC chaos 78,170-172. In 1.1, we show the transition of EC vortices from a steady state to the 

aperiodic chaotic state. The threshold value of T is obtained by numerical simulation. The onset of 

chaos is marked by an irregular and aperiodic fluctuation of the electric Nusselt number Ne. 

Chapter 2. ANALYTICAL MODELS FOR EHD FLOW 

In this chapter, we develop an analytical model for corona-driven EHD flow and validate the model 

against the experimental measurements in air. The conceptual representation of the EHD system 

includes (i) gas ionization region, (ii) flow acceleration region where unipolar ion motion in the 
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gas medium acts as a body force accelerating the flow, and (iii) momentum conservation region 

dominated by the inertial and viscous terms of the NSE. These regions do not necessarily have 

clear boundaries; however, they can be characterized based on the flow non-dimensional 

parameters dominant in each of them. The model presented in this chapter addresses the flow 

acceleration behavior resulting from ion collisions with neutral air molecules in the ion drift region. 

During the development, we first obtain the relationship between the electric properties of the EHD 

flow, such as corona voltage  , electric field E , and charge density c  for planar, cylindrical, 

and spherical coordinates. Then, the EHD velocity profiles are solved numerically using a 

Chebyshev spectral method. Finally, the analytical model is compared with the experimental data 

for a point-to-ring corona in an internal pipe flow configuration. 

 

2.1 MODEL DEVELOPMENT  

The analytical expression for ( )I −  and ( )u −  relationships are derived for the steady-state 

conditions in the planar, cylindrical, and spherical coordinates. 

2.1.1 Voltage-Current relationship 

The density k  of the charged species k  follows the conservation equation36-38,173 

 ( )k
bk k k k k

ρ μ ρ D ρ Ȧ
t


+ + −  =  

u E , (1) 

where u is the velocity vector of the bulk flow, E  is the electric field vector, bkμ  and kD  are 

mobility and diffusivity of each charged species k , k  is the production rate of species k . The 

ionization is often conceptualized as two processes: (i) ionization process where ion species are 

generated and (ii) reattachment processes where charges recombine. Multiple analytical and 

numerical models for production rate k have been presented in the literature; the rate is often 

modeled as a function of species density, mobility with derived ionization and recombination 

coefficients 35,36,38,173.  

 

In the context of the EHD flow model development, two observations on the ionization region are 

important. First, the ionization process is assumed to occur only in the region where the electric 
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field strength is greater than a threshold value 63 10 /iE V m  20,174. Thus the ionization is limited 

to a small region near the anode. The ionization region length scale - b can be approximated by 

0

iE


, where 0  is the anode voltage 173,175. Second, the positive and negative species within the 

ionization zone travel in opposite directions: positive ions move towards cathode; negative ions 

and electrons -- towards the anode. The total momentum exerted on the gas neutral molecules 

within the ionization region is negligible compared to that in the unipolar drift region; thus the 

detailed description of the ionization region is not necessary for this model to work, as long as 

bulk properties related to energy transfer can be obtained. To relate the electric power to the kinetic 

energy in the flow, the source term needs to be evaluated. In this work, we estimate the energy 

input based on the experimental measurements of the corona current. We assume that flow 

acceleration takes place in the acceleration region only within the ion drift region where the net 

charge density c k

k

 =  participates in electric to kinetic energy conversion through ion/neutral 

molecule collisions.  

 

The continuity equation for the charge density in the drift region is 

 ( ) 0c
b c c c

ρ μ ρ D ρ
t


+ + −  =  

u E , (2) 

where cρ is the charge density, u is the velocity vector of the bulk flow, E  is the electric field 

vector, bμ is the ion mobility, which is approximated as a constant ( 22.0 4 /e m V s− − ) at 

atmospheric pressure and room temperature (300K) 5,9,32,50,176, (this constant is likely to have 

different values for negative corona or corona in other gases) and cD  is the ion diffusivity, 

described by the electric mobility equation 

 b B
c

μ k T
D

q
= , (3) 

where Bk is Boltzmann’s constant, T is the absolute temperature, and q  is the electric charge of 

an ion, which is equal to the elementary charge in this case.  

 

The electric field satisfies Maxwell’s equation 
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 cρ
ε

 =E , (4) 

where   is the air permittivity close to the permittivity of free space. 

 

Since the ion drift velocity is considerably greater than the velocity of the resulting EHD flow, the 

ion motion equation can be assumed to be quasi-steady 

 ( ) 0b c c cμ ρ D ρ + −  =  u E . (5) 

To estimate the effect of the charge diffusion, consider the Sherwood number for ionic transport 

in the presence of strong external electric field: 

 ( )4

d

~ 10b

Be

Lqμ
Sh O

k TD

L

+
= 

 
 
 

Eu E
, (6) 

where dL is the diffusion length scale. The diffusion term can be neglected, further reducing the 

charge continuity equation to  

 ( ) 0b cμ ρ + =  u E ,  (7) 

and since ( )2(1)
10

(100)b

O
O

μ O
−= =

u

E
 in air discharge 2,5,9,174, the continuity equation for ions is 

reduced to  

    0b cμ ρ =E ,  (8) 

where b cμ ρ =E J ; J is the current flux 
2Amperes m   . Combining with Eq. (4), the ion transport 

equation can be written as 

  2 0b
c b c

μ ρ μ φ ρ
ε

−   = .  (9) 

Note that Eq. (9) is the same as Eq. (5) in Sigmond 20 if cρ is substituted by 2ε φ−  .   

Eq. (9) can be solved in Cartesian coordinates: 

Dividing bμ into both sides and rearranging gives 

 
2
c

c

ρφ
ε ρ

 =


  (10) 

In one dimension, we have 
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2
c

c

ρd φ
dρdr ε
dr

=  . (11) 

Take the r-derivative on both sides and apply Maxwell’s equation 

 

 

2
2

22

22

2 c c c
c c

c

c

dρ dρ d ρρ ε ρ ε
dr dr drρd φ

dr ε dρε
dr

   −   
   = − =
 
 
 

 , (12) 

 

Rearranging the terms, we have 

 

 
2 2

2
3 c c

c

dρ d ρρ
dr dr

   =   
   

 . (13) 

 

One possible solution has the form 

 

 0
n

cρ ρ r=  , (14) 

 

substituting into Eq. (13) 

 

 

 ( ) ( )2 12 2 23 1n nn r n n r
− −= − . (15) 

 

Therefore, 1/ 2n = − and 1/2
0cρ ρ r−= . 

Substituting to Eq. (4) 
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2

1/202c

c

ρ ρd
E φ r

dρdr εε
dr

= − = − =
 
 
 

, (16) 

 

  1/202ρ
dφ r dr

ε
= − . (17) 

Integrating both sides gives 

 3/20
0

4

3

ρφ φ r
ε

− = − . (18) 

 

Eq. (9) can also be solved in cylindrical coordinates: 

Rewriting Eq. (10), we have 

 
2
c

c

ρφ
ε ρ

 =


 . (19) 

 

Taking the divergence of both sides and applying Maxwell’s equation gives 

 

2
2 2

22 2
2

2

2
1 1

c c c
c c c

c c c

cc c

dρ dρ d ρ
rρ ρ ε rρ ε

dr dr drρ ρ rρdφ
dρε ε ρ r dr r dρε ε
dr dr

     + −            = − =  = =       
    

  (20) 

 

By rearranging the terms, we have 

 

 
22

2
2c c c c

c c

d ρ dρ dρ dρ
rρ r r ρ

dr dr dr dr

      = + +      
     

 . (21) 

 

Assume solution in the form 
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 0
n

cρ ρ r=   (22) 

 

and substituting it into Eq. (21) provides 

 

 ( ) ( )2 1 2 2 1 11 2n n n n nn n r n r nr r nr− − −− = + +  (23) 

 ( ) ( )21 2 1n n n n n− = + + . (24) 

 

Therefore, 1n = − , and from Eq. (22), 1
0cρ ρ r−= . From Eq. (4) 

 
2

0c

c

ρ ρd
E φ

dρdr εε
dr

= − = − =
 
 
 

 (25) 

 

  0ρdφ dr
ε

= − . (26) 

Integrating on both sides gives 

 0
0

ρφ φ r
ε

− = − . (27) 

 

Eq. (9) can also be solved in spherical coordinates: 

Rewriting Eq. (10), we have 

 
2
c

c

ρφ
ε ρ

 =


  (28) 

 

Taking the divergence on both sides and applying Maxwell’s equation (Eq. (4)) provides 
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2 2 2
2

2

2
2 2 2 2

2

22

1

2 2
1

c c c

cc

c c c
c c c

c

ρ ρ r ρdφ
dρε ε ρ r dr ε
dr

dρ dρ d ρ
r ρ rρ ε r ρ ε

dr dr dr

r dρε
dr

 
  
  

    
 

   
   

    
 
 
 

 = − = =


+ −
=

.  (29) 

Rearranging, we have 

 
22

2
2 2c c c c

c c

d ρ dρ dρ dρ
rρ r r ρ

dr dr dr dr

      = + +      
     

  (30) 

 

One possible solution has the form 

 0
n

cρ ρ r=   (31) 

 

And substituting it into Eq. (30) gives  

 

 ( ) ( )2 1 2 2 1 11 2 2n n n n nn n r n r nr r nr− − −− = + +  (32) 

 ( ) ( )21 2 2n n n n n− = + + , (33) 

 

therefore, 3/ 2n = − and 3/2
0cρ ρ r−= , the substitution into Eq. (4) gives 

 
2

1/202

3
c

c

ρ ρd
E φ r

dρdr εε
dr

−= − = − =
 
 
 

, (34) 

 

  1/202

3

ρ
dφ r dr

ε
−= − , (35) 

integrating both sides  

 1/20
0

4

3

ρφ φ r
ε

− = − . (36) 

Table I shows the solutions for this nonlinear differential equation in different coordinates 

systems; r is the distance from the anode [mm]. 
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Table I. Solutions for ion transport equation in one dimensional Cartesian, cylindrical coordinates, and spherical 
coordinates. 

Variables Planar coordinates Cylindrical coordinates Spherical coordinates 

cρ  1/2
0cρ ρ r−=  1

0cρ ρ r−=  3/2
0cρ ρ r−=  

E = E  1/202ρ
E r

ε
=  0ρE

ε
=  1/202

3

ρ
E r

ε
−=  

φ  
3/20

0

4

3

ρφ r
ε

−  0
0

ρφ r
ε

−  1/20
0

4

3

ρφ r
ε

−  

0ρ  1/2
3

( )
C

mm
m

 
3

C
mm

m
 3/2

3

C
mm

m
 

Here, 0φ  is the anode voltage and 0ρ  is a dimensional parameter (which is not necessarily a 

constant and for the fixed ionization volume may vary with corona voltage see Eq. (42)); the units 

depend on the coordinate system. The integration constant only appears in the voltage   since the 

Eq. (9) only depends on the gradient of  . For a point-to-ring geometry, the ionization and drift 

regions are best approximated as spherical sectors with a radius r  and angle β determined by the 

position of the corona needle, as shown in FIG. 1. 

 

  
2 2

cos
Lβ

L R
=

+
,  (37) 

 

where L is the distance between the needle tip to the center of the cathode, and R is the radius of 

the cathode ring. 
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FIG. 1. Diagram of the point-to-ring corona system with current flux distribution. 
 

The ion current flux magnitude between the needle and the ring is 

 
2
0

2

2

3
b

b c

μ ρ
J μ ρ E

εr
= = =J  . (38) 

Eq. (38) shows that 2J r− . The current flux distribution is given as 

  

21
2(cos )

cos
o

J r θ θ
J r

−− 
= = 
 

,  (39) 

where oJ  is the maximum current flux distribution, and   is the solid angle of the discharge, 

 0,θ β . Considering the axial component of current flux, 0θ =   

                                       3cos cosa oJ J θ J θ= = ,                                                     (40) 

where aJ  is the current flux in the axial direction.  

 

To define the conditions in the acceleration region, consider crr  as the characteristic length scale 

of the flow acceleration region, as the radius of a spherical surface with the electric potential equal 

to cr (defined as the onset voltage of the corona, similar to the definition by Townsend 18). The 

current flux on the critical surface is: 

C
u

rre
n

t flu
x d

istrib
u

tio
n

 J(θ
)

R

L

Ionization 

zone

β r

θ

J

J(cosθ)
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b
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rcr
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2
0

2

2

3
b

cr

cr

μ ρ
J

εr
=  . (41) 

In spherical coordinates for the point-to-ring geometry 

 

 ( )0 01/2

3

4 cr

cr

ερ φ φ
r

= − . (42) 

Therefore, 

 ( )2

03

3

8
b

cr cr

cr

μ ε
J φ φ

r
= − .  (43) 

Due to the conservation of current flux, the corona current can be found by integrating the current 

flux over the spherical dome 

 ( )2

02 2

3
1

4
b

cr cr cr cr

crcr

πμ ε L
I J dA J A φ φ

r L R

 
= = = − − 

+ 
 .  (44) 

Eq. (44) is similar to Townsend’s quadratic relationship for the coaxial-cylinder electrode 

configuration ( )0 0cyl cI C φ φ φ= − , where 
( )2

8

ln /
b

cyl

πμ ε
C

R R r
=  is a geometrically dependent constant 

18. For cylindrical coordinates, replacing 0ρE
ε

=  by 0

ln /
E

R R r


=   and for / 4crr R= , the I −

relation is identical to that of Townsend. The Eq. (44) is also similar to the one derived by Sigmond 

for a space-charge saturated point-to-plate corona discharge using time-dependent analysis 20, 

where 22 /bI L = . The I −  relationship derived in this work is more general than particular 

formulations presented in 18 and 20. However, for a specific geometry, the values of cr  and the 

corresponding length scale, crr , need to be determined experimentally or additional assumptions 

need to be made. Once the I −  relationship is defined, the EHD velocity can be computed. 

2.1.2 Voltage-Velocity relationship 

The EHD flow induced by point-to-ring discharge can be divided into three regions: ionization 

zone, acceleration region, and momentum conservation region. The ionization region does not 

participate in the momentum exchange between the ions and neutral molecule significantly as the 

population of negative and positive species is balanced. The non-dimensional analysis shows that 
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the acceleration region can be defined by the high ion concentration and high electric field strength 
174. The momentum conservation region is the part of the domain where electric force is balanced 

or overcome by viscous forces near the walls. FIG. 2 illustrates the relative positions of the 

ionization zone, EHD acceleration region, and EHD momentum dissipation region.  

 

 

FIG. 2. Diagram of the relations among ionization zone, EHD acceleration region, and EHD dissipation region of a 
point-to-ring corona system. 

 
The steady-state energy equation for a constant area pipe can be written as 

  inlet out eSE SE SE= + , (45) 

where eSE is the energy gained from the electric force, which can be written as 

  ( )2 2
0

0

3

8

cr
c

e cr

b cr

ρ Edr Jdr ε
SE φ φ r dr

ρ ρμ ρr
−= = = −   ,  (46) 

where ρ  is the mean density of the flow. Since both the inlet and outlet are at atmospheric pressure 

and the flow is in the direction of the electric field line, the velocity on the axis of the cylindrical 

pipe is 

  ( )
1/2

2
max 0

0

3
2

4

crr

e cr

cr

ε
u SE r dr φ φ

ρr
−

 
= = − 

  
  . (47) 

The force is acting only on the gas downstream of the ionization region; thus, the lower integration 

limit is set to the ionization zone boundary, b.  
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2
max 0

3
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crr

cr

cr b

ε
u r dr φ φ

ρr
−

 
= − 
  

   (48) 

2.1.3 Velocity profile 

The velocity profile in a cylindrical pipe for the point-to-ring configuration is obtained under the 

assumption that the electric force results only in axial flow acceleration. Viscous drag is balanced 

by the electric force on the ions. In cylindrical coordinates: 

 
2

2

1a a a
c a

b

u u Jμ ρ E
r r r μ

  
+ = − = −   

 , (49) 

 
2 2

cos
Lθ

L r
=

+
,  (50) 

where subscript a denotes the axial component of the vectors. Substituting Eq. (40) and Eq. (50) 

in Eq. (49) and rearranging the terms results in the following ODE  

 
( )

2 3
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3/22 2 2

a a

b

u u J L r
r

r r μμ r L

    + = −
   + 

.  (51) 

The ODE is solved numerically using Chebyshev polynomial approximation with the MATLAB 

package chebfun 177-180. Neumann boundary condition (zero-flux) are used at the axis and the non-

slip boundary condition (zero-velocity) at the wall. The Chebyshev differential matrices for first 

and second derivatives are constructed to satisfy the boundary conditions179.  

2.2 RESULT AND DISCUSSION 

2.2.1 Model Validation - Experimental setup 

The EHD flow is studied in a point-to-ring internal pipe geometry.  shows the experimental setup. 

The apparatus consists of a high-voltage corona needle and a grounded ring electrode. The anode 

needle is a 0.5-mm-thick tungsten needle with a radius of curvature of 1 μm at the tip (measured 

using optical microscopy). The sharpness of the needle is important because it affects the corona 

discharge at lower voltages 181. The tip of the needle is checked regularly for visible defects to 

ensure that it does not degrade over time. The ground electrode is a 1.58-mm-thick solid solder 
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with an inner radius of 10 mm. The enclosure is fabricated using 3D printing in the polylactic acid 

polymer. The distance between the anode and cathode (L) is set in the range of 3 to 7 mm using 

spacers. A variable high-voltage power supply (Bertan 205B-20R) is used to set the electric 

potential between the electrodes. The cathode current is measured on the cathode based on a 

voltage drop across a 1 MΩ resistor.  

 

The EHD experiment is operated in the positive corona mode in a temperature range of 22-25 0C, 

relative humidity of 23-25%, and ambient pressure. For each anode-cathode distance, the voltage 

is increased from 4 kV (when the outlet velocity is measurable) to ~10 kV (when the arc discharge 

occurs). Constant current hot-wire anemometry is used to measure the flow velocity profile. A TSI 

1213-20 probe connected to the anemometer (AA-1005) is positioned at the outlet of the device. 

The anemometer is calibrated for a range of velocities from 0.2 to 8 m/s 182. The entire 

experimental setup is mounted on an optical table; the anemometer probe is attached to a 3D 

translation stage to obtain space-resolved measurements. The anemometer data are collected at a 

frequency of 10 kHz using data acquisition hardware (myRIO-1900) over a sampling time of 30 

s. The ion concentration at the exit of the device is measured at a distance of 25.4 mm from the 

outlet using an air ion counter (Alpha Lab). The ion concentration measurements are not used in 

the analysis; rather, they provide an order of magnitude comparison between the experiments and 

simulations. Each experimental condition is tested at least five times to obtain independent 

statistical samples.  

 
FIG. 3. Schematic of the experimental setup – a high voltage is applied between the corona anode needle and the 

ion collecting cathode ring. The distance and voltage are varied. 
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The experimental data are compared with the model in FIG. 4(a), which shows the comparison of 

the corona current-voltage relationship. The I   vs.   trends are different from the previously 

reported linear trends 26,28 for the external flow in point-to-ring corona configuration. The 

nonlinearity in the analytical model comes from the cr 0/   term, as seen in Eq. (44). However, 

for the high values of 0  where most previously reported data was collected, the linear curve fit 

may have been adequate. These trends can be used to evaluate boundary conditions for modeling 

of the acceleration region. One approach is to evaluate the critical properties of the acceleration 

zone at the onset of corona discharge, as the anode voltage approaches the critical voltage, i.e., 

0 cr → , the 2crφ kV=  based on the x-axis. At this condition crr b→  and EHD flow velocity is 

negligible. As the corona voltage increases, the size of the acceleration zone crr  and the field 

intensity increase non-linearly. The current and velocity data in this non-linear region fluctuate, 

resulting in crr  variations. In the linear region, observed at the higher corona voltages and in 

previous reports 26,28, both the current values and the EHD velocities were stable indicating well-

established ionization and acceleration regions. As in previous work 20,26,28, the acceleration region 

dimensions are considered constant for a given electrode configuration, i.e., linearly dependent on 

L . The best fit for the data in the presented point-to-ring internal EHD flow is obtained when

( )3 0.5 3crr L= + − . This relationship is likely to change for a different electrode configuration. 

The dimensions of the ionization boundary can be approximated as 0

iE

 173,175. In the linear regime, 

we assume i crE E= , where crE is the critical electric field strength at crr , and  is a scaling 

factor. Since for 0 cr → (no ionization occurs) 0b→ , we consider the following relationship  

 1/20
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1/20
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r


  
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

−

−
= = =

.  (52) 

In this work, the evaluation of   is based on experimental data, the best agreement with data is 

observed for 8 = .  

 

FIG. 4(b) shows the comparison of the voltage-velocity ( )u −  data against the analytical solution 

for a range of L =3-7 mm and  =4-10 kV. The trends agree with the previously reported linear 
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dependence between the maximum velocity and corona voltage observed for the point-to-ring 

corona configurations 28 and planar electric field ion generator 183. The analytical solution uses 

/ 4crb r=  as the ionization zone boundary for the integration of Eq. (48). Analytical solutions for 

corona current and maximum velocity are in very good agreement with the experimental data over 

the entire range of geometrical and operational parameters of the EHD source. 

 

FIG. 4. Current-Voltage ( )I −  and Voltage-Velocity ( )u −  for the experimental data and the analytical 

solution. 
 

FIG. 5 shows the velocity profiles at the exit of the point-to-ring EHD flow generator. The velocity 

profile has some similarities with a momentum point-source jet, with a maximum at the centerline 

and a steep decrease towards the domain boundaries. Figure 5(a) shows the velocity profile plotted 

for two voltage values, keeping L  constant; the velocity increases with the increase of the corona 

voltage. Figure 5(b) shows the velocity increase for lower values of L at a fixed corona voltage. 

Both trends can be explained by the increase in the EHD force driving the flow based on the higher 

electric field intensity ( /E L= ).  

 

Both the analytical solution and the experimental results show velocity profiles with a very distinct 

peak at the axis of the coaxial configuration, consistent with the localized electro-hydrodynamic 

force at the tip of the needle electrode. The velocity profiles then decay quickly over a short radial 

distance (of the order of the ionization zone width, rcr/4) with asymptotic decay towards the edge 

of the domain, consistent with entrainment in a confined flow environment. The comparison 

between the analytical solution and the data is excellent at the centerline; the velocity decays 

approaching the wall is not captured well by the model due to the fully developed assumption 
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implicit in the model. The balance of the viscous stress term by the EHD forcing at the center of 

the analytical simplification means that the model assumes the convective term to be negligible. 

This is not valid in the region where the pipe flow, upstream of the corona discharge, must adapt 

to the new conditions presented by the EHD forcing near the axis. Additionally, the one-

dimensional flow assumption cannot describe the formation of more complex flow patterns in the 

EHD device, which can form due to adverse pressure and electric field gradients. Here, the EHD 

force is applied only in the axial direction where it captures well the flow acceleration region near 

the center line but neglects the effect of the three-dimensional nature of the electric field 

downstream of the cathode.  

 

FIG. 5. Comparison between the analytical and the experimental velocity profiles at the outlet of the EHD 
generator; (a) corona voltages are 5kV and 7 kV, fixed L=3 mm; (b) electrode gaps are 3mm and 7mm, corona 

voltage is constant (7 kV). 

Chapter 3. A FINITE VOLUME MODEL FOR EHD FLOW WITH 

POSITIVE CORONA DISCHARGE 

In this chapter, we demonstrate a numerical approach for EHD modeling flow in a finite volume 

solver for axisymmetric point-to-ring corona configurations. CFD simulations are used to resolve 

the spatiotemporal characteristics of the flow, electric fields, and charge density. The 

nondimensional analysis provides insight into the dominant terms in the different EHD flow 

regions. The electric to kinetic energy transfer efficiency is evaluated for both the model and the 

experiments.  
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3.1 MODEL DEVELOPMENT 

3.1.1 Governing equations 

The effect of the ion motion interaction on the bulk flow is modeled by adding a body force 

(electric force) c = −eF   to the momentum equations. The governing equations used to model 

the flow are: 

 0=u   (53) 

 2
c

D
P

Dt
   = − + −

u
u    , (54) 

where  , the air density ( 31.205 kg/m ), and  , the air dynamic viscosity [ 51.846 10 kg/(ms)− ], are 

constant for incompressible isothermal flow, ( )axial radial,=u u u  is the velocity vector in the two-

dimensional axisymmetric model, and P is the static pressure. The charge density equation 

describes the ion transport: 

 ( )c
b c c c eD S

t


   


+  − −  = 

u   , (55) 

Note that the  − =E . The electric potential is solved using Gauss’s law:  

 2

0

c


= − ,  (56) 

where b is the ion mobility, which is approximated as a constant [ 4 22.0 10 m /(Vs)− ] at standard 

pressure and temperature 20,176, and 0 [ 12~ 8.854 10 C/(Vm)− ] is the electric permittivity of free 

space. Since the relative permittivity of air is close to unity (~1.00059) 184, vacuum permittivity is 

used in all simulations. cD  is the ion diffusivity described by the electric mobility equation 

(Einstein’s relation) 174: 

 b B
c

k T
D

q


= , (57) 

where Bk is Boltzmann’s constant ( 23~1.381 10 J/K− ), T  is the absolute temperature, and q  is the 

electric charge of an ion, which is equal to the elementary charge ( 191.602 10  C− ).  

 

Ionization is modeled by a volumetric charge flux applied to the fluid within a numerical ionization 

zone. Instead of defining a surface within the computational domain to model the ionization zone 
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boundary, the volume of the ionization zone is calculated based on the electric field strength 

computed in the simulation. In Eq. (55), is the volumetric flux term for charge density with 

units of 3C/(m s)  : 

 
 0 1 tip/ , for , & x - x 1mm

0, otherwise
e

I E E
S

   = 


E
, (58) 

where is the volume of the numerical ionization zone, calculated in the simulation, it satisfies

 0 1 tip, & x - x 1mmE E E ; is the anode current, measured experimentally and used as a 

boundary condition in the numerical simulation. The condition tipx - x   term limits ion production 

along the needle. It is based on the experimental electrode setup – the tip extends 1 mm from the 

needle holder. 6
0 2.8 10 V/mE =  is the critical field strength below which the number of ion 

recombination events is greater than the production per drift length for air 15. 6
1 3.23 10 V/mE =  is 

the breakdown electric field strength for air 2,10. Since the charge density is balanced in the 

ionization region, the anode current equals the charge density flux at the ionization boundary.  

3.1.2 Computational domain and conditions 

The numerical model is implemented in a 2D axisymmetric simulation using a general-purpose 

finite volume solver (ANSYS Fluent). A body force is added to the momentum equation; the ion 

motion is accounted for by the transport of charge density c , which is modeled as a user-defined 

scalar. The corona electrode is located on the axis of the domain, and the cathode ring is modeled 

as a semi-circle at the wall. Figure 6 shows the schematic diagram of the geometry. The 

computational domain represents the geometry of the experimental apparatus. The inlet is located 

10 mm upstream of the corona needle. The distance between the needle tip and the cathode ring is 

varied based on the experimental conditions. In the experiment, the needle tip has 1 μm  radius of 

curvature as measured using optical microscopy; it is modeled as a point where the outer wall of 

the needle body intersects with the axis; these lines intersect at the angle of 1. The geometry is 

gridded using ANSYS ICEM software. 

 

The mesh comprises hexagonal cells; after conducting a mesh independence study, the number of 

cells was ~ 445,000. To balance mesh independence and convergence time, the average mesh size 

eS

I
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in the ionization and acceleration regions was ~ 266 μm/cell . Due to high drift velocities 

charge ~ (100 / )O m su , the resolution of charge transport requires a time step -710 st =  to satisfy the 

Courant-Friedrichs-Lewy condition 185: 

 
2 7
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

u
, (59) 

where charge b = − u u  is the drift velocity of the ions. The simulations are initialized with zero 

values of pressure, velocity, and charge density. The air flow field and electric field develop 

spatiotemporally for the set boundary conditions. The steady-state flow is achieved when the outlet 

velocity profile is independent of the flow time; for most simulations, it is ~1 s (107 time steps 

after initialization). Results are analyzed when steady-state conditions are reached.  

 

FIG. 6. The computational domain used for the numerical simulation; the model includes the ion generation region 
 , defined by the thresholds of electric field values: 0E  and 1E  . 

 

Table II summarizes the boundary conditions used in the numerical simulation. The air flow 

velocity is set to zero at the electrode surfaces and the tube wall due to the no-slip boundary 

condition. The inlet and outlet are set as atmospheric pressure boundaries. High voltage (4-10 kV) 

is applied to the anode needle, and zero voltage (grounded) is applied to the cathode ring. Zero 

electric potential gradient is applied to the other boundaries without solving Eq. (56) within the 

isolated solid walls. The charge density is set to zero diffusive flux on wall boundaries, similarly 

to previous modeling work 2,50,87,186. In this Neumann boundary condition, the charge density at 

the boundary is extrapolated from the nearest cell. 

 

The simulation resolves the convective flux of charge density, and the ion drift velocity in an 

electric field is based on Eq. (55)-(56). The current flux at the cathode and the outlet (surface 

integral of the charge density flux) matches the input anode current, satisfying the conservation of 
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current density (Kirchhoff’s circuit law). The hyperbolic equations of NSE and charge density are 

resolved using the transient Semi-Implicit Method for Pressure-Linked Equations algorithm 187 

with second-order discretization for both space and time. The electric field is resolved by the 

second order steady-state Poisson equation solver for every time step.  

 

Table II. Boundary conditions for the numerical simulations. 

Boundary Conditions 

Inlet pressure Atmospheric pressure 

Outlet pressure Atmospheric pressure 

Anode corona needle 4~11kV & Zero diffusive flux for the charge density 

Cathode ring 0kV & Zero diffusive flux for charge 

Wall boundaries 
Zero gradients for electric potential & Zero diffusive 

or convection flux for the charge density 

Anode current Based on the experimental measurement 

3.2 RESULT AND DISCUSSION 

3.2.1 Numerical simulations 

The numerical model represents the process by which the ion-molecule collisions accelerate the 

bulk air flow. FIG. 7 (left) shows the electric field lines between the corona electrode and the 

ground electrode. The greatest field strength is near the tip of the corona electrode with a small 

radius of curvature where the field intensity reaches the threshold for ion generation. The effect of 

the space charge on the electric field is apparent near the ionization region where the ion 

concentration is highest. This field line divergence is greater for higher voltages. The electric field 

distortion is less significant farther away from the electrode tip since the charge density decays 

proportionally to 3/2r  174,188. In the = 7 mmL case, the field lines are better aligned with the 

direction of the bulk flow leading to higher energy conversion efficiency, as discussed later in the 

chapter. FIG. 7 (middle) shows the ion concentration contours. The ions are generated at the needle 

tip, and their motion is dominated by the electric field due to their very high electric mobility, as 

the ion drift velocity at about two orders of magnitude greater than the average velocity of the bulk 

flow. The ions do not drift upstream significantly; some negative axial drift at the needle tip is 
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observed due to the space charge effect for higher voltage cases, resulting in ions’ negative work 

and reduction in the energy conversion. An annular recirculation flow pattern is formed upstream 

of the cathode ring near the wall, which is due to the adverse pressure gradient in the near wall 

acceleration region driven by the high electric field values at the ring electrode, as seen in FIG. 7 

(left). 

In the region downstream of the ground electrode, the electric field is weak, and some ions exit 

the domain due to the relatively high flow velocities and the space charge effect (both are the 

highest at the centerline). The average values of the ion concentration at the device outlet are in 

the range of 8 31.7 10 ions/cm  (7 mm, 7 kV) to 8 33.1 10 ions/cm  (3 mm, 8 kV). These values are of 

the same order of magnitude as the experimental measurement 8 3~ 0.6 10 ions/cm  (3 mm, 7 kV), 

measured 25 mm downstream of the exit. The discrepancy is likely due to the ion dispersion after 

the flow exits the EHD flow chamber. The ion concentration at the outlet is highest at the axis 

because: (1) the centerline has the highest velocity, convecting ions from the domain, and (2) the 

electric field lines near the wall downstream of the ground electrode are pointing in the reverse 

direction of the bulk flow, resulting in reverse ion drift. The maximum value of the electric field 

strength is 81.6 10 V/m  , and the ion concentration is 12 31.0 10 ions/cm , both near the needle tip region 

of the 3 mm 7 kV case.  For better visualization, the values for the electric field and ion concentration 

contours in FIG. 7 are limited in range. 
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FIG. 7. Plots of the electric field, ion concentration, and velocity for different conditions in the point-to-ring corona 
generator ( 6.15 μA,16.04 μA, 4.28μAI = , respectively). The dash lines on the velocity contours indicate the 

location at which the velocity of the EHD flow is compared with the experiments.  

3.2.2 Corona currents  

In previous work, the charge density input in the simulation is “tuned” to match the cathode current 

measured experimentally using an iterative approach 2,4,5,43-51. In this work, we directly compute 

the cathode current based on the boundary conditions; the numerical model uses corona voltage 

and anode current as input parameters. The comparison of cathode current from the simulation and 

the experimental values is used for model validation. The cathode current is calculated by 

integrating the charge density flux on the ground electrode surface:  

 cathode cathode

cathode
surface

b cI d  = − A , (60) 

where cathodeA is the area vector of the cathode. Table III shows the comparison between the 

experimentally measured and computed anode and cathode current. The cathode current in the 

simulation agrees within 5% with the experimental measurements. The cathode recovers 

85%~90% of the ion current generated by the corona electrode. The 10%~15% current reduction 

is associated with ions exiting the domain.  
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Table III. Comparison of cathode current between the experiments and CFD. 

 

 

Anode Current 

( )A  

Experimental Cathode 

Current 

( )A   

 

CFD Cathode Current 

( )A   

3mm, 

5kV 

 

6.15 

 

5.23 

 

4.99 

3mm, 

7kV 

 

16.04 

 

14.42 

 

14.21 

7mm, 

7kV 

 

4.28 

 

3.82 

 

3.64 

 

3.2.3 Maximum velocity and velocity radial distribution 

To further validate the numerical model, we compare the exit velocities from the experimental 

data, the analytical solution by Guan et al. 174,188, and the numerical result (FIG. 8) for the 

  3 mm ~ 7 mmL=  cases and corona voltages of   4 ~10 kV = . The experiments and simulations 

show the maximum velocities are on the centerline at the outlet. FIG. 8 shows the comparison. 

The numerical model agrees within 5% error with the experimental data and the analytical 

predictions. The analytical predictions are generally higher than the numerical results since it does 

not account for viscous drag or the nonunidirectional flow. For a given point-to-ring distance, the 

maximum outlet velocity increases linearly with corona voltage. Zhang et al. also observed the 

linear trend of maximum velocity. in the external flow with point-to-ring corona configurations 28 

and by Kim et al. for the planar electric field ion generator 183. For a given corona voltage, the 

maximum velocity increases as L decreases, due to a stronger electric field.  The maximum corona 

voltage, however, is limited by the device glow-to-arc transition limit 15. When arc discharge 

happens (in our case 9 kV for L = 3 mm, 10 kV for L = 5 mm, 11 kV for L = 7 mm), the flow 

velocity reduces to zero. The maximum EHD induced air flow was 9.0 m/s (3 mm 8 kV) from both 

the experiments and simulations. 
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FIG. 8. Maximum velocity as a function of corona voltage and electrode geometry for the experimental data, 

analytical 174,188, and CFD results.  
 

3.2.4 Velocity profiles 

To study the spatial distribution of velocity, we compare the numerical and experimental velocity 

profiles at the outlet of the point-to-ring EHD flow generator. In Fig. 5 (a), the velocity profiles 

are plotted for two voltage values at a fixed electrode spacing (L = 3 mm). The higher voltage case 

produces higher velocities with very similar velocity profiles. Figure 5 (b) shows that, at a fixed 

voltage, the velocity increases when L  decreases. Both numerical and experimental results show 

a distinct peak at the axis, consistent with the results in FIG. 7. The velocity profiles then decay 

rapidly with radial distance. Numerical and experimental results agree within 5% error at the 

centerline, but the model is less accurate at the edges of the domain. The discrepancy in this region 

may be due to flow instability in the shear flow region that modifies the radial location of the 

inflection points in the velocity profile. 
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(a) (b) 

FIG. 9. Comparison between simulations and experiments for the velocity profiles at the outlet of the EHD 
generator; (a) varying corona voltages at a fixed distance, and (b) varying anode-cathode distance (L) at a fixed 

corona voltage. 
 

The velocity profile shows that the EHD-induced airflow in a point-to-ring corona discharge has 

parallels to a submerged jet 189. For submerged jets, the Reynolds number is determined based on 

the nozzle diameter and the mean velocity at the exit 190. In the case of corona discharge flow, the 

nozzle is replaced by the EHD jet located at the centerline, immediately downstream of the corona 

electrode tip. The Reynolds number (Re) in the EHD flow is ~ 700-900, based on the diameter of 

the jet, for L = 3 mm, 7 kV, djet ~ 2-3 mm, and mean velocity u ~ 4-5.5 m/s. Other cases have 

smaller Re due to lower jet velocities, except for the 3 mm, 8 kV case, where Re is still < 1000 (

~ 6.5 m/s in mean velocity and djet ~ 2-3 mm). Therefore, the EHD flow can be represented by a 

fully laminar jet ( 300 Re 1000  ) 190. 

Chapter 4. NON-DIMENSIONAL ANALYSIS FOR EHD FLOW 

WITH POSITIVE CORONA DISCHARGE 

In this chapter, we proposed a new nondimensional parameter X, which represents the ratio of 

electric force to inertia. We further showed that X could be used as an indicator of the flow region 

where the electric force dominates the flow. 

 

The simulation shows that the EHD force drives local flow accelerations. The global parameters 

used in the analytical model and ones reported in the literature for a description of the EHD flow 
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do not account for spatial distributions in e  and  . Further insight into the development of EHD 

flow in different regions of the geometry can be gained by nondimensional analysis. The 

nondimensional EHD equation can be written as: 

 
( ) 2

*
* * * * * * * * * * *

* 2 2

1 1 c
c

X

St P
t Fr Re

 
 


 

+ = − + + −    

u
u u g u

u
   

,  (61) 

where St is the Strouhal number, Fr is the Froude number, the asterisk superscript denotes 

nondimensional variables 191. A proposed nondimensional parameter, 2/cX   = u , is defined as 

the ratio of electrostatic to inertial terms. In global terms, the parameter X  is related to the electro-

inertial number 
2

2
EI /N E = u  192, described in the literature as 2/Md Re , where E is the 

magnitude of the electric field vector, and Md is the Masuda number 193.  The parallels come from 

the electric description based on Gauss’s law. Gauss’s law can be written in a nondimensional 

form as 

 

2* *
2

c

L

 


= − ,
 (62) 

 
* *

L

  = − E
 . (63) 

Since
2* * and * * are nondimensional parameters, re-arranging the Eq. (62) and Eq. (63) gives: 

 

2

c  =E
,  (64) 

where the dimension of both terms in Eq. (64) is the same. The main difference is that the 

parameter X  can be resolved spatially. Nondimensional analysis of the EHD system that does not 

include the spatial inhomogeneity of c  and   fails to describe the local effects of the electrostatic 

force on the flow because Md  and EIN can be used only as global parameters. To gain insight into 

corona-driven EHD flow, the electric force and flow inertial and viscous terms have to be resolved 

spatially. The nondimensional parameter, X, can be computed directly from the governing 

equations for each region of the flow, providing the relative contribution of the terms locally. 

Cotton et al. suggests that, when the electro-inertial number is greater than unity, the flow is 

dominated by the EHD force 194. Though the analysis is valid as an order of magnitude estimation 

of the system, in our modeling, the use of the conventional EIN  formulation led to over-estimating 

the effect of EHD in regions with low charge density and strong electric field, such as the region 
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upstream of the corona electrode tip (shown in the appendix). In this region, the ion-molecule 

collision cannot drive the flow since their concentration of ions is too low. FIG. 10 shows electric 

field lines colored by the values of X, indicating the regions where the electric force is higher than 

the inertial force. The EHD-dominated flow (red) is located between the corona and ground 

electrode where both the ion concentration and the electric field strength are high (see FIG. 7). In 

the 7 mm case, the red vectors are well aligned with the flow direction, which results in a higher 

energy transfer efficiency than in the 3 mm cases (FIG. 11). There exists another EHD-dominated 

region located at the edge of the domain where the electric lines are pointing in the opposite 

direction of the main flow; the inertial flow component in this region is very small. The small 

denominator in the calculation of parameter X results in its high values (up to 400). The negative 

electric force, combined with the high viscous stress, explain the low-velocity region at the edge 

of the domain (see FIG. 9).  

 

To evaluate the non-dimensional parameters in the EHD domain, electric field lines are plotted 

colored by parameter X and by the local electro-inertia number EIN . The local values of EIN  

overpredict the effect of the electric force in the region where the charge density is low. This EIN

parameter was originally developed to represent global properties of the EHD system and does 

take into account the effects of the local electric field and charge density variations. Thus, it is 

erroneous to use EIN  for this purpose. From the first principles considerations, the region with 

near zero charge density will not experience body force as the ions are not present. Charge density, 

however, is explicitly related to the proposed parameter X, which serves as a better indicator for 

the region dominated by the EHD force.  
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 Non-dimensional number X Electro-inertia number EIN   

Color 

bar 

 

 

 

 

3mm 

5kv 

  

3mm 

7kv 

  

7mm 

7kv 

  

FIG. 10. Electric field lines colored by non-dimensional parameter X (left) and electro-inertia number (right) of 
three cases. The red zone, X  ≥ 1, indicates the regions of EHD-dominated flow. The color map is limited to X =1; 

the value X is as high as 400 in the regions near the ionization zone and the low-velocity region near the wall. 
 

Chapter 5. ENERGY TRANSFER IN CORONA DISCHARGE-

DRIVEN FLOW  

In this chapter, we study the energy conversion efficiency in the point-to-ring corona discharge 

EHD propulsion device. We proposed an energy conversion ratio to measure efficiency. The anode 

input power is calculated from the anode voltage and current, and the kinetic power of the airflow 

is calculated from the velocity profile at the outlet of the device.  

 

The energy conversion efficiency can be calculated from the ratio of the kinetic energy flux in the 

flow at the exit of the EHD device to the electric power produced by the corona discharge:  
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31

2
u dA

I





=


.  (65) 

The corona voltage and anode current are obtained from the experiments. The kinetic energy flux 

in the flow is calculated from both the experimental and numerical velocity profiles. 
 

Table IV shows the values used in the calculation of energy transfer efficiency. 

 

Table IV. Comparison of electric and fluid power between the experiments and the CFD. 

 3 mm, 5 kV 3 mm, 7 kV 7 mm, 7 kV 

, ( )K ExpW mW   0.196 16%   0.882 19%   0.264 23%   

, ( )K CFDW mW   0.184   0.86   0.293   

( )I A   6.15   16.04   4.28   

( )EW mW   30.8   112.28   29.96   

 

Energy transfer efficiency is shown in FIG. 11. The numerical results agree well with the efficiency 

computed using the experimental data. Efficiency is higher in the 7 mm cases than in the 3 mm 

cases due to the smaller angle between the axial velocity and the electric field vectors, as is shown 

in FIG. 11. Energy transfer efficiency peaks at a certain corona voltage (7 kV for 3 mm, and 8 kV 

for 7 mm) after which the efficiency decreases. This nonlinear effect is likely due to the quadratic 

relationship between the corona voltage and anode current. The increase in corona voltage results 

in a quadratic increase in the anode current and a cubic increase in electric power 
3I  . 

Maximum velocity at the centerline is linearly proportional to the corona voltage based on the 

analytical solution and previously reported experimental observations, but the kinetic power

31

2
u dA

 is not proportional to 
3  because u is not proportional to   anywhere but on the 

centerline. At the high values of the corona voltage, the field lines also diverge due to the high 

space at the corona needle (see FIG. 7 and FIG. 10) resulting in a negative work of the electric 

field. 
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FIG. 11. Energy transfer efficiency from the experiments (symbols) and simulations (dashed and dash-dotted lines). 
 

Chapter 6. LAMINAR EHD BOUNDARY LAYER FLOW 

In this chapter, we study the EHD flow in the boundary layer. Modification of the boundary layer 

using EHD is beneficial to the aeronautic industry because no mechanical moving part are required 

to influence the flow. The EHD can be used to modify the laminar-turbulent transition at high 

Reynolds number. It can also be implemented to reduce the drag on the moving body or to stabilize 

the flow to avoid flow separations, unwanted vibrations, and noise68.  

 

Here we develop a finite difference code to solve the governing equations. The pressure projection 

method is an efficient method to solve the incompressible Navier-Stokes Equations (NSE)195-197. 

The numerical method includes a 4-step Runge-Kutta method in temporal discretization and center 

difference method in spatial discretization 198-201. The Poisson equations for pressure correction 
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and electric potential are solved directly based on a sparse multifrontal variant of Gaussian 

elimination 202.  

 

6.1 COMPUTATIONAL DOMAIN 

 FIG. 12 shows the schematic of the flow over a flat plane with an ionization source located in the 

boundary layer. Uniform flow profile is imposed at the inlet. The flow encounters a rough wall 

(modeled as a no-slip boundary) and the electrodes. Laminar boundary layer develops, which is 

affected by the EHD. 

 

 
FIG. 12. Schematic of the laminar boundary layer with EHD flow near the wall 

 

6.2 GRID GENERATION 

 FIG. 13 shows the staggered grid used in the numerical simulation. Pressure and electric field 

values are collocated while other variables, i.e., 2-dimensional velocities and charge density values 

are located in different grid points. This treatment is used to prevent odd-even decoupling 

instability (checkerboard instability) introduced by the central differencing schemes199,203, 204.  
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FIG. 13. The staggered grid method is used to prevent decoupling instability 

 

To fully resolve the laminar boundary layer, the height of the computational domain is about 20 

times the boundary layer thickness; boundary layer is resolved by ~30 grid points. Such 

requirements result in a large computational cost if the grid points are evenly distributed. 

Therefore, grid stretching is applied to reduce the computational cost. Two monotonic stretching 

functions are as follows 205,206: 

 

Two-way grid stretching function is given by: 

 

1
tanh

2
1

2 tanh / 2

y

y

HH
y





   −      = +
 
 
 

.  (66) 

And the one-way grid stretching function is given by: 

 
( )( )tanh

1
tanh

y

y

H
y H

H

 


 −
= − 

  
.  (67) 

where y is the control parameter, H is the height of the computational domain and  is the 

vertical direction of the computational grid.  
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FIG. 14. Grid stretching function (one-way, Eq. (67)) with H=0.08 and 20y = (left) and the 

corresponding mesh (right) 

 

6.3 NUMERICAL METHOD 

The pressure projection method198,199 is used in solving the boundary layer flow, which is governed 

by Eq. (53)-(56)with zero charge source term 0eS = .  Unlike the finite volume method discussed 

in Chapter 3, the finite difference method is unable to capture the finite numerical ionization zone. 

Therefore, the positive charge injection is modeled at the anode surface with a constant charge 

density and electric field based on Kaptsov’s assumption52.  

 

Two potential schemes are evaluated. In the first scheme, the electric force is solved with the 

intermediate velocity 1/2k+
u .  
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
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t
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
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+−
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
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For the second approach, the electric force is solved with pressure correction and the final velocity 

1k+
u . 
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Both methods produce similar results. The following numerical results are solved by the former 

method due to its computational efficiency. Second-order spatial discretization is used. 4-step  

Runge-Kutta scheme198,199 is used for temporal discretization for its higher stability region. The 

numerical method is implemented in FORTRAN 90 and compiled with GNU fortran compiler 

using -Ofast optimization. The Courant-Friedrichs-Lewy condition is satisfied with the freestream 

velocity and the height of the first grid layer. The steady state solution is obtained when the velocity 

profile does not change with time.  
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6.4 BOUNDARY CONDITIONS 

The boundary conditions used in the simulation finite difference method is given in Table V. 
 

Table V. Boundary conditions for the numerical simulations for the EHD boundary layer 

Boundary Flow variables Conditions Electric variables Conditions 

Inlet Uniform velocity, 0
p

x


=


  

0
x


=


, 0c =   

 

Outlet 0
x


=


u

, 0p =   0
x


=


, 0c

x


=


 

Upper boundary 0
y


=


u

, 0p =  0
y


=


, 0c =  

Lower wall (slip) 0
y


=


u

, 0
p

y


=


 0

y


=


, 0c

y


=


 

Lower wall (non-slip) 0=u , 0
p

y


=


 0

y


=


, 0c

y


=


 

Anode 0=u , 0
p

y


=


 

 and  c are constants  

Cathode 0=u , 0
p

y


=


 0 = , 0c

x


=


  

 

6.5 NUMERICAL RESULTS 

We study an electrode configuration and operating conditions which are similar to Moreau et al.68. 

The distance between anode and cathode is 40cm. The external flow is 1m/s. The high voltage 

anode is set at 32kV = , the current 0.75I mA= . FIG. 15 shows the velocity profile with and 

without EHD effect. The numerical data are obtained at the 10mm upstream of the cathode as 

shown (disproportionately) in FIG. 12. The numerical results match the analytical ones very well 

for laminar boundary layer69-71. Comparison with the experimental data will be completed once is 

the data are available. 
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FIG. 15. Velocity profile of laminar boundary layer with or without EHD effect 

 

FIG. 16 shows the velocity, electric potential, and charge density contours for laminar boundary 

layer flows with EHD effect. The velocity contour resembles the classical laminar boundary layer. 

The electric potential contour indicates the electric field between the surface anode and cathode. 

The charge density contour shows the transport of charge from anode to cathode (high electric 

potential to low potential). With the effect of the external electric field, the charge accelerates the 

flow by collision within the laminar boundary layer. Although the effect is not obvious from the 

velocity contour FIG. 16 (left), an increase in the velocity profile is observed, as in FIG. 15. 

 

 

FIG. 16. Velocity(left), Electric potential(middle) and charge density(right) contours 
 of laminar boundary layer with EHD flow 
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Chapter 7. ANALYSIS OF HYDRODYNAMIC STABILITY OF 

ELECTROCONVECTION  

In this chapter, we demonstrate an alternative approach to modeling an EHD flow; our segregated 

solver combines (i) a two-relaxation-time (TRT) LBM 59,207-215 for modeling fluid transport and 

charged species, (ii) a Fast Fourier Transform (FFT) 177,179,216,217 Poisson approach for solving for 

the electric field directly. The TRT model introduces two relaxation parameters aiding the 

numerical algorithm stability without sacrificing computational efficiency. 

 

We use this numerical method to parameterize the EC stability in the cross-flow between two 

parallel electrodes, as shown in FIG. 17. Couette and Poiseuille cross-flow scenarios provide shear 

stress; the dominant terms are determined from non-dimensional analysis of the governing 

equations. A subcritical bifurcation is described by the ratio of the electric force to the viscous 

force. FIG. 17 shows the schematic of the numerical domain. Two parallel plates are infinitely 

long in x and y directions, which is treated as periodic numerically. The ions drift from the high 

voltage injector to the grounded collector, forming an unstable equilibrium base-state. The base-

state is perturbed by different patterns, as shown in FIG. 25. 

 
FIG. 17. The EC between parallel electrode. Positive ions drift from anode (lower plane) to 

cathode (upper plane). 
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Furthermore, we study the 3D effect of EC affected by cross-flow. Couette or Poiseuille cross-

flow is added to EC convection before and after the vortices are established. DMD analysis of the 

numerical solution sheds insight into the formation and pattern transitions of 2D and 3D coherent 

fluid structures. The effects of cross-flow are parameterized by a non-dimensional number, Y, a 

ratio of electric to viscous forces.  

 

7.1 GOVERNING EQUATIONS AND NON-DIMENSIONAL ANALYSIS 

The governing equations of EC flow are the Navier-Stokes equations (NSE) with an electric 

forcing term c = − eF  added to the momentum equation, the charge transport equation, and the 

Poisson equation for electric potential.  

 0 =u  , (78) 

 2
c

D
P

Dt
   = − +  − 

u
u  , (79) 

 ( ) 0c
b c c cD

t


   


+  −  −   = 

u , (80) 

 2 c


 = − .   (81) 

where   and  are the density and the dynamic viscosity of the working fluid, ( )y, ,x zu u u=u  is 

the velocity vector field, P is the static pressure, c is the charge density, b is the ion mobility, 

cD  is the ion diffusivity,  is the electric permittivity, and  is the electric potential. The electric 

force is a source term in the momentum equation (Eq. (79)) 28,32,81,174. The variables to be solved 

are velocity field u , pressure P , charge density c , and electric potential . The flow is assumed 

to be periodic in the x- and y-directions, and wall-bounded z-direction. Cross-flow is applied in 

the x-direction.  

 

In the absence of cross-flow, the system can be non-dimensionalized with the characteristics of the 

electric field81, i.e., H is the distance between the electrodes (two plates infinite in x and y), 0 is 

the injected charge density at the anode, and 0 is the voltage difference applied to the electrodes. 

Respectively, the time t is non-dimensionalized by ( )2
0/ bH   , the velocity u by the drift 
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velocity of ions 0 /drift bu H =  , the pressure P by ( )2 2
0 0 /b H   , and the charge density c

by 0 . Therefore,  non-dimensionalization of the governing equations (Eq. (78)-(81)) gives: 

 * * 0 =u ,  (82) 

 
* * 2

* * *2 * 2 * * *
* * c

D M
P CM

D t T
 = − +  − 

u
u  , (83) 

 ( )
* *

* * * * * * *
* *

1
0

c c

c

t Fe


  

  + − −  =   
u ,  (84) 

 *2 * *

c
C  = − .   (85) 

where the asterisk denotes non-dimensional variables. These non-dimensional equations yield four 

dimensionless parameters describing the system’s state 74,76,77,79,81-90. 

 ( )1/2 2
0 0 0

0

/
, , , b

b b e

H
M T C Fe

D

      
   

 
= = = =


,  (86) 

where H is the distance between the electrodes (two plates infinite in x and y), 0 is the injected 

charge density at the anode, and 0 is the voltage difference applied to the electrodes. The 

physical interpretations of these four non-dimensional parameters are as follows: M is the 

mobility ratio between hydrodynamic mobility and the ionic mobility; T is the electric Rayleigh 

number, a ratio between the electric force to the viscous force; C is the strength of injection 81,86; 

and Fe  is the reciprocal charge diffusivity coefficient 81,86.  

 

With the addition of a cross-flow, the velocity term in the non-dimensional momentum equation 

is modified to account for the external flow, extu , which is different from the previous formulations 

where the drift charge velocity was used 143. Here we consider the velocity of the upper wall in 

Couette flow or the centerline velocity for Poiseuille flow as extu 143. The non-dimensional 

equations then become: 
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 * * 0 =u ,  (87) 
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 *2 * *

c
C  = − .  (90) 

where the Reynolds number is ext HRe



=

u
, and  0 0

2
ext

X
 



=
u

 is a ratio of electric force to inertial 

force 174. Since Re  is essentially the ratio of inertia to viscous force, and X  is the ratio of electric 

force to inertia, the product of these (denoted as Y) is the ratio of the electric force to the viscous 

force: 

  0 0 0 0Re
ext

H
Y X

   

 

=  = =
u τ

,  (91) 

where τ is the shear stress ext

H
=

uτ  . In Couette flow τ = constant ( ext wallu=u ); while in Poiseuille 

flow, the average value in the channel flow is used hereafter ( ext centeru=u  and H replaced by half 

height H/2). The parameter Y is analogous to the electro-viscous number determined by / ReMd

192,193, with the permittivity is replaced by an explicit number of charge density.  

7.2 SYSTEM LINEARIZATION AND INITIALIZATION 

In problems of flow stability, the initial linear growth region can be described by the linearized 

governing equations. The dimensional variables can be written as a summation of the base state 

(with an overbar) and perturbation (with prime), i.e., 'u u u= + ,  'P P P= + , '  = + , and

'c c c  = +  81. The base state variables are only functions of z . Substituting these expressions 

into Eq. (78)-(81), subtracting the governing equations for the base states, and truncating the 

second order perturbation terms, give the linear system 
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 ' 0=u ,  (92) 
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
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u u    ,  (94) 

 2 '
' c


= − .  (95) 

The linear system can be written symbolically as  

 
d

dt
=

γ
Lγ ,  (96) 

where γ  is the vector of unknowns, and L is the linear differential operator. 

 
For periodic boundary conditions in x- and y-directions the normal modes take the form  

 
 ( ) ( , ) tW z f x y e = ,  (97) 

 
where  represents any flow variables ( ', ', ', 'cp  u );  is the eigenvalue of the spatial-

differential matrix L , and ( ) ( , )W z f x y is the corresponding eigenfunction.  The choices of the 

normal modes will depend on the initial perturbation (initial conditions).  

 
To obtain various equilibrium solutions, for example, as shown in FIG. 25, different initialization 

(initial perturbation) schemes are used. The initializations (initial perturbation) applied in the 

simulations discussed below have a form similar to the eigenfunction of the normal mode 

( ) ( , )W z f x y . To satisfy the continuity condition (Eq. (92)), the initial velocity field can be 

described as  

 
2 2

2 2

1 1
( ) ( , ), ,z z

z x y

u u
u W z f x y u u

a x z a y z

 
= = =

   
,  (98) 

where a  depends on the wavelengths in x- and y-directions and satisfies 

 

 
2 2

2
2 2 z zu a u

x y

  
+ = −   

. (99) 

  
The initial perturbation (initial condition) for a rolling pattern (2D) are taken to be:   
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 0xu = ,  (100) 

 
2

( ) 1 2
sin(2 / )y y

y

dW z
u y L

dz a L

 = − ,  (101) 

 ( )cos(2 / )z yu W z x L= ,  (102) 

( )W z is chosen to satisfy the non-slip boundary conditions at the walls. yL  is the wavelength in 

the y-direction.  

 

The initial perturbation (initial condition) for a square pattern (3D) is taken to be: 

 

 2

( ) 1 2
sin(2 / )x x

x

dW z
u x L

dz a L

 = − ,  (103) 

 
2

( ) 1 2
sin(2 / )y y

y

dW z
u y L

dz a L

 = − ,  (104) 

 ( ) cos(2 / ) cos(2 / )z x yu W z x L y L  = +  ,  (105) 

 
where x yL L=  to satisfy the condition (Eq. (99)); therefore: 

 2 / ya L= .  (106) 

The initial perturbation (initial condition) for the hexagon pattern (3D) are taken to be: 

 
2

( ) 4 2 2
sin cos

33 3 3
x

dW z x y
u

dz LLc L

     = −      
,  (107) 

 2

( ) 4 2 2 2
cos 2cos sin

9 3 33
y

dW z x y y
u

dz Lc L LL

         = − +     
     

,  (108) 

 
1 2 2 4

( ) 2cos cos cos
3 3 33

z

x y y
u W z

L LL

        = +     
     

,  (109) 

where L is the side of the hexagon and parameter
4

3
c

L


= .  

To satisfy the wall-bounded no-slip boundary condition in the z-direction, we use a small 

perturbation amplitude: 

 

  ( ) cos(2 / ) 1W z z H = −  , (110) 

where 310 −=  is the perturbation magnitude, the same as in previous 2D analysis 143. 
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7.3 DYNAMIC MODE DECOMPOSITION 

Among other methods, dynamic mode decomposition (DMD) has been used to analyze the 

behavior of a complex flow system.  DMD is a data-driven analysis performed on experimental 

measurements or numerical solutions, unraveling the spatiotemporal dynamics of complex 

systems 218. Schmid and colleagues first applied DMD to the stability analysis of fluid flow 219,220. 

The eigenmodes from DMD are equivalent to global modes if the linearized equations are used in 

numerical simulations. DMD has been previously used to identify bifurcation points in complex 

systems such as flow in a lid-driven cavity of high Reynolds number 221, to reconstruct compressed 

high-dimensional data of a fluid system 222, and to extract coherent spatiotemporal structures in 

fluid flows for prediction and control 223,224.  

 
To reveal the coherent structures leading to flow instability, we perform DMD on the numerical 

data of zu . DMD can reconstruct the complex flow system using the linear growth approximation 

between snapshots of numerical solutions; DMD examines the coherent flow structures and can 

be used as a tool for flow field predictions and stability analysis. A continuous linear dynamical 

system (Eq. (96)) can be described by an analogous time-discretized system at intervals t : 

  1k k + = A ,  (111) 

where  

   exp( )t= A L ,  (112) 

and k is any flow variable ( ', ', ', 'cp  u ) at a time step k . The operator L is a spatial 

differential matrix of the continuous-time dynamical system as in Eq. (96). The solution to the 

discrete-time system can be expressed in terms of eigenvalues j and corresponding eigenvectors 

j  of the discrete-time mapping matrix A : 

 
1

r
k k

k j j j

j

b  
=

= = ξΛ b ,  (113) 

 
where b contains the coefficients of the perturbation (initial conditions) 1 in the eigenvector basis, 

such that 1 = ξb , r is the rank of the reduced eigenmodes, ξ is the matrix whose columns are the 

eigenvectors j , and kΛ is a diagonal matrix whose entries are the eigenvalues j raised to the 
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power of k . The DMD algorithm provides a reduced-rank eigen-decomposition of the matrix A

that linearly fits the trajectory k for 1, 2,....,k m= , minimizing the least-square error 

    1 2k k + −A ,  (114) 

 
across all points for 1,2,...., 1k m= − .   

To obtain the discrete mapping matrix A , we can arrange m snapshots into two data matrices: 

      
 
 

1 2 1

2 3

...

' ...

m

m

  

  
−=

=

γ
γ

,  (115) 

 
The data snapshots are sampled from the results of the numerical simulations, which provide the 

solution to the system of nonlinear equations. Therefore, the linear approximation (Eq. (111)) can 

be written in terms of these data matrices: 

 ' γ Aγ ,  (116) 

The matrix A can be obtained by taking the Moore-Penrose pseudoinverse of the data matrix †  

 †'=A γ  .  (117) 

 

The analysis of matrix A and solution prediction are described as follows: 

1. Obtain singular value decomposition (SVD) of γ : 

     Hγ U V ,  (118) 

where superscript H denotes the Hermitian transpose (conjugate transpose),  n rU , r r

and m rV . The columns of matrices U and V are orthonormal ( H

r r=U U I and H

r r=V V I , 

where I denotes identity matrix).  Here n is the length of the vector k (number of spatial points 

saved per time snapshot) and min( , 1)r n m − is the rank of the reduced SVD approximation of

γ .  

 

2. The matrix A is obtained using the pseudoinverse of γ from SVD.  Substitution into Eq. (117) 

and Eq. (118) yields: 

 1' H−=A γ VΣ U ,  (119) 

Additionally, it is more efficient to compute matrix A , the r r projection of the matrix A onto 

proper orthogonal decomposition (POD) modes: 
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   * * 1' −= =A U AU U γ VΣ ,  (120) 

The matrix A determines a low-dimensional linear model of the dynamical system in proper 

orthogonal coordinates: 

 1k k + = A ,  (121) 

The high-dimensional state can be reconstructed by 

 1k k + = U .  (122) 

3. Compute the eigen-decomposition of matrix A  

   =AW W ,  (123) 

where the columns of the matrix W are eigenvectors and the diagonal matrix  contains the 

eigenvalues. 

 
4. Reconstruct the eigen-decomposition of the matrices A from W and  . The eigenvalues of A

are the same as the eigenvalues of A (contained in the diagonal matrix  ). The eigenvectors of 

A (i.e., the DMD modes) are the columns of the matrix ξ  with 

    1' −=ξ γ VΣ W ,  (124) 

The results obtained by the DMD algorithm based on the data collected from the numerical 

simulations can be compared to the values calculated by linear stability analysis in the linear 

growth region.  

With the low-rank approximation of both the eigenvalues and the eigenvectors, the projected future 

solution can be constructed.  

    ( )
1

( ) exp( ) exp
r

j j j

j

t t b t 
=

 =γ ξ Ω b ,  (125) 

where ln( ) /j j t =   and †
1=b ξ γ , ξ is the matrix whose columns are the DMD eigenvectors j

,Ω is a diagonal matrix whose entries are the eigenvalues j .  

7.4 NUMERICAL METHOD 

7.4.1 Two Relaxation Time Lattice Boltzmann Method 

The TRT-LBM is applied to NSE (Eq. (78)-(79)) and the transport equation for charge density 

(Eq. (80)) The mesoscopic solutions of the LBM yield a discrete distribution function of velocity 
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( ),if tx  and charge density ( ),ig tx . The values of  , c , and momentum density u can be 

evaluated by weighted sums. 

 ( ) ( ), ,i

i

t f t =x x ,  (126) 

 ( ) ( ), ,c i

i

t g t =x x ,  (127) 

 ( ) ( ) ( ), , ,
2 2
e c

i i i i

i i

t t
t f t f t

 


  
= + = − F

u x c x c x ,  (128) 

The discrete normalized velocity, ( ),i ix iyc c=c  at position - x and time - t depends on a specific 

discretization scheme; here, we use the D2Q9 model (2 spatial dimensions and 9 discrete 

velocities) and D3Q27 model (3 spatial dimensions and 27 discrete velocities). The spatial 

discretization is uniform ( x y z =  =  ), and the temporal discretization - t . The ic  parameters 

(i=0~26) for D3Q27 are shown in Table VII.  

 

The Lattice Boltzmann Equations (LBEs) for flow field and charge density are: 

 

( ) ( ) ( ) ( )

( ) ( )

, ,

1 , 1 ,
2 2

eq eq

i i i i i i i

TRT collision operator

i i

TRT source operator

f t t t f t t f f f f

t t
t F t F t

 

 

+ + + − − −

+ −
+ −

 +  +  = − − + − 

     
+  − + −    

    

x c x

x x

,  (129) 

 ( ) ( ) ( ) ( ), , eq eq

i i i g i i g i i

TRT collision operator

g t t t g t t g g g g + + + − − − +  +  = − − + − x c x ,  (130) 

eq

if  and eq

ig are the equilibrium distributions for flow field and charges respectively, which are 

given by 

 ( ) ( )2

2 4 2
, 1

2 2
ieq i

i i

s s s

f t w
c c c


 

= + + − 
 
 

u cu c u u
x ,  (131) 

 ( ) ( ) ( ) ( ) ( )
2

2 4 2
, 1

2 2
b ib i b beq

i i c

s s s

g t w
c c c

      

 −  −  −  −   = + + −
 
 

u cu c u u
x ,  (132) 

iF  is the forcing term accounting for the electric force 

 ( )
2 4

i ii
i i e

s s

F w
c c

 −
= + 

 

c u cc u
F

,  (133) 
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where ( )( )22 / 1/ 3 /sc P x t= =   is the speed of sound 225; 1/  =  and 1/g g  =  are the times at 

which the distribution functions relax to equilibrium, and iw  is the weight for the velocity 

component ic shown in Table VI for 2D and Table VII for 3D.   

Table VI. Velocity set and the corresponding weights for D2Q9 model  

i   ic   iw   

0 (0,0) 4/9 

1 (1,0) 1/9 

2 (0,1) 1/9 

3 (-1,0) 1/9 

4 (0,-1) 1/9 

5 (1,1) 1/36 

6 (-1,1) 1/36 

7 (-1,-1) 1/36 

8 (1,-1) 1/36 

 

 

Table VII. Velocity set and weights in D3Q27 model 
 

i  ic  iw  

0 (0,0,0) 8/27 

1 (1,0,0) 2/27 

2 (-1,0,0) 2/27 

3 (0,1,0) 2/27 

4 (0,-1,0) 2/27 

5 (0,0,1) 2/27 

6 (0,0,-1) 2/27 

7 (1,1,0) 1/54 

8 (-1,-1,0) 1/54 

9 (1,0,1) 1/54 
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10 (-1,0,-1) 1/54 

11 (0,1,1) 1/54 

12 (0,-1,-1) 1/54 

13 (1,-1,0) 1/54 

14 (-1,1,0) 1/54 

15 (1,0,-1) 1/54 

16 (-1,0,1) 1/54 

17 (0,1,-1) 1/54 

18 (0,-1,1) 1/54 

19 (1,1,1) 1/216 

20 (-1,-1,-1) 1/216 

21 (1,1,-1) 1/216 

22 (-1,-1,1) 1/216 

23 (1,-1,1) 1/216 

24 (-1,1,-1) 1/216 

25 (-1,1,1) 1/216 

26 (1,-1,-1) 1/216 

 

The TRT approach has been previously used to model the collision operators 207-209,212,213 and the 

momentum source operator 226,227. Alternatively, to SRT operators, TRT is more robust for EC 

problems, as it provides additional relaxation parameter, improving the numerical stability 225. The 

terms specified in the TRT collision operators and the source operator are 

 
2

i i
i

f f
f + +

= , 
2

i i
i

f f
f − −

= ,
2

eq eq

eq i i
i

f f
f + +

= ,
2

eq eq

eq i i
i

f f
f − −

=  (134) 

 
2

i i
i

g g
g + +

= , 
2

i i
i

g g
g − −

= ,
2

eq eq

eq i i
i

g g
g + +

= ,
2

eq eq

eq i i
i

g g
g − −

=  (135) 

 
2

i i
i

F F
F  

= . (136) 

 

Subscript i denotes the velocity component opposite to i , such that i i
= −c c . Relaxation 

parameters , g + −
are determined by 
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2 1

2s

t
v c

+

 = − 
 

, 
2 1

2c s

g

t
D c

−

 
= −  

 
.  (137) 

−
and g

+
need to satisfy 

 
1 1 1 1

2 2t t + −

   = − −     
, 

1 1 1 1

2 2g

g gt t + −

  
 = − −       

,  (138) 

where   and 
g are free factors used to control the algorithm stability 225. Here, 1/12 = and 

6
g 10− = ; the large difference accounts for the mismatch between the neutral molecule and charge 

diffusivity.  

7.4.2 Fast Poisson Solver 

The Poisson equation (Eq.(81)) is solved by a fast Poisson solver using a 3D FFT algorithm. The 

discretized grid function can be written as: 

 
2 2 2

, , , ,[ ]x y z x y z x y zD D D s+ + = , (139) 

where 2
xD , 2

yD and 2
zD are 2nd order derivatives operators in x - y - z coordinates; , ,x y zs - source 

term representing space charge effect. Fourier spectral method is used in the x and y-direction and 

2nd order finite difference scheme in the z-direction. In x and y-direction, the FFT algorithm is 

used to implement the standard Discrete Fourier transform (DFT). 

 
( ) ( ), , , ,

1

2 1
exp 1 , 1

NX
x

x x y z x y z x

x

k
DFT i x k NX

NX


 

=

− 
  = − −    

 
 , (140) 

 
( ) ( ), , , ,

1

2 1
exp 1 , 1

NY
y

y x y z x y z y

y

k
DFT i y k NY

NY


 

=

 −
  = − −       

 .  (141) 

where xk , xk are the wavenumbers and NX , NY  are the number of grid points in the x and y-

direction. The 2nd derivative in the x and y-direction can be calculated in the Fourier domain 

 

2
, ,2 2

, , , ,2

x y z

x x x y z x x x x y zDFT D DFT k DFT
x


 

 
   = = −       

,   (142) 

 

2
, ,2 2

, , , ,2

x y z

y y x y z y y y x y zDFT D DFT k DFT
y


 

 
   = = −       

.  (143) 
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Fourier transform in the z-direction uses an odd extension of the domain to satisfy the Dirichlet 

boundary conditions.  

 , , , ,1 , ,2 , , , , , ,10, , , , ,0, , ,
ext

ext

x y z x y x y x y NZ x y NZ x y      = −  , (144) 

 

 , , , ,1 , ,2 , , , , , ,10, , , , ,0, , ,
ext

ext

x y z x y x y x y NZ x y NZ x ys s s s s s = −  ,  (145) 

where NZ is the number of grid points in the z-direction. The size of the extended matrices is 

NX NY NE  , where  2 2NE NZ= + ; the extz is the extended z indices, ranging from 1 to NE . 

From the definition of DFT (Eq. (140)-(141)),  

we have: 

 ( )
, , 1 , ,exp

x y z

s

z z z x y zDFT ik z DFT 
+

   =     , (146) 

where s is a periodically shifted vector by z  of  in z-direction. Applying a central 

differencing operator in extz  direction gives: 

 ( ) ( ) ( )2

2
, , , , , ,2 2

exp exp 2 4sin / 2
ext ext ext

ext ext ext ext ext ext ext

z z zext ext ext

z z x y z z x y z z x y z

ik z ik z k z
DFT D DFT DFT

z z
  

 + −  − − 
     = =      

. (147) 

 
Therefore, the Fourier transform of Eq. (139) is 

 
( )2

2 2
, , , , , , , ,2

4sin / 2
ext

ext x y z ext x y zext ext

z ext ext

x y x y z k k k x y z k k k

k z
k k DFT DFT s

z


 
    − + + =     

. (148) 

 

The Inverse Fast Fourier Transform (IFFT) algorithm transforms , , , ,ext x y zext

ext

x y z k k kDFT  
   into the 

spatial domain. Then, the electric potential in the original domain is obtained by retaining the first 

half (1 z NZ  ) of the extended solution matrix.  

7.5 NUMERICAL SETUP 

The numerical method is implemented in C++ using CUDA GPU computing. The number of 

threads in the x-direction in each GPU block is equal to NX ; the number of GPU blocks in the y-

direction is equal to NY . FFT and IFFT operations are performed using the cuFFT library. All 

variables are computed with double precision to reduce truncation errors. The numerical method 

was shown to be 2nd order accurate in space. To reduce computational cost while maintaining 

accuracy, the grid of 122NX = , 100NZ =  is used in 2D simulations. The wall-normal direction is 
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represented by y-direction in 2D analysis and z-direction in 3D analysis; cross-flow is applied in 

the x-direction. Macroscopic and mesoscopic boundary conditions are specified in Table VIII. 

Table VIII. Boundary conditions used in the numerical simulations. 

Boundary Macro-variables Conditions Meso-variables Conditions 

x, y direction 

boundaries 
Periodic 

Periodic 

Upper wall 0=u , 0 = and 0c =   
Bounce-back for if

59,207,213,215,225 

Bounce-back for ig 59,207,213,215,225 

Lower wall 0=u , 0 = , 0c =  

Bounce-back for if  

0ig

z


=


 

 
The full-way bounce-back is used for Dirichlet boundary conditions for fluid flow 87,88,228. The 

bounce-back method for Neumann boundary conditions applied to impermeable solid walls can 

introduce spurious boundary layer because of the diagonal velocity-weights 59,215. Nevertheless, 

The Neumann boundary condition for ig is an outflow boundary condition for charge density 

transport 87,88,225. The choice of small g can improve accuracy because of the horizontal 

boundaries 59,215.   

7.6 NUMERICAL RESULTS 

7.6.1 Non-dimensional analysis and solution for hydrostatic state  

Governing equations yield four non-dimensional parameters that describe the system’s state 81,86-

90. 

 ( )1/2 2
0 0 0

0

/
, , , b

b b e

H
M T C Fe

D

      
   

 
= = = =


,  (149) 

where H is the distance between the electrodes (distance between the two infinite plates), 0 is the 

injected charge density at the anode, and 0 is the voltage difference applied to the electrodes. 

The physical interpretation of these parameters are as follows: M - the ratio between hydrodynamic 

mobility and the ionic mobility; T - the ratio between electric force to the viscous force; C - the 

charge injection level; and Fe - the reciprocal of the charge diffusivity coefficient 81,86. For 
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electroconvection system considered in this chapter, these four non-dimensional parameters can 

characterize the flow. Velocity is not explicitly included; however, for the scenarios with strong 

advection, a different set of scaling parameters can be more attractive 143,174. 

 

 FIG. 18 shows that our hydrostatic solutions for electric field and charge density agree well with 

the model of Luo et al. 87,88 and the analytical solution 32,140. The analytical solution is based on a 

reduced set of equations for the electric field in one-dimensional coordinates. 

 ( ) 1/2

c a ay y  −= + , (150) 

 ( )1/22 a
z aE z z




= + , (151) 

where a and az are parameters that depend on the boundary conditions and geometry. For the 

hydrostatic state, parameter C dominates the system 81,86.  

 

 
FIG. 18. Hydrostatic solution comparison of the TRT LBM and Fast Poisson solver, unified SRT LBM 87, and the 

analytical solution 32,140 for 0.1C =  and 10C = , 4000Fe = . (a) Electric field and (b) charge density;  
  

Table IX shows the dimensional parameters used for the analytical solution and the L2 norm error 

between numerical results and analytical solutions. The numerical errors are lower than reported 

for the unified SRT LBM simulation (
2Le =0.0076) 87. The numerical results at the hydrostatic 

base state acts as a validation of our numerical method and the initial condition before the initial 

perturbation of the EC flow. 
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Table IX. Dimensional parameters for the analytical model and L2 norm errors 
2Le for weak ion injection C = 0.1 

and strong ion injection C = 10. 
C   0.1 10 

5/2( / )a Coulomb m  0.218 0.75 

( )ay m  4.8 0.003 

2Le of
yE  0.0031 0.0030 

2Le of c  0.0035 0.0031 

 
 

7.6.2 Electroconvection instability in 2D without cross-flow 

 
To model electro-convective instability, the steady-state hydrostatic solution is perturbed using 

waveform functions that satisfy the boundary conditions and continuity equation: 

 
( )
( )

3

3

sin 2 / sin(2 / ) 10

cos 2 / 1 cos(2 / ) 10

x x y x

z z z x

u L y L x L

u L z L x L

 

 

−

−

= 

= −   
, (152) 

The physical domain size is 1.22Lx m= and z 1.00L m=  limits the perturbation wavenumber to 

2 / 5.15(1/ )x xL m =   -- the most unstable mode under the condition, where C=10, 10M = , 

4000Fe =  88.  The electric Nusselt number 
0 1 0/Ne I I= acts as a criterion of flow stability, where 

1I is the cathode current at a specific condition, 0I is the cathode current for the hydrostatic solution 

74. For cases where EC vortices exist, 
0 1Ne  . For a strong ion injection, the EC stability largely 

depends on T ; so, in the following analysis, T is varied, while other parameters are held constant: 

10C = , 10M = and 4000Fe = .  

 

For cT T  and the perturbation is given by Eq. (152), the flow becomes unstable developing EC 

vortices which are maintained by an electric force acting on the ionized fluid -- a combination of 

applied electric field and the space charge effect. The space charge effect can alter the applied 

electric field in the area of high charge density 174. FIG. 19 (a) shows the formation of counter-

rotating vortices; the charge density contour plotted with streamlines. In an upward fluid motion, 

the local charge transport is enhanced as indicated by the higher charge density in the center of the 

domain. In downward flow motion, the charge transport decreases, see the darker blue in the edges 

of the domain. FIG. 19 (b) shows the x-directional velocity contour. High x-velocity regions are 
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located near the top and bottom walls; the flow is symmetric, which indicates that the steady-state 

solution has the same wavelength in x and y directions as the perturbation equations (Eq. (152)).   

 

 
FIG. 19. Charge density and xu  contours for EHD convection with vortices. 

 
FIG. 20 (a) shows the EC flow stability analysis, demonstrated by 0Ne  as a function of T . When 

cT T  the perturbation does not trigger the flow instability, the perturbed flow reverses to the 

hydrostatic state. If T is decreased after the EC vortices are formed, they are maintained until 
fT T=  

when the system returns to the hydrostatic state. The model predicts the bifurcation points at 

163.4cT = and 108.7fT =  agreeing Luo et al. 88 ( 163.1cT = , 108.7fT = ), the linear stability analysis 

81,88 ( 163.5cT = ),  and the finite volume method 85 ( 108.2fT = ) under the same conditions. Neither 

numerical model nor linear stability analysis agrees with the experimental data. The proposed 

segregated TRT-LBM approach is consistent with the previous research; however, it does not 

modify governing equations by introducing artificial terms needed for numerical stability and 

yields fast convergence of the elliptical Poisson equation enabled for the FFT approach.  
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FIG. 20. Electric Nusselt number 0Ne depends on electric Rayleigh number T   

7.6.3 Electroconvection instability in 2D with a cross-flow 

In this section, we discuss the effect of cross-flow on the 2D EC vortices. Two types of cross-

flows are investigated, i.e., the Couette flow and Poiseuille flow. The Couette cross-flow is added 

to the simulation with EC vortices by assigning constant velocity of the upper wall. To model the 

Poiseuille flow, a body force in the x-direction is added. FIG. 21 shows the charge density and x-

direction velocity for Couette cross-flow ( * 0.8wallu = ) and Poiseuille cross-flow ( * 0.8centeru = ), 

where the asterisk represents non-dimensionalized by drift velocity driftu . The Couette cross-flow 

stretches the vortices in the direction of the bulk flow and may eliminate one of the two vortices. 

In a Poiseuille cross-flow, the vortex pair becomes separated; the vortices are pushed toward the 

opposite walls. For strong cross-flow, both vortices in the pair are eliminated, and I=I0, Ne=1(see 

FIG. 24). The EC contribution to the flow field is negligible at higher values of shear stress (higher 

velocity), and the flow field is the same as the applied cross-flow. 
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FIG. 21. Charge density and x-direction velocity contour of the EC with cross-flow. Top: Couette flow with 
* 0.8wallu = ; one of the two vortices is suppressed. Bottom: Poiseuille flow with 

* 0.8centeru = ; two vortices are 

suppressed and pushed towards the walls.  
 

FIG. 22 shows the extended stability analysis of EC without cross-flow 142 by introducing (a) finite 

velocity of the upper wall (cathode) and (b) a uniform body force for pressure driven flow 

/pF dp dx= . For a constant T , Ne decreases as wallu  or 
2

1

2 2center p

H
u F


 =  
 

increases. The 

applied shear stress stabilizes the EC flow.  
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FIG. 22. Electric Nusselt number depends on the electric Rayleigh number T and applied velocity of the upper wall 
*

wall
u for Couette type cross-flow or 

*
centeru for Poiseuille type cross-flow. 

 
FIG. 23 shows the dependency of Ne  on non-dimensional parameter Y . For varying values of T

, the solutions lie on the same curve of Ne  normalized by YNe  ( Ne  at Y → , solutions without 

cross-flow 142) suggesting that the EC stability with cross-flow can be characterized by a single 

non-dimensional parameter Y , which is inversely proportional to τ .   

 
FIG. 23. Electric Nusselt number depends on the non-dimensional parameter Y. (a) Couette type cross-flow is 

applied. (b) Poiseuille type cross-flow is applied. 
 
FIG. 24 shows ( )Ne f Y=  for 10C = , 10M = , 170.07T =  , and 4000Fe =  for  Couette and 

Poiseuille cross-flow. A hysteresis loop with subcritical bifurcation is observed; the bifurcation 

thresholds are 625.25cY = , 297.32fY =  for Couette flow and 218.58cY = , 159.36fY =  for 
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Poiseuille flow. Similar to stability parameter T for the hydrostatic case (FIG. 22), for cY Y , the 

system does not yield the EC instability, returning to the unperturbed state ( 0I I= and Ne=1). If 

Y decreases after the EC vortices are formed, Ne decreases nonlinearly, until 
fY Y= , then the EC 

vortices are suppressed; the Coulombic forces do not influence the flow. 

 
 

FIG. 24. ElectricNusselt number Ne versus Y. Bifurcation thresholds are: (a)  Couette cross-flow 625.25cY = and 

297.32fY = ; (b) Poiseuille cross-flow 159.36fY =  and 218.58fY = . 

7.6.4 Electroconvection instability in 3D: General Picture  

In this section, we investigate the 3D EC phenomenon. The TRT LBM approach is used to solve 

the transport equations for fluid flow and charge density, coupled to a fast Poisson solver for 

electric potential 142,143. The solver is extended to 3D for the differential equations (Eq. (78)-(80)) 

and performed with certain initial perturbations (initial conditions) (Eq. (100)-(102) for rolling 

pattern, Eq. (103)-(105) for square pattern, and Eq. (106)-(109) for hexagon pattern and mixed 

patterns). The equilibrium state was obtained when the flow became stable. The numerical code is 

in SI units, and the physical constants are determined by the non-dimensional parameters. The 

numerical method is implemented in C++ using CUDA GPU computing. FFT and IFFT operations 

are performed using the cuFFT library. All variables are computed with double precision to reduce 

truncation errors. The numerical method was shown to be 2nd order accurate in space. The 

equilibrium patterns of EC flow fields without cross-flow were obtained using the initial conditions 

described in section 7.2. The resulting patterns depend on the non-dimensional parameter T and 

the domain size, the latter which determines the wavelengths of the vortices. FIG. 25(a-e) shows 

the equilibrium states of zu at / 2z H= . The  values 10C = , 10M = , and 4000Fe = are held 
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constant for each condition. The simulations were carried out to 170T = for zu plotted in  FIG. 

25(a, c-e), and to 833T = for zu in  FIG. 25(b). The domain sizes and initial perturbation (initial 

condition) for the simulations plotted in FIG. 25(a) and (b) are the same (Eq. (100)-(102)), and 

therefore zu in  FIG. 25(b) is the harmonic of zu in  FIG. 25(a) that develops at the high value of T. 

For cases given in FIG. 25(c-e), different domain sizes with hexagon pattern initial perturbation 

(Eq. (106)-(109)) are used. When sufficiently strong Couette type cross-flow in the x-direction is 

applied to the 3D structures, the transition to 2D streamwise rolling patterns occurs for all initial 

perturbations scenarios FIG. 25(f-j).  

 

FIG. 25. Contours of  zu  at / 2z H= at equilibrium states (a-e) without cross-flow and (f-j) with cross-flow 

sufficient for pattern transition. For different electric Rayleigh numbers, domain sizes, and initial perturbations 
(initial conditions), square patterns, oval patterns, hexagon patterns, and mixed patterns are established. Strong 

cross-flow in the x-direction is applied to the equilibrium states (a-e), resulting in the 3D transition to 2D streamwise 
vortices. 

 
To study the mechanism for this transition dynamics to streamwise vortices, we consider the 

simplest scenario, i.e., the case where the equilibrium state is a one period square pattern (FIG. 

25(a)). Further generalization of transition for other patterns can be a subject of future work. The 

physical domain used in the simulation is given by 1.22x yL L m= = and 1H m= ; this limits the 

wavenumber to 2 / 5.15(1/ )x y xk k L m= =  , and yields the most unstable mode at 10, 10C M= = , 

and 4000Fe =  81,88.  The electric Nusselt number, 0/Ne I I= , serves as a flow stability criteria, 

where I is the cathode current for a given solution and 0I is the cathode current for the base state 

solution without EC vortices 74,88; thus, 1Ne  when EC vortices exist. The transition to chaotic 
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flow at higher values of forcing term will be considered in the next chapter. Since for the EC 

problem with the cross-flow, the stability largely depends on Y 143, in this analysis, Y is varied, 

while other non-dimensional parameters are held constant at 170T = , 10C = , 10M = , and 

4000Fe = .  

7.6.5 Perturbation of the hydrostatic base state without cross-flow 

An initial perturbation was applied to the hydrostatic base state after the one-dimensional electric 

property profiles were established as shown in FIG. 18. FIG. 26 shows that for cT T , the 2D 

perturbation (Eq. (100)-(102)) leads to the development of a rolling pattern with flow only in y 

and z directions, while the 3D square perturbation (Eq. (103)-(105)) leads to a square pattern with 

velocities in all three directions. FIG. 27 shows the evolution of the maximum zu for the first 20s 

after the perturbation is applied. Both the rolling pattern and square pattern have the same linear 

growth rate (~0.224s-1), which agrees with the linear stability analysis 81 and the unified SRT LBM 

numerical model 88. After about 20s from the initial perturbation, the growth rate curves diverge. 

Although the maximum zu  is greater for the square pattern, the charge transport (based on 

0/Ne I I= ) for rolling patterns is greater, as shown later in FIG. 40 and FIG. 41. We use the 

dimensional quantities in this section, but all variables can be non-dimensionalized accordingly. 

 

FIG. 26. Contours of  zu  at z=H/2 for initial perturbation by (a) square pattern and (b) rolling pattern with 170T =

, 10C = , 10M = , and 4000Fe = . 
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FIG. 27. Time evolution of maximum zu for the rolling pattern and square pattern in (a) linear scale and (b) 

logarithmic scale. Both patterns have similar growth rates (~0.224 s-1) in the linear growth region (t=0~20s). The 
DMD algorithm based solutions in the interval t=0-10s projects the state at 15s. 

  

DMD is performed based on the numerical data of the square pattern perturbation case from 0-10s 

at intervals of 0.5t s = . FIG. 28 shows the eigenvalues   of the discrete-time mapping matrix 

A as in Eq. (112) and the logarithmic mapping of the eigenvalues   of the matrix L as in Eq. 

(96). The eigenvalues   are shown in relationship to the unit circle (dashed line); most of the 

values are inside the circle and therefore, represent stable dynamic modes. Three unstable modes 

(solid dots) with positive growth rates are found. The imaginary parts of these unstable modes are 

zero ( 0i = ); these modes do not oscillate.  

 

FIG. 28. (a) Eigenvalues of the discrete-time mapping matrix A and (b) logarithmic mapping of eigenvalues of L . 

The eigenvalues outside the unit circle, whose logarithmic value has a real component r  greater than 0, represent 

the unstable dynamic modes. The logarithmic mapping of the eigenvalue L indicates the growth rate of each 
dynamic mode. 
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The three unstable modes with positive growth rates dominate the flow pattern. FIG. 29 shows the 

eigenvectors of these three modes, along with the simulation result at 10s, plotted on the plane 

/ 2z H= . The plots show square patterns with different wavelengths and the phase shifts. 

Although the mode  0.227r = has a lower growth rate, it contains >99% of the energy of the 

perturbation (its initial amplitude of b=1.826 is much greater than that of the others). The overall 

growth rate (~0.224s-1) from FIG. 27 is very close to the growth rate of this dynamic mode shown 

in FIG. 29(c). The comparison of the dynamic modes FIG. 29(a-c)  and simulation solution FIG. 

29(d) verifies that the dynamic mode 0.227r = dominates the flow system. The growth rates of 

rolling and square patterns are very close to each other, which was also observed in the previous 

investigation88.  

 

FIG. 29. Unstable dynamic modes visualized by zu  at / 2z H= . The dynamic mode 0.227r =  (c) perturbation 

has the greatest of projection (b=1.826) on this eigenmode, and therefore, it contains most of the energy of the 

system. The growth rate of this mode 0.227r = is close to the general growth rate of the entire system (~0.224) 

from FIG. 27. 
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7.6.6 Perturbation of the hydrostatic base state including a cross-flow 

In this section, we investigate the EC problem with an initial perturbation applied to the hydrostatic 

base state after a cross-flow field has been added in the x-direction. Cases for two cross-flows are 

studied. The square pattern initial perturbation is used (Eq. (103)-(105)). The first is a Couette 

flow, which is obtained by applying the speed uwall to the upper wall while holding the bottom wall 

fixed.  The second is a Poiseuille flow, which is driven by a body force representing the pressure 

drop - 
pF , so the center speed is ucenter= 

2
1

2 2 p

H
F


 
 
 

.  FIG. 30 shows the evolution of maximum 

zu and Ne for both cases. For the first 20s after the initial perturbation (Eq. (103)-(105)), the growth 

is linear, and the growth rate of ~0.224s-1 is the same for all solutions. The growth rate is the same 

with and without cross-flow because the cross-flow does not affect the streamwise vortices, and 

as it is shown in FIG. 27 the streamwise vortices grow at the same rate as the 3D square patterns. 

After about 20s, the growth rates diverge to reach different equilibrium states for different cross-

flows scenarios and perturbation schemes. With weak cross-flow (uwall=0.4m/s for Couette flow, 

ucenter=0.42m/s for Poiseuille flow), the final solutions exhibit oblique 3D vortex structures; both 

transverse and regular longitudinal rolls coexist. The maximum values of zu in these oblique 3D 

vortices are greater than for cases with rolling patterns. For strong cross-flow (uwall=1.0m/s for 

Couette type and ucenter=0.96m/s for Poiseuille type), the systems develop directly into a 

longitudinal rolling pattern regardless of the initial perturbation; i.e., transverse rolls do not exist 

even when the initial perturbation has the square pattern. The maximum zu  of the streamwise 

vortices in the cross-flow case is the same as the 2D rolling vortices without cross-flow, as shown 

in FIG. 27; in other words, streamwise vortices are superimposed onto the base state cross-flow 

solution. With respect to the final steady state (oblique 3D or 2D rolling vortices), the solutions 

with and without cross-flow bifurcate at uwall=0.55m/s for Couette type and ucenter=0.70m/s for 

Poiseuille flow at about 20s. Before reaching an equilibrium state, the cases with the moderate 

cross-flow exhibit an intermediate state where the maximum zu  can be greater than the final 

longitudinal rolling pattern case (uz=0.688m/s) or even the square pattern case with transverse and 

longitudinal rolls (uz=0.728m/s). After reaching the peak, in each case, uz decreases to an 

equilibrium solution corresponding to the cross-flow strength. For the intermediate cross-flow 

cases, the systems first develop oblique 3D structures similar to the weak cross-flow cases, and 
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then transition to longitudinal rolling vortices (for Couette flow at uwall=0.56 and 0.6m/s; for 

Poiseuille flow at ucenter=0.71,0.74,0.85 m/s), as shown in FIG. 31. For strong cross-flow (for 

Couette flow at uwall=1.0m/s; for Poiseuille flow at ucenter=0.95m/s) the flows develop directly into 

longitudinal 2D rolling patterns. 

 

Unlike the evolution of the maximum zu , Ne always increases during the transition from 3D to 2D 

vortices (FIG. 30 c-d). However, for cross-flow below bifurcation occurs (the cross-flow is not 

strong enough to suppress the 3D structures), the steady-state value of Ne for the stronger cross-

flow can be lower than in the weaker cross-flow. If the cross-flow suppresses the transverse 

structures, the system develops into a longitudinal rolling pattern with a constant Ne=1.41, which 

is independent of the strength or type of cross-flow. As with the zu  analysis, the charge transport 

by the longitudinal vortices is superimposed onto the cross-flow regardless of the flow profile. 
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FIG. 30. Time evolution of maximum  zu  and Ne for (a, c) Couette cross-flow and (b, d) Poiseuille cross-flow. 

Maximum  zu  have similar growth rates (~0.224s-1) in the linear growth region (t=0~20s). The square pattern initial 

perturbation scheme (Eq. (103)-(105)) is used. For strong cross-flow, the systems develop into longitudinal rolling 
patterns. For the weak cross-flow, the systems develop into oblique 3D structures with both transverse and 

longitudinal structures.   
 
 

FIG. 31 shows zu  at z= / 2H and t=30s for (a) Couette cross-flow with uwall=0.56m/s and (b) 

Poiseuille cross-flow with ucenter=0.71m/s; this time is when the maximum zu  reaches its peak 

value in the non-linear growth region. Both plots exhibit a dominating longitudinal vortex pattern, 

i.e., aligned with the cross-flow in the x-direction. The transverse structures are suppressed due to 

the interaction of the vortex’s x-velocity components with the cross-flow; these interactions are 

most profound near the walls where x-velocity components of the initial 3D vortices are the 

greatest.  For example, in Couette flow the clockwise vortex deforms at some oblique angle as in 

x-direction (streamwise) flow accelerates the upper region of the 3D structure and retards the 
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bottom region in the transverse direction (relative to the mean velocity). This is reversed in the 

case of the counterclockwise rotating vortex. Eventually, these transverse structures become 

suppressed, and the systems develop into longitudinal rolling patterns 143. Since the longitudinal 

rolling pattern is two dimensional in y and z-directions, it does not interact with the bulk cross-

flow. For the Poiseuille flow, the mechanism is slightly different; however, the interactions of the 

vortex structure and the bulk flow exist only in the x-direction; thus y-z structures are not affected 

by the cross-flow; therefore, the streamwise vortices cannot be suppressed by any type of the cross-

flow.  

 

FIG. 31. Contours of zu  for z= / 2H , t=30s: (a) Couette cross-flow 0.56 /wallu m s= ; (b) Poiseuille cross-flow 

0.71 /centeru m s= .  

 

DMD analysis of the EC vortices in the cross-flow was performed using the numerical data of zu  

in linear growth region (0-28s for Couette type and 0-25s for Poiseuille type) at time intervals of 

0.5t s = . Additional unstable dynamic modes exist in the oblique 3D pattern compared to the 

rolling pattern. FIG. 32 shows the   for Couette cross-flow at (a) uwall=0.55m/s and (c) 

uwall=0.56m/s. Similarly, FIG. 33 shows  for Poiseuille cross-flow: (a) ucenter=0.70m/s and (c) 

ucenter=0.71m/s. As in the zu evolution in hydrostatic base states without cross-flow (FIG. 27-FIG. 

29), a perturbation in cross-flow arouses several unstable dynamic modes. Most of the dynamic 

modes are similar in corresponding flows, resulting in a similar flow field up to the bifurcation 

point. However, in both cases, the lower velocity flow contains additional unstable modes, i.e., 

1m  and the conjugate pair 2 2m m− in Couette cross-flow, and mode 3 3m m− in Poiseuille cross-
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flow. These additional unstable dynamic modes correspond to 3D features changing the stability 

of the system. They appear in nonlinear growth region up to the bifurcation point where the curves 

of weak and strong cross-flow start to diverge, see FIG. 30(a-b). 

 
FIG. 32. Eigenvalues i  for zu in linear growth region (0-28s) for Couette cross-flow ((a) uwall=0.55m/s and (c) 

uwall=0.56m/s). Three additional unstable dynamic modes in uwall=0.55m/s case change the equilibrium solution from 
a rolling pattern to oblique 3D structures. The corresponding eigenvectors sliced at / 2z H= are shown in (b) mode 

1m  and (d) mode 2m  and 2m .  
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FIG. 33. Eigenvalues i for zu  in linear growth region (0-25s) for Poiseuille cross-flow ((a) ucenter=0.70m/s and (c) 

ucenter=0.71 m/s). An additional pair of conjugate unstable dynamic modes in ucenter=0.70m/s case change the 
equilibrium solution from a rolling pattern to an oblique 3D structure pattern. The corresponding eigenvectors sliced 

at / 2z H= are shown in (b) mode 3m and (d) mode. 

 

7.6.7 Pattern transition after cross-flow application 

In this section, the transitions from 3D to 2D patterns were studied by applying the cross-flow to 

already developed 3D vortex structures (a single period square pattern). With weak cross-flow, the 

systems exhibit oblique 3D vortex structures (oblique transverse and regular longitudinal 

structures coexist). For strong cross-flow, the flows develop into a longitudinal rolling pattern, i.e., 

transverse structures are fully suppressed. FIG. 34 shows the time evolution of maximum zu  in 

Couette cross-flow. For small uwall and, therefore, weak applied shear stress (e.g., uwall=0.60m/s), 

the maximum zu decreases to an equilibrium value somewhat greater than that of the rolling pattern 

flow (uwall =0.688m/s). Interestingly, with a further increase in uwall (e.g., uwall=0.80m/s), the 

equilibrium value for zu may decrease below the value of the rolling pattern. And with even further 
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increasing uwall (e.g., uwall=0.96m/s), the equilibrium solution develops an oblique 3D structure 

with maximum uz that is greater than that of the rolling pattern. However, at uwall = 0.97m/s, a 

bifurcation occurs, and the steady-state solution has only 2D streamwise vortices. The transition 

from 3D to the 2D rolling pattern is marked by a significant increase in zu to a value greater than 

the original square pattern, before finally decaying to the same value as for the rolling pattern. This 

significant increase is a result of kinetic energy transfer from modes with 3D structures to the 

dominating 2D structures. For larger uwall, the peak zu value is reduced and the time required for 

pattern transition also decreases. When the applied uwall is sufficiently large (e.g., uwall>1.70m/s), 

the maximum value of zu  never reaches the levels above that of the rolling pattern. 

 
FIG. 34. Time evolution of maximum zu after a finite velocity is applied to the upper wall. For small uwall, the 

maximum zu decreases and reaches a new equilibrium state where oblique 3D structures are observed. For large 

uwall, the maximum zu decreases down to the rolling pattern where longitudinal rolls dominate, after a nonlinear 

transition. Bifurcation happens at uwall=0.97m/s. 
 
Similar behavior is observed when the cross-flow is a Poiseuille flow. FIG. 35 shows the time 

evolution of maximum zu due to an applied uniform body force
pF , used to obtain the Poiseuille 
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flow. For small ucenter  and, therefore, weak applied shear stress (e.g., ucenter=0.85m/s), the 

maximum zu decays to an equilibrium state with a value greater than that of the rolling pattern 

(0.688m/s). With increasing 
pF  (e.g., ucenter=0.98m/s), the equilibrium solution develops an 

oblique 3D structure as the maximum zu slightly increases after decaying to a minimum value. 

With ucenter up to 0.98m/s, both oblique transverse and longitudinal structures coexist. However, 

at ucenter =0.99m/s, a bifurcation occurs, and the steady-state solution has only 2D streamwise 

vortices. The transition from 3D to the rolling pattern is marked by a significant increase in zu to a 

value greater than the original square pattern, before ultimately decaying into the rolling pattern. 

For large
pF , the peak value of zu is reduced, and the time required for pattern transition also 

decreases. When the applied
pF is sufficiently large (e.g., ucenter=1.38m/s), the maximum value of 

zu  does not reach the levels above that of the rolling pattern. 
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 FIG. 35. Time evolution of maximum zu after a uniform body force is applied to the flow field. For small ucenter, the 

maximum zu decreases and reaches a new equilibrium state where oblique 3D structures are observed. For large 

ucenter, the maximum zu decreases to the rolling pattern values where longitudinal rolls dominate, after a nonlinear 

transition. Bifurcation occurs at ucenter=0.99m/s. 
  

To analyze the coherent structures leading to the suppression of the instabilities, DMD analysis of 

the EC in the cross-flow was performed using the numerical results from square-rolling transition 

regions at intervals of 1.0t s = . FIG. 36 shows i for the weak cross-flow cases (a) uwall=0.96m/s 

for Couette cross-flow and (c) ucenter=0.97m/s for Poiseuille cross-flow. The corresponding 

unstable eigenvectors correspond to the non-decaying coherent flow structures. In addition to the 

dominant dynamic modes (m4 and m10) corresponding to the rolling pattern, unstable dynamic 

modes (m5-m9 and m11-m12) exist; these are associated with the oblique 3D features. The unstable 

modes are similar to the ones obtained from the linear growth of perturbation in the cross-flow 

scenario, see FIG. 32 and FIG. 33, which can lead to changes in the stability of the entire system. 

FIG. 37 shows for strong cross-flow cases (uwall=0.97m/s for Couette and ucenter=1.04m/s for 

Poiseuille cross-flows). Only a single unstable eigenvalue is observed which corresponds to rolling 
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pattern eigenvectors 4m or 10m  in FIG. 36 (rolling pattern). The DMD analysis is consistent with 

the numerical simulation; the EC flow transforms from 3D square to 2D rolling with the strong 

cross-flow.  

 
FIG. 36. Eigenvalues i for zu in transition region for Couette type cross-flow (a) uwall=0.96m/s and Poiseuille type 

cross-flow (c) ucenter=0.97m/s. Unstable dynamic modes change the equilibrium solution from a square pattern to 

oblique 3D structures. The corresponding eigenvectors sliced at / 2z H= are shown in (b) mode 4 9m m− and (d) 

mode 10 12m m− . 
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FIG. 37. Eigenvalues i for zu in transition region for Couette type cross-flow (a) uwall=0.97m/s and Poiseuille type 

cross-flow (c) ucenter=1.04m/s. The remaining unstable dynamic modes change the equilibrium solution from a 
square pattern to rolling structures. 

 

FIG. 38 shows the zu at / 2z H= for Couette cross-flow and Poiseuille cross-flow when the 

maximum value reaches the valley (t=10s, uwall=0.97m/s and t=8s, ucenter=1.04m/s) and peak 

(t=63s, uwall=0.97m/s and t=25s for ucenter=1.04m/s), as shown in FIG. 34 and FIG. 35. For both 

types of cross-flow, the zu patterns are similar. When the maximum zu is at its valley, oblique 3D 

structures are more pronounced, while a rolling pattern dominates the flow for high maximum zu

. The transition can be interpreted as energy transfer from one dominant mode to another. Further 

analysis of the nonlinear transition behavior can be performed by solving for a reduced nonlinear 

system such as given by coupled Ginzburg-Landau equations for transverse and longitudinal rolls, 

similar to the analysis of the effects of cross-flow on RBC 122-124. 
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FIG. 38. Contours of valley and peak velocity zu for (a-b) Couette cross-flow (uwall=0.97m/s) and (c-d) Poiseuille 

cross-flow (ucenter=1.04m/s) 
 

 

FIG. 39 shows the iso-surfaces of charge density during the transition from square to a rolling 

pattern. Square patterns of charge density are observed at the conditions without cross-flow, as 

shown in FIG. 39(a). When a weak cross-flow is applied, the iso-surfaces are obliquely stretched 

in the x-direction, as in FIG. 39(b-c). For strong cross-flow the transverse patterns are suppressed, 

the rolling pattern is observed, as in FIG. 39(d). The iso-surface of charge density is identical for 

all strong cross-flows, and for the rolling pattern perturbation without cross-flow. 
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FIG. 39. Iso-surfaces of charge density for (a) square pattern without cross-flow, (b) uwall=0.96m/s, (C) 

ucenter=0.98m/s and (d) strong cross-flow/rolling pattern. 
 

FIG. 40 and FIG. 41 shows the dependence of the electric Nusselt number on the non-dimensional 

parameter Y calculated in the x-direction. Hysteresis behavior with well-defined bifurcation is 

observed for both Couette and Poiseuille cross-flows. The bifurcation thresholds are 772.73cY =

,  438.14fY = for Couette cross-flow and 300.75cY = ,  213.90fY = for Poiseuille cross-flow. At 

1Ne = (base state) EC vortices are not present. If cY Y , the square pattern perturbation results in 

oblique 3D structures. For cY Y , any perturbation results in streamwise rolling vortices as the 

equilibrium solution. Oblique 3D flow features develop when shear stress is applied to the square 

pattern. As Y is reduced (shear stress increased), the oblique features persist until Y=Yf , additional 

reduction in Y suppresses the features in transverse direction -- only longitudinal structures become 

possible.  The Ne value is lower in 3D EC vortices; the oblique 3D structures result in decreasing

Ne . When Y is close to 
fY , Ne  slightly increases before transitioning to the rolling pattern value. 

This increase of Ne agrees with trends in maximum zu , as shown in FIG. 34 and FIG. 35. The 

inserts in FIG. 40 and FIG. 41  show  zu  contour plots at / 2z H= ; the zu profiles become oblique 

in the cross-flow direction for both Couette and Poiseuille cross-flows. The hysteresis loop can be 

closed by introducing a y-directional cross-flow to suppress the rolling pattern vortices 143. 
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FIG. 40. Hysteresis loop of Ne versus Y for Couette-type cross-flow. The bifurcation thresholds are 772.73cY = ,  

438.14fY = .  

 

 

FIG. 41. Hysteresis loop of Ne versus Y for Poiseuille type cross-flow. The bifurcation thresholds are 300.75cY = ,  

213.90fY = .   
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Chapter 8. CONCLUSIONS 

8.1 EHD FLOW IN POSITIVE POINT-TO-RING DISCHARGE 

8.1.1 Analytical model 

An analytical model describes the corona discharge induced EHD flow, independent of the 

electrode configuration, is developed and validated by comparison of the I −  and u −  

relationships in the EHD flow for an axisymmetric point-to-ring configuration. The model 

addresses the effect of the ion motion due to the electric field on the surrounding neutral gas. The 

I −  relationship found by analytical derivation is similar to Townsend’s equation, with a 

modified coefficient to take into account the different corona-electrode configuration. The model 

agrees within ~10% of the experimental measurements. The conductance term ( /I  ) has a 

nonlinear relationship with the corona voltage   for low electric field values. The linear trends 

described in the literature hold for higher corona voltages. The analytical model captures the 

linearity of the EHD flow velocity with the corona voltage, as shown in the experimental data for 

maxu − , presented here and elsewhere 28. The maximum velocity in axisymmetric point-to-ring 

EHD flow is located at the centerline.  

 

The velocity profile predicted by the analytical model is in excellent agreement near the centerline 

region of the EHD generator. The analytical model over-predicts the gas velocity near the edge of 

the domain. The limitations of the model are the results of the simplified assumptions in the flow 

and electric field: (i) the application of the EHD force in the axial direction neglects the effect of 

the three dimensional nature of the electric field that can result in the formation of complex flow 

patterns; and (ii) the EHD flow generation model needs to be divided into an pure ion acceleration 

region model and an inertial flow section where the flow develops under the triple balance between 

EHD forcing, convective flow acceleration, and viscous shear stresses to capture the transition 

between the wall-bounded pipe flow and the EHD-driven centerline.  
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The new EHD flow analytical model can be generalized for electrode configurations in planar, 

cylindrical, and spherical coordinate systems. The model takes advantage of the fact that the ion 

dynamics characteristic time scale is 2(10 )O faster than the convective flow component. The model 

is readily implemented in the numerical simulation framework 174.  The multiphysics aspects of 

the EHD flow provide the insights into flow development and the local effect of the electric forces 

on the flow in complex flow geometries. The asymptotic method for estimating onset voltage and 

boundaries of the ionization region, similar to the approach described by Monrolin et al. 93, can be 

used for the description of the ionization region allowing to construct an EHD model that would 

not require an empirical input.  

8.1.2 Numerical model  

Numerical simulations of corona discharge-driven flow in point-to-ring geometry are performed 

utilizing a finite volume approach. The simulations are compared with the experimental data, 

which includes corona voltage, current, and velocity profile measurements. The numerical 

approach accounts for the electric force exerted by the ions on the neutral gas; this body force is 

added to the Navier-Stokes equations. The addition of the volumetric charge flux into the 

numerical ionization zone allows for the direct simulation of the corona-driven EHD flow. The 

model uses the measured corona voltage and anode current as inputs to resolve the velocity and 

electric fields and the charge density. Local balances of electric and inertial terms are used to 

determine a nondimensional parameter X, which has similarity to the electro-inertial number 

NEI 192. As the global criteria, NEI >1, indicates the presence of the secondary EHD flows 194, the 

local criteria, X  ≥ 1, sheds insight on the relationship between the electric body force and inertial 

flow and determines the flow dominated by the electric field, inertia, or viscous effects. The 

numerical model is validated using axisymmetric simulations compared against the experimental 

data for point-to-ring corona-driven EHD flow; the cathode current and the outlet velocity profile 

from the simulation agree within 5% error of the experimental data. The maximum velocity is 

directly proportional to the corona voltage, consistent with previous results 28. Unlike in canonical 

internal pipe flow, the velocity profile in the point-to-ring EHD flow is analogous to a submerged 

jet 189, for which the Re is determined by the dimension of the acceleration zone and mean velocity. 

Jet values of Re 300 1000= −  correspond to the laminar regime in the flow acceleration region 190.  
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The model takes into account the effect of viscous stresses near the walls, as well as the balance 

between inertia and electric forces; it captures the experimental velocity profile better than the 

analytical model that provides accurate predictions only near the centerline. The exit velocity 

profile is used to calculate the electric to kinetic energy transfer efficiency. The efficiency is 

highest when the point-to-ring distance is largest, due to a smaller angle between the electric field 

gradient and the flow direction and to the lower viscous losses. The efficiency peaks at 

intermediate corona voltages, for a given electrode distance, due to the quadratic current-voltage 

relation and the nonlinear decrease of velocity away from the centerline, as well as the field line 

distortions caused by space charge effect near the ionization region. 

 

8.2 EC HYDRODYNAMIC STABILITY ANALYSIS WITH AND WITHOUT CROSS-FLOW 

A numerical investigation of electroconvection phenomena between two parallel plates combines 

(i) TRT-LBM for solving the transport equation of flow field and charged species and (ii) Fast 

Poisson solver. The TRT model allows for the use of two relaxation parameters, accounting for 

the difference between the transport properties of neutral molecules and charged species. The 

choice of relaxation parameters allows for both accuracy and stability over a wide variety of 

conditions. FFT algorithm for Poisson’s equation directly solves for electric field enabling fast 

overall algorithm convergence. The numerical method is 2nd order accurate; it shows robust 

performance and agrees with previous results for the hydrostatic solution and for the solution 

where EC vortices are present. 

 

The 2D numerical study applies the EC stability analysis to Couette and Poiseuille flows between 

two infinitely long parallel electrodes. The cross-flow deforms the EC vortices and leads to their 

suppression. The non-dimensional analysis of the governing equations is used to derive parameter 

Y, a ratio of electric force to viscous force, in the presence of cross-flow. The non-dimensional 

parameter for the effect of the shear stress, analogous to a non-dimensional group 
2/Gr Re  (ratio 

of buoyancy to the inertial forces) used to parametrize the effect of the applied shear in Rayleigh 

Benard convection. FIG. 23 shows a similarity behavior of Ne as a function of Y, and therefore, 

we suggest using Y as the replacement of T when a cross-flow is applied. The electric Ne , defined 

as a current ratio, is used as stability criteria. Similar to stability parameter T for the hydrostatic 
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case, a hysteresis loop with subcritical bifurcation Ne=f(Y) is observed. The bifurcation thresholds 

are 625.25cY = , 297.32fY = for Couette flow and 218.58cY = , 159.36fY = for Poiseuille flow.  

 

The 3D numerical study extends the EC stability analysis of 2D flow structures in Couette and 

Poiseuille cross-flows between two infinitely long parallel plates. As in 2D simulations, the 

numerical modeling approach uses a second order TRT-LBM scheme to solve the flow and charge 

transport equations coupled to a Fast Poisson solver for the electric potential. Shear containing 

cross-flow first stretches the EC cells at obliques angles due to the interaction of streamline 

velocity components between the vortices and the bulk flow. These interactions form oblique 3D 

features before transitioning to 2D streamwise vortices at sufficiently high cross-flow velocities. 

The transition from 3D to 2D equilibrium states was observed for all initial perturbation schemes 

and independents of the domain dimensions considered in this work, i.e., square and its harmonic, 

oval, hexagonal, and mixed perturbations. Two transitional scenarios are studied, where the cross-

flow is applied before and after the EC vortices are established. If the cross-flow is applied before 

the perturbation leading to the formation of EC vortices, bifurcation occurs at umax=0.55m/s for 

Couette flow and ucenter=0.70m/s for Poiseuille flow. If the cross-flow is applied after the EC 

vortices are established, the bifurcation occurs at umax=0.97m/s for Couette flow and 

ucenter=0.99m/s for Poiseuille flow.  

 

DMD analysis is performed in linear growth region and nonlinear transition region, shedding 

insight into the development of the coherent fluid structures, predicting the linear behavior, and 

identifying bifurcation thresholds. The dynamic modes obtained from the linear growth region 

agree with the global growth rates obtained by the evolution of zu . The DMD based predictions 

are in agreement with the simulation results and can be used to accelerate the computational 

process in the linear growth region of systems such as EC, RBC, and magneto-convection. The 

bifurcation thresholds between oblique 3D structures and the rolling pattern are characterized by 

the presence of unstable dynamic modes in the weak cross-flow cases leading to the development 

of oblique 3D flow features.  

 

To parameterize the effect of cross-flow on EC vortices, the non-dimensional analysis of the 

governing equations uses a parameter Y in the streamwise direction. Similar to the 2D cases where 
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cross-flow is used to suppress rolling patterns 143, a hysteresis phenomenon in 3D cases is 

observed. The bifurcation thresholds are 772.73cY = , 438.14fY = for Couette flow and 300.75cY =

,  213.90fY = for Poiseuille flow. The applied shear organizes the flow into 2D streamwise vortices 

and enhances the convection marked by an increase in Ne, similar to heat convection problem with 

moderate Rayleigh number 229. The presented approach can be applied to other convection flow 

systems such as RBC, Marangoni effects, and magneto-convection with extended non-linear 

perturbation schemes such as triangular or hexagon patterns. 
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APPENDIX A: Chaotic electroconvection 

In this chapter, we investigate the chaotic phenomenon induced by strong charge injection in low 

viscosity systems, i.e., high electric Rayleigh number. Following the previous chapter, we examine 

the case where the equilibrium state has a single period square pattern, see FIG. 25(a), and hexagon 

pattern see FIG. 25(d). Further generalization of transition for other patterns can be a subject of 

future work.  The electric Nusselt number, 0/Ne I I= , serves as a flow stability criteria, where I

is the cathode current for a given solution and 0I is the cathode current for the base state solution 

without EC vortices 74,88; thus, 1Ne  when EC vortices exist. The other non-dimensional 

parameters are held at constant 10, 10C M= = , and 4000Fe =  81,88 while T varies. 

 

 FIG. 42 shows that Nu is a function T for both square and hexagon patterns. The solid symbols 

indicate steady-state equilibrium. For an increasing T over the threshold value, T=997 for square 

and T=650 for hexagon, the system develops into a chaotic system if an infinitesimal perturbation 

is applied. The mean value of chaotic Nu is shown by hollow markers and the fluctuations are 

represented by the error bars. At lower T value, the Nu are very similar for both patterns, which 

was also observed in previous research88,89. When T is large, Nu asymptotically approaches 

approached the same value range independent of the initial patterns, which may indicate the onset 

of electroconvective turbulence with a broad spectrum of vorticity. 
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FIG. 42. Electric Nusselt number Nu is a function of electric Rayleigh number T. The onset of chaotic flow 
behavior occurs at T=997 for square pattern convections and at T=650 for hexagon pattern. Both square and 

hexagon patterns have similar values of Nu at lower T until the onset of chaos. Nu converges for T=5000 which 
means the initial condition is insignificant. 

 
FIG. 43 shows the charge density contours for chaotic electroconvection with initial square and 

hexagon patterns. The original patterns are ostensible at the onset of chaos, i.e. T=997 for square 

pattern and T=650 for hexagon pattern. As T increases, the patterns become more homogeneous. 

When T value is large enough, the system behaves similarly, which means the initial patterns does 

not play a role and the Nu or convection strength depends on the system input T only. 
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FIG. 43. Charge density contour plot for chaotic square patterns and hexagon patterns with various T values. At the 

onset of chaos, the patterns are ostensible, i.e. T=997 for square and T=650 for hexagon patterns. The patterns 
become more homogenous as T increases. 

 

APPENDIX B: EHD flow in point to tube corona discharge230 

INTRODUCTION 

Gas phase collisions between the particles and ion medium play an important role in governing 

the behavior of aerosols 231-234 and dusty plasmas 235,236. The presence of the electric field and the 

ion medium plays a major role in particle trapping since particles acquire a charge from ion 

collisions 237. The electrostatic force on a charged particle in the electric field can be greater than 

gravitational, inertial and thermal forces. However, the charging mechanisms for nanoparticles in 

corona discharge driven flow have not been reported due to the complexity of physical phenomena 

and a lack of experimental data.   

 

The EHD effect has been used for plasma-assisted combustion 238,239, convective cooling 4,240-242 

and control of the aircraft 39,243. The success of EHD technology has been limited due to the modest 

pressure achieved by the EHD blowers; however, in the applications with the low-pressure drop, 

the EHD driven flow is appropriate. Several benefits of the EHD approach are the ability to operate 

at a small scale without moving parts, straightforward control of the system, and quiet operation. 

In propulsion applications, corona induced EHD flow converts electric energy into kinetic energy 
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directly and breaks the size limit of any moving mechanical parts 244-246. The current to voltage 

relationship describes the system behavior related to ion transport between the electrodes. The 

classical voltage to the current relationship is derived by Townsend for a coaxial corona 

configuration 247.   This quadratic relationship has been observed for other configurations, i.e., 

point to plate 248 and point to ring corona 174.  A generalized analytical model for voltage to current 

and voltage to velocity relationship for EHD driven flow has been recently developed 32. The 

maximum velocity for point-to-ring electrode configuration was recorded at ~9 m/s; the analytical 

model has a good comparison with the experimental data at the center (EHD dominated flow), and 

it decreases near the walls of the internal flow channel (viscosity dominated region). To gain 

insight into the complex EHD flow numerical modeling is required; the properties of the electric 

field, ion concentration, and velocity fields can be computed using numerical methods. The ion 

interaction with the neutral air molecules can be modeled as an external force term in the NSE. 

Most EHD flow models 49,249-251  have used an iterative method to solve for the electric field and 

charge density. The models iteratively set a constant charge density on the anode so that the 

cathode current matches the experimental results. This method is inefficient and requires multiple 

iterations. More recent EHD modeling studies implement a more direct solver for the elliptical 

equation. A unified Lattice Boltzmann model (LBM) 87-90 transforms the elliptic Poisson equation 

to a parabolic reaction-diffusion equation. A two-relaxation-time approach was recently proposed 

to solve the electric field elliptical equation 142,143 directly. However, Lagrangian particle tracking, 

needed to study particle-flow interaction, has not been incorporated into these codes. Another 

approach is to introduce a volumetric flux charge density as a source term in the finite volume 

solver using the flux boundary conditions based on the experimentally measured current 174. The 

ionization boundary has been defined by Peek’s law 252; these thresholds for the onset of the 

ionization are imposed in numerical ionization zone.  

 

In Appendix B, we describe the EHD in a needle-to-tube corona discharge device. The flow is 

studied by the numerical simulations to resolve the spatiotemporal characteristics of ion 

concentration, velocity, and electric field.  The numerical results are validated by the experimental 

data. 

 

MODELING 
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The Computational Fluid Dynamics (CFD) modeling is performed to gain insight into the flow 

properties in the EHD device. ANSYS Fluent software was used with custom subroutines for two-

way coupling of ion motion and fluid flow. Fig. 44 shows the schematic of the modeled geometry.  

The 2D axisymmetric assumption is used in the numerical simulation for its high computational 

efficiency while maintaining sufficient accuracy 174. 

 
Fig. 44. Schematic of the computational domain; the model includes the ion generation region defined by the 

thresholds of the electric field 
 

The flow field is solved using a finite volume laminar solver; the ion motion effects are 

incorporated by adding user-defined scalars to represent the electric potential  and charge density 

e . The electric force’s effect on the flow is solved by introducing a body force -e eF  =    into 

the momentum equations, thus the governing equations for the flow are: 

 0=u ,  (153) 

 2
c

D
P

Dt
   = − + −

u
u    , (154) 

 

 is the dynamic viscosity of the air,  is the density of the air, u is the velocity vector and P is 

the static pressure. The equations for charge transport are: 

 ( ). ue
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,  (155) 
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eρφ
ε

 = −  , (156) 

where b  is the ion mobility, which is approximated as a constant [2.0E-4 m2/(Vs)] 32,174 and o  is 

the electric permittivity of free space. eD  is the ion diffusivity described by the electric mobility 

equation (Einstein’s relation) 32,174: 
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 b B
e

k T
D

q


=  , (157) 

where Bk is Boltzmann’s constant ( 23~1.381 10 J/K− ), T  is the absolute temperature, and q  is the 

electric charge of an ion, which is equal to the elementary charge (
191.602 10  C− ). eS is the source 

term of charge density which has a unit of 3.C m s  , it is calculated from the corona current 

measured at the anode. In the simulation, the charges are introduced into the computational domain 

within the ionization zone boundary region at the rate calculated from the anode current. Instead 

of defining a thin surface within the computational domain to mark as the ionization zone 

boundary, a region with finite volume is determined by the electric field strength magnitude and 

constrained within 1mm of the needle tip.  

 
 0 1/ , , & 1

0,

tip

e

I ȥ for E E E x x mm
S

otherwise

  − = 


 , (158) 

where   is the volume of the region satisfying  0 1, & 1tipE E E x x mm −   and I  is the corona 

current. The tipx x−   term limits the ion production along the needle; in the experiments, the 

needle tip extends only 1 mm from the needle holder. 0E  is the critical field below which the 

number of ions recombination is larger than production per drift length, and it is for air. 1E  is the 

breakdown electric field strength for air (3.23 MV/m). In fact, both 0E  and 1E  can be used as the 

criteria for ionization boundary. Since the charge density is balanced inside the ionization region, 

the corona current equals to the charge density flux at the ionization boundary. Therefore, by 

introducing a volumetric flux of charges coming into the domain, the two ionization boundary 

conditions are used to mark the numerical “ionization region” where the charges (ions) are 

generated. More details on the treatment can be found in 174.  

 

Table X shows the numerical schemes used in the CFD calculations. The second order upwind 

scheme is used to reduce numerical diffusion. The transient laminar solution is computed, the 

convergence criteria and the simulation time are set to achieve time steady velocity profile at the 

outlet. Since the ions drift velocity is orders of magnitude greater than the convective flow velocity, 

the solution for charge transport and electric field converge significantly faster (in convective time) 
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than the flow equations. The boundary conditions are shown in Table XI. The total pressure 

difference between the inlet and outlet is zero as the flow is accelerated only by the ionic drag.  

Table X.  Numerical schemes for CFD 

Model Parameter Spatial Discretization 

P-V Coupling SIMPLE 

Pressure 2nd order upwind 

Momentum 2nd order upwind 

Electric potential 2nd order upwind 

Charge density 1st order upwind 

 

Table XI.  Boundary conditions for the numerical simulations 

Boundary The value given at the boundary 

Inlet pressure Atmospheric pressure 

Outlet pressure Atmospheric pressure 

Anode needle 3~5 kV & Zero diffusion flux for charge 

Cathode tube 0 kV & Zero diffusion flux for charge 

Wall boundaries Zero diffusion flux for electric potential & 

charge density 

 

RESULTS AND DISCUSSION 

Voltage-Current Characteristics 

The corona current and the downstream ion concentration are measured to determine the ion 

production and ion transport. Table Xii shows the corona current (anode current) vs. anode voltage. 

The current increases with the applied voltage quadratically, which agrees with other results in the 

literature for different corona configurations 19,247,248,253,254. The current values from the 

experiments were used in the numerical model as the ionization zone boundary condition. In some 

previous literature, the input charge density was iteratively adjusted to match the measured cathode 

current, e.g.  242,255. Here, the cathode current is computed by the code using the ionization model; 

the numerical model uses corona voltage and anode current as input parameters. The cathode 

current is determined by integrating the charge flux on the cathode 
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cathodedAcathode b e

cathode
area

I μ ρ φ= −   , (159) 

where cathodeI  is the cathode current and cathodeA is the area vector of the cathode. 

 

Table XII. Comparison of cathode current between the experiments and CFD 

Voltage (kV) Anode current (µA) 
The experimental 

cathode current (µA) 

CFD cathode current 

(µA) 

3 0.7 0.62 0.59 

4 3.8 3.34 3.23 

5 7.5 6.68 6.64 

 

The cathode current in the simulation agrees within 5% with the experimental measurements. The 

cathode recovers 85-90% of the ion current that is generated; the other 10-15% are associated with 

ions exiting the geometry. These computed values of cathode current yield good agreement against 

the experimental data validating the numerical approach with respect to ion concentration field in 

the ionization and collection regions of the EHD collector. 

 

The numerical approach models the process by which the ion-molecule collisions accelerate the 

bulk flow. Fig. 45(a) shows the computed electric field lines. The maximum electric field strength 

is near the tip of the corona needle where a small radius of curvature concentrates the electric field 

lines; the field intensity reaches the threshold for ion generation.  The effect of the space charge 

on the electric field is apparent by field line distortions in the region of high ion concentration. 

These distortions are significantly smaller away from the electrode tip where the charge density is 

reduced.  
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Fig. 45. Contour plots of the (a) electric field (V/m), (b) ion concentration (#/cc), (c) velocity (m/s) and (d) electric 

field lines by the non-dimensional parameter X for 3 kV corona voltage between the needle and the ground tube. The 
dash lines on the velocity contour (c) indicate the location at which the velocity of EHD flow is compared with the 

experiments. (d) The contours of X are clipped to the value of unity; the region which indicates EHD dominated 
flow.  

 

Fig. 45 (b) shows the ion density contours. The ions are generated at the needle tip, and their 

motion is dominated by the electric field due to their high electric mobility, as the ion drift velocity 

is two orders of magnitude greater than the bulk flow 174,248,256.  Downstream of the charging 

region, the electric field is weak, especially near the centerline, and ions exit the domain due to 
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high flow velocities. A recirculation zone is formed upstream of the cathode tube near the rounded 

edge as shown in Fig. 45(c). This is due to the flow expansion which creates an adverse pressure 

gradient in the near wall acceleration region. To determine the effect of the Coulomb force in the 

EHD flow, the ratio of electrostatic force to the inertial force is plotted; this ratio is described as a 

non-dimensional parameter 2/ ueX   =  174. Fig. 45(d) shows electric field lines colored by the 

values of X , indicating the regions where the electric force is greater than inertial force dominating 

the flow is located between the corona needle and the ground tube.  

 

Velocity Voltage Characteristics  

To validate the EHD modeling approach, the numerical results for corona voltages of  = 3-5 kV 

are compared with the experimental exit velocities. Fig. 46 shows the velocity profiles plotted for 

three voltage values. The experiments and numerical results show the maximum velocity is located 

at the centerline; the profile decays with radial distance. The maximum velocity of the point-to-

cylinder corona discharge device is ~4m/s for both experiments and simulations at 5kV corona 

voltage. At higher voltages arc discharge occurs, the flow velocity drops to zero. The maximum 

velocities in the numerical simulation are within 10% of the experimental data; the predictions are 

less accurate at the edges of the domain. The maximum outlet velocity increases linearly with 

corona voltage. The linear trend of centerline velocity is observed previously in experiments  
174,256.  

 
Fig. 46. Comparison of velocity profile between the experimental results and simulations at the outlet of the EHD 

induced flow device as shown in Fig. 45(c). 
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The velocity profile shows that EHD induced flow in a point-to-tube corona discharge resemble 

Poiseuille flow near the axis and is significantly different from the pressure-driven flow profile 

near the walls. The point EHD source generates the flow similar to the submerged laminar jet flow 
257. Laminar flow characteristics are apparent from the experimental data. The Reynolds number 

(Re) is determined based on the tube diameter and the mean velocity at the exit; Re~160 for corona 

voltage of 3 kV and Re~400 for corona voltage of 5 kV. Since the 6 kV cases result in the arc, it 

appears that the corona induced flow without additional contribution from pressure term remains 

laminar for the considered internal flow geometry. If any high local Re number regions or flow 

instabilities are present in the jet at its source, these temporal fluctuations decay by the time the 

flow reaches the outlet.  

 

APPENDIX C: Numerical investigation of corona discharge induced 

flow on a flat plate 

The EHD flow is studied on a conducting flat plate with a shallow rectangular cavity. Fig. 47 

shows the schematic representation of corona discharge induced flow in the wall boundary layer 

region on a conducting flat plate with a cavity. Its objective is to accelerate the flow near the wall 

to modify the boundary layer profile. The serrated edge copper electrode with a thickness of 0.2 

mm serves as the anode. The pitch of the sawtooth is 5 mm. The ground electrode is a 1.5 mm 

thick steel rod. The flat plate is fabricated using 3D printing in polylactic acid polymer. A shallow 

rectangular cavity of 15 mm wide and 1.3 mm deep is built into the flat plate to aid ionization.  

 

The anode overhangs the backward facing step of the cavity by 6 mm, as shown in Fig. 47 such 

that the distance between the anode tips and the cathode (L) is 9 mm. The width of the experimental 

setup is 100 mm.  The cathode is flush mounted against the forward-facing step, see Fig. 47. The 

top of the electrode protrudes 0.2mm above the flat plate. The cathode protrusion results in the 

Stokes flow, not affecting the downstream velocity profile development.  
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Fig. 47. Schematic diagram of the corona driven EHD wall jet; colored lines show electric field line, solid down – 

velocity profile.  
 

The flow field is solved using a finite volume laminar solver; the ion motion effects are 

incorporated by adding user-defined scalars to represent the electric potential  and charge density 

e . The electric force’s effect on the flow is solved by introducing a body force -e eF  =    into 

the momentum equations, thus the governing equations for the flow are: 

 0=u ,  (160) 

 2
c

D
P

Dt
   = − + −

u
u    .  (161) 

 

 is the dynamic viscosity of the air,  is the density of the air, u is the velocity vector and P is 

the static pressure. The equations for charge transport are: 
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where b  is the ion mobility, which is approximated as a constant [2.0E-4 m2/(Vs)] 32,174 and o  is 

the electric permittivity of free space. eD  is the ion diffusivity described by the electric mobility 

equation (Einstein’s relation) 32,174: 
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=  , (164) 

where Bk is Boltzmann’s constant ( 23~1.381 10 J/K− ), T  is the absolute temperature, and q  is the 

electric charge of an ion, which is equal to the elementary charge (
191.602 10  C− ). eS is the source 

term of charge density which has a unit of 3.C m s  , it is calculated from the corona current 

measured at the anode. In the simulation, the charges are introduced into the computational domain 

within the ionization zone boundary region at the rate calculated from the anode current. Instead 



116 
 

of defining a thin surface within the computational domain to mark as the ionization zone 

boundary, a region with finite volume is determined by the electric field strength magnitude and 

constrained within 1mm of the needle tip.  

 
 0 1/ , , & 1

0,

tip

e

I ȥ for E E E x x mm
S

otherwise

  − = 


 , (165) 

where   is the volume of the region satisfying  0 1, & 1tipE E E x x mm −   and I  is the corona 

current. The tipx x−   term limits the ion production along the needle; in the experiments, the 

needle tip extends only 1 mm from the needle holder. 0E  is the critical field below which the 

number of ions recombination is larger than production per drift length, and it is for air. 1E  is the 

breakdown electric field strength for air (3.23 MV/m). Both 0E  and 1E  can be used as the criteria 

for ionization boundary. Since the charge density is balanced inside the ionization region, the 

corona current equals to the charge density flux at the ionization boundary. Therefore, by 

introducing a volumetric flux of charges coming into the domain, the two ionization boundary 

conditions are used to mark the numerical “ionization region” where the charges (ions) are 

generated. More details on the treatment can be found in 174.  

 

Commercial package ANSYS Fluent was used with user-defined functions to model the three-way 

coupling of ion motion, electric field, and fluid motion.  Fig. 48 shows the schematic of the 

modeled geometry; the 2D assumption is used in the numerical simulation 

 

 
 

Fig. 48. Computational domain for the numerical simulation 
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RESULTS AND DISCUSSION 

The CFD models the process by which the ion-molecule collisions accelerate the bulk flow. Fig. 

49 (a) shows the ion density contours. The ions are generated at the anode tip, and their motion is 

dominated by the electric field due to their high electric mobility, as the ion drift velocity is two 

orders of magnitude than the bulk flow 248. The effect of space charge is observed as the charge 

density drifts upstream. The cathode recovers 85-90 % of the ion current that is generated, the 

other 10-15 % of charge species are recovered on the conducting plate reducing the parasitic effect 

of ions traveling upstream, as seen in the point to ring corona with insulating walls 174. To 

parameterize the effect of the electrostatic force on the flow, the ratio of electric to the inertial 

force is defined as a non-dimensional parameter 2
ueX /  = 174. Fig. 49 (b) shows the velocity 

streamlines colored by the values of X, indicating the regions where the electric force is greater 

than the inertial force. The electric force is dominant between the cathode and anode where both 

the ion concentration and electric field strength are high. In the region downstream of cathode the 

effect of the ion interaction with the flow is minimal. 

 

 
 

Fig. 49. Contour plots of the (a) charge density (C/m3) and (b) streamlines by local  X (clipped to 1) for 8 kV case. 
Maximum - X=100  
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Velocity Voltage Characteristics 

The numerical results for  = 8 kV case are compared with the experimental velocity profiles. The 

corona driven flow entrains gas in the vicinity, both streamwise and normal (impinging) 

components are present upstream of the cathode. Downstream of the cathode the normal 

component diminishes. The experimental and numerical velocity profile downstream of the 

cathode show similar trends exhibiting wall jet behavior 258-260. The velocity reaches a maximum 

and then decays to near zero away from the plate. Both CFD and experimental data show the 

maximum velocity is 2mm from the surface. The maximum velocities in the numerical simulation 

are ~ 1.7 m/s, and it is within the 10% of the experimental data.  

  

 
Fig. 50. Comparison of velocity profile between the experimental results and simulations at D = 20 mm of the EHD 

induced flow on a flat plate 
 

Energy Transfer Efficiency 

The energy conversion efficiency can be calculated from the ratio of the kinetic energy flux to the 

electric power produced by the corona discharge. 

 
31
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The corona voltage and the anode current are obtained from the experiments. The kinetic energy 

flux is calculated for both experimental and numerical velocity profiles. TABLE XIII shows the 

values that are used for calculation. The energy transfer coefficient to the fluid is greater for 
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external flow compared to internal flow due to entrainment of the surrounding fluid. Parasitic 

losses associated with the upstream motion of the ions and formation of the flow recirculation zone 

due to adverse pressure gradient are largely avoided by the introduction of conducting surface 

downstream of the cathode.    

 
TABLE XIII: Comparison of electric and kinetic power between the experiments and CFD  

 8 kV 

I (µA) 35 

WK, Exp (mW) 
6.1 ± 15.2% 

WK, CFD (mW) 
5.9 

WE (mW) 
280 

 
Energy transfer efficiency is 2.17 % ± 0.33% based on experimental and 2.1% based on CFD 

results. It was previously shown that the energy transfer efficiency is non-linear with respect to 

corona voltage 174. The energy transfer efficiency for external flows is higher than in the point to 

ring internal flow (~ 1%) 174.  Further improvement in the energy transfer efficiency can be 

achieved by optimization of electrode geometry configuration, operational condition.  

 
CONCLUSION 

This work presents an experimental and numerical investigation of planar corona discharge in the 

wall boundary layer. The experimental data includes voltage, current, and velocity profile 

measurements. Multiphysics numerical simulation sheds insights into the interaction of force 

exerted by the motion of the ions in the electric field on the airflow. The addition of charge flux 

as a generation of ions allows for the direct computation of electric body force. The numerical 

simulations agree with the experimental data within 10%. The velocity profile of the corona driven 

is similar to a wall jet downstream of the cathode. Parametrization of the EHD wall jet and 

comparison with the traditional wall jet can be achieved using CFD modeling. The integrated 

velocity profile is used to calculate the electric to kinetic energy transfer efficiency. The efficiency 

is ~2%, which is greater than in the internal flow geometry due to higher flow entrainment. Energy 

transfer efficiency can be optimized by electrode geometry configuration, operational conditions.  
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APPENDIX D: Evaluation of lean blow-out mechanism in a toroidal jet 

stirred reactor261 

 

INTRODUCTION 

Jet stirred reactors (JSRs) are typically used to study gas-phase kinetic oxidation and pyrolysis 262 

and pollutant species formation. The intense mixing in the JSR approximates the flame zone in gas 

turbine application. For example, Sturgess et al. used the jet-stirred reactor to study the flame 

stability within a gas turbine combustor 263; other researchers focused on NOx formation with 

respect to the combustion conditions and fuel composition 264,265. The intense mixing in the JSRs, 

in principle, allows to simplify the modeling of turbulence-chemistry interactions; however, in 

many practical scenarios, the composition in the reactor cannot be assumed to be uniform. In this 

work, we investigate a lean blowout (LBO) mechanisms of a toroidal jet-stirred reactor.  

 

Research literature suggests several mechanisms of LBO, relating the flame blowout to the 

conditions in the flame stabilizing flow structures. In the study of combustion stabilized by the 

bluff body recirculation, Longwell et al. 266 suggested that the combustion within the recirculation 

zone can be approximated as a homogeneous second-order chemical reaction region. Plee et al. 267 

developed a model that calculates the characteristic times for fluid mechanics and chemical 

kinetics to the study of flame stabilization near blowout. The authors found that the ratio of the 

fluid mechanic time scale to the chemical time in the shear layer agrees with the experimental data 

of Zukoski 268. Glassman generalizes the approach by relating the blowout limit to a ratio of the 

residence time and chemical kinetic time scale, which is also known as the Damkohler (Da) 

number 269. The chemical reaction time scale (τchem) is based on the Arrhenius chemical kinetic 

rate and is independent of the geometry length scales. As noted by Turns 270, in well-stirred 

reactors, the mean residence time for the gaseous fuels in the reactor is defined as τres = ρV/ṁ, 

where ρ is the mean density inside the reactor. In the PSR limit, the residence time in the 

combustion system must be greater than the chemical reaction time, or Da>1, to sustain 

combustion 269. An alternative definition of Da number is a ratio of turbulent time scale to the 

characteristic chemical time scale Da= τturb scale/τchem, which often used to studies turbulent 

premixed flames 270. Several studies examine the role of major combustion species and free 
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radicals, such as CO and hydroxyl (OH) radicals on flame stability 271-275. Other studies investigate 

the effect of additional species, such as hydrogen 272, CO 276, or alternative fuels 277 on LBO. 

Understanding the interaction between fluid dynamics and chemical kinetics near the LBO region 

for industrial systems and aero-engines is critical for improving the design and for optimizing the 

operational envelope related to combustion stability and pollution control. The interaction of the 

flame with the recirculation zone in LBO mechanisms have been studied for gas turbine 

applications 278 or aero-engine combustors 279. The transient behavior of the flames and their 

interaction, when stabilized by recirculating, are found to significantly affect the LBO 280.  

 

Due to the rapid development of computational power and state-of-the-art fluid dynamics and 

combustion models, CFD became widely used in modeling turbulent combustion flows. The LBO 

condition for the gas turbine combustor has been previously investigated using CFD modeling, 

e.g., 263,281,282. The Reynolds-averaged Navier-Stokes (RANS) model is often used in modeling 

industrial combustors due to its low computational cost 283; recently, large eddy simulation (LES) 
284,285 models gained popularity due to their ability to resolve turbulent structures in the inertial 

range. These models provide more accurate results, but they suffer from high computational cost, 

especially when modeling practical combustion systems 281,284,285. RANS simulations with the 

Reynolds stress model (RSM) closure model has been shown appropriate for modeling swirling 

turbulent flow using a steady-state approach with relatively low computational cost 286-289. In 

modeling combustion systems, several investigators concluded that the RSM produces a good 

agreement with experimental data 283,290,291. To incorporate combustion chemistry in flow 

simulations, among other models, Magnussen et al. proposed an eddy-break-up (EBU) model and 

later extended the EBU model, which is known as the eddy dissipation concept (EDC) model 292-

294. The EDC model has been used to model different combustors, including laboratory reactors 
295 and industrial burners 296. However, under certain conditions, such as reacting impinging jets, 

EDC has been shown to overpredict the chemical reaction rate due to the high turbulence 

dissipation rates near the wall 297.  

 

The laboratory TJSR was developed 298 to enhance the mixing characteristics in the combustor 

compared to the spherical combustor 299-302. The mixing behavior inside the TJSR was modeled 
303 as 0D, 1D, and 2D coalescence-redispersion models examining the effect of the jet angles, the 
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number of jets on the mixing frequencies, and the characteristic times. Barat 304 studied the 

behavior of the TJSR near blowout; he concluded that turbulent mixing is fast relative to the 

chemical time, so the temperature and species composition gradients should be negligible. He 

suggested that at high-temperature conditions, the TJSR approaches PSR-like behavior. At lower 

equivalence ratios, the temperature and emissions measurements indicated localized regions of 

extinction, which was attributed to a failure of the incoming jet fluid to ignite as it entrained the 

surrounding bulk gasses. The author hypothesized that the reactor volume effectively decreases 

near blowout due to localized extinction. More recently, Vijlee et al. 305,306 presented new data and 

CFD modeling for the TJSR, relating the OH levels to the reactor LBO. The first order CFD model 

and PSR model showed moderately good agreement with the temperature data for higher fuel-air 

ratios but failed to predict the blowout accurately. In this work, both first order and second order 

discretization models are investigated. The first order model provided is found to be of limited 

usefulness for modeling the complex flow, even with the heat transfer modeled and mesh refined. 

A higher order scheme is needed to gain insight into the LBO mechanism. 

 

LBO mechanism based on the local parameters in the TJSR is investigated. The unanswered questions 

related to the understanding of LBO in the swirl stabilizing TJSR are: (i) if the high-order 

discretization steady-state CFD has the potential to model the behavior of the flame in the TJSR 

accurately, and (ii) if the local flame extinction events trigger the global LBO. To test these 

hypotheses, we investigate the blowout behavior in a TJSR operated on methane using 3D CFD; 

the results are compared with the experimental data of Vijlee et al. 305,306. Effects of the numerical 

discretization scheme on LBO prediction are evaluated over a range of fuel-air equivalence ratios 

using a skeletal chemical kinetic mechanism based on GRI 3.0 295 with the EDC model. The 

modeling is used to gain insight into the combustion parameters related to flame stability and the 

lean flame blowout mechanism.  

 
COMPUTATIONAL SETUP 

The reaction chamber of the experimental TJSR 305,306 has a total volume of 250 mL. FIG 51 shows the 

solid model of the TJSR. The reactor body is constructed of aluminum oxide ceramic. The ports on the 

lower toroid are used for the placement of an emission probe, a thermocouple, an igniter, and a pressure 

sensor. An Inconel nozzle ring has 48 nozzles (ID 0.86 mm each), which are angled 20 degrees to the toroid 
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radius, as shown in FIG 52. The jet angle facilitates the toroidal flow pattern in the reactor. In the 

experimental study, the gas temperature is measured 5 mm above the bottom of the reactor.  

 
FIG 51: TJSR schematic: the reactor volume is 250 mL, the nozzle ring has 48 nozzles ID0.86 mm, angled 20 

degrees from the toroid radius. The ports in the lower section are used for an emission probe, a thermocouple, an 
igniter, and a pressure sensor.  

 

In a previous CFD modeling study of the TJSR, Briones et al. 307 used symmetry assumptions for 

the reactor mid-plane (aligned with fuel-air nozzles). In a later study, Vijlee et al. 306 modeled a 

single section with one jet (out of 48 identical jets) by applying periodic boundary conditions; the 

authors allowed the flow to develop in poloidal and toroidal directions and observed significant 

asymmetry within the TJSR flow pattern. Table XIV and Table XV summarize the boundary 

conditions and the numerical algorithm used by Vijlee et al. One of the concerns related to the 

previous modeling efforts is the use of the linear stress-strain relation in modeling swirling 

turbulent flow which neglects the anisotropy and flow curvature 308. The model has good 

agreement with the experimental temperature measurements for stable combustion conditions due 

to the fitted heat loss rate. However, the model does not show good agreement for blowout 

conditions, which can be attributed to the several assumptions made by the authors: the added 

numerical viscosity of the low order numerical scheme simplified model for heat loss and the use 

of the linear stress-strain relation.  

 

FIG 52 shows a 3D view of the computational domain, 15-degree section of the toroid which 

includes two (out of 48) nozzles to account for the jet-jet interaction; the two-jet section was not 

modeled successfully in the previous work 306. The periodic boundary conditions used here neglect 

the flow patterns and instabilities in the toroidal direction. Nevertheless, this assumption provides 

a practical (engineering) approach, which is required to model the reacting flows in a relatively 

large domain with small mesh size. Limited simulations using three jets show nearly identical 
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results with the two-jet model. The jet-jet interaction affects the formation of flow pattern as the 

round jets merge into the planar jet downstream of the inlet. The flow patterns in the region 

between the jets determine the interaction of the two recirculation zones. Periodic boundary 

conditions allow for the interaction between adjacent sections with the low computational cost. 

The fuel-air mixture inlets model as square channels of the same effective area as a round nozzle 

to match the inlet velocity. The major flow patterns include poloidal and toroidal recirculation 

zones and the transitional zone where the interaction between the recirculation regions occurs.  

 

FIG 52: Computational domain with the boundary conditions and major flow patterns. The model includes two jets 
angled at 20 degrees from the radial direction. The axis indicates the axial symmetry.  

 

The periodic faces are set as a rotational periodic boundary condition. The fuel-air inlet is set to a 

pressure inlet using the experimental values; the assigned inlet pressure in the CFD matched the 

experimental flow rates. The pressure outlet boundary condition is set to atmospheric pressure. 

The flow straightener located in the reactor exhaust pipe is not modeled due to difficulty with 

meshing; instead, a 1-meter long extension section is added; the outlet flow direction is set normal 

to the outlet face eliminating reverse flow to aid model convergence. We assume that the 

downstream boundary condition does not affect the flow behavior in the toroidal section of the 

reactor.  

 

Another major difference between this and the previous model is in the heat transfer modeling. 

The previous work assumed the uniform temperature profile of the reactor inner wall to match an 

average calculated heat loss of 2.5% based on the flow rate and fuel heating value. The assigned 

wall temperature profile results in gas temperature over-prediction in the TRZ. Our model has 
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refined mesh near the wall to capture the temperature gradient in the wall boundary layer. During 

the simulation, the wall temperature is calculated based on the local heat transfer coefficient; the 

model includes conduction through the wall, free convection/radiation heat transfer is set for the 

outside wall. The walls are modeled as non-slip boundaries with scalable wall function 309. The 

boundary layer is constrained so that the first grid point is located at a distance of �+ = 1. The 

wall conduction model includes triple-layer shell conduction with a 20 mm-thick 85% alumina 

layer, a 10 mm Kaowool insulation, and a 1 inch steel housing. The external emissivity is assigned 

to be 0.8 according to the properties of the oxidized steel 310. The heat transfer coefficient 

calculations follow the methodology described in 311. The Nusselt number is approximated based 

on the velocity field in the reactor 312. The typical size of an element in the combustion region is 

of the order of 1e-3 mm3. The typical mesh size of the exhaust tube is 1 mm3; the maximum cell 

size within the exhaust tube can be as large as 10 mm3. The mesh size is unable to eliminate the 

truncation errors generated by the numerical discretization, which may require a mesh size at the 

Kolmogorov scale to resolve all the turbulence structures, which is currently not possible in high 

Reynolds number reacting flow for a practical combustor. In this work, a second order 

discretization is used to reduce the truncation error, compared to the first order scheme used in the 

previous work 306. Mesh independence studies have been performed for both 1st and 2nd order 

schemes.  

 

The mesh comprises of hexagonal elements; after conducting the mesh independence study, the 

size of the mesh is around 313,000 elements. The commercial software ANSYS Fluent (v17.0) 313 

is used. RSM is used as the turbulence closure model 287; Yang et al. 290,291 found that the model is 

well suited for predicting the effect of swirling flow on jet entrainment rates. Gravity is included 

in the simulations. Several combustion kinetic modeling options have been considered; although 

the global mechanisms have been used for the modeling of industrial combustors due to their 

efficiency, these mechanisms are limited to only the major combustion species and are, thus, not 

well suited for studying LBO 282,314. Detailed chemical kinetic mechanisms are the best option. 

However, the high computational requirements often make them prohibitive for use in a parametric 

study. A skeletal chemical mechanism of Karalus et al. 295 is used as a compromise between 

computational efficiency and the ability to provide detailed species concentration. The chemical 

mechanism contains 22 species and 122 reactions; it predicts a similar blowout ϕ as the GRI 3.0 
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when applied in a PSR. Two sets of numerical simulations are performed to test the hypothesis 

that the high-order discretization scheme can describe flame behavior in a toroidal reactor near 

blowout. In the CFD simulation, heat capacity, mass diffusivity, and viscosity are calculated using 

the mixing law approach. The species diffusion is modeled by multicomponent diffusion, and the 

thermal diffusion is modeled using kinetic theory. The turbulent diffusivity is modeled using the 

RSM turbulence closure model. The turbulent Prandtl number ranges from 0.75 to 0.85; the 

Schmidt number is ~0.74. These values agree with the typical values reported in the literature 315. 

The CPU time is 180 sec/core-iteration, and one solution requires ~3000 iterations to converge; 

thus, the CPU time is about 5.4e+5 sec/core-solution. Table XIV and Table XV summarize the 

boundary conditions and the numerical algorithm used in this study. 

 

Table XIV. Boundary conditions for the numerical simulations. 

Boundary Type Parameter Vijlee et al. model 306 

Inlet Φ 0.47-0.548 0.44-0.55 

 Pressure inlet 107450 Pa gauge 107450 Pa gauge 

 Mass flow rate 0.173g/s 0.173g/s 

 Temperature 430K 430K 

Outlet Pressure outlet 0 Pa gauge 0 Pa gauge 

 Flow direction y-axis y-axis 

Wall Heat transfer Mixed: Convection, radiation, 
conduction modeled   

Constant heat loss 

12000w/m2 

 Inner layer 20mm Al2O3 ceramic  Not included 

 Insulation 10mm- thick Kaowool Not included 
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 Metal housing 25mm -thick steel Not included 

 Ext. emissivity 0.8 Not included 

 Heat transfer coef. 196.7 W/m2-K Not included 

Periodicity Periodic Rotationally Rotationally 

 

Table XV. Numerical methods 

Model 1st order (this work) 2nd order (this work) Vijlee et al. model 

Grid 3D two-jet domain 3D two-jet domain 3D one-jet domain 

Number of cells 312992 312992 309860 

Solver Steady Steady Steady 

Viscous model RSM RSM RSM 

Stress-strain relation Quadratic Quadratic Linear 

Near-wall treatment Scalable wall function Scalable wall function Standard wall function 

Buoyancy effects Included Included Not included 

Reaction model EDC EDC EDC 

Diffusion model Multicomponent Multicomponent Not included 

Mechanism Skeletal GRI3.0295 Skeletal GRI3.0295 Skeletal GRI3.0295 

Density Ideal gas Ideal gas Ideal gas 
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Model 1st order (this work) 2nd order (this work) Vijlee et al. model 

Mass diffusivity Kinetic theory Kinetic theory Constant 2.88e-5 

Thermal diffusivity Kinetic theory  Kinetic theory Kinetic theory 

Numerical discretization scheme 

P-V Coupling Coupled Coupled SIMPLE 

Pressure PRESTO! 2nd order Standard 

Momentum 1st order 2nd order 1st order 

Density 2nd order 2nd order 1st order 

Turbulence 1st order 2nd order 1st order 

Species 2nd order 2nd order 1st order 

Energy 2nd order 2nd order 1st order 

 

RESULTS AND DISCUSSION 

In this steady-state CFD simulation, the operational conditions are varied over a range of ϕ and 

compared with the experimental data. The flow field is first solved with a transient solver for a 

non-burning (cold) solution. FIG 53 shows the streamlines colored by velocity magnitude for a 

transient cold solution. Immediately after the initialization, two counter-rotating vortices form on 

either side of the jets, see FIG 53(a). The flow at this point is nearly symmetric with respect to the 

jets position; both poloidal vortices have similar intensities. This flow field is similar to the 

assumptions made by Briones et al. 307 in their model. The toroidal flow is relatively weak. As the 

flow develops, two major changes are observed: (i) the toroidal flow component becomes stronger, 

and (ii) one of the poloidal vortices becomes dominant. The development of the strong toroidal 

flow component is expected and is described in the earlier TJSR papers as the jets angle drives the 
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flow in a toroidal direction. FIG 53(b) shows that the strong poloidal recirculation exists only 

above the air-fuel jets. The flow bifurcation is caused not by the interaction between the jet and 

the surrounding structures, but by the interaction between the initially counter-rotating vortices. 

The two vortices are not completely separated by the planar jet, which forms after the individual 

jets merge; the region in-between the jets allow the vortices to cross-talk. In FIG 53(b), the 

downward flow from the upper vortex penetrates into the bottom vortex resulting in the formation 

of the local stagnation region (in the poloidal plane) located below the inlet. Once the bottom 

vortex is blocked from interaction with the jet, it effectively dies out, and the dominant vortex 

grows stronger as it entrains the entire mass of the jet. The patterns are similar to the studies of 

asymmetric jets by Cherdron et al., Lai et al., and Zaman 316-318. This finding is significant from 

the standpoint of numerical scheme selection and the description of the combustion stabilization 

mechanism. The use of the linear stress-strain relation of the eddy-viscosity model is not 

appropriate for such flow 308. Based on the CFD results, we hypothesize that a supercritical 

pitchfork bifurcation happens due to the interaction of the counter-rotating vortices. The 

parameters that determine the location of the strong recirculation can be influenced by the 

numerical schemes, buoyancy, number of jets modeled, and so on. In this work, we do not test this 

hypothesis. 

 
FIG 53: Streamline colored by velocity magnitude for non-combusting flow, second order numerical scheme: 
(a) Developing flow field, the initial flow field is symmetric with two counter-rotating vortices; the toroidal 

component is small. (b) Developed flow solution – the toroidal component develops; the penetration of the dominant 
poloidal vortex reduces the strength of the poloidal recirculation below the jets. The maximum velocity is 376 m/s, 

which is located at the exit of the nozzles. 
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After obtaining the cold flow solution with a transient solver, the combustion is initialized by 

patching the region of high temperature and the model is switched to a steady-state solver. The 

steady-state solutions are obtained for the range of ϕ, from ϕ=0.548 to the lowest stable burning 

conditions. FIG 54 shows the streamlines colored by temperature for the entire reactor; for better 

visualization, the streamlines are translated periodically based on the solution of the modeled 15-

degree sector. Strong toroidal direction flow persists in the reactor. PRZ flow penetration into the 

region below the jets is visible in the transitional zone. 

   

 

 
FIG 54: Flow streamlines for stable combustion conditions (ϕ=0.548), colored by temperature. The flow is divided 
between PRZ and TRZ. The strong recirculation zone shows poloidal and toroidal velocity components of similar 

magnitude (near 45 degrees streamline direction). The flow from strong PRZ penetrates to TRZ in-between the jets. 
The maximum temperature is 1667 K and minimum temperature is 351.9 K. 

 

FIG 55 shows the vectors are colored by temperature for a stable combustion simulation. Similar 

to the cold flow solution, a strong poloidal recirculation exists only above the air-fuel jets. The 

mixture enters the strong PRZ and has minimum interaction with the TRZ. The average mass flux 

for the strong recirculation zone is about 22 kg/(m2-s) in toroidal direction and 10.5 kg/(m2-s) in 

poloidal direction. In the weak recirculation zone, the toroidal flow is about 21kg/(m2-s), and the 

poloidal flow is 0.03 kg/(m2-s). The toroidal flow component is uniform over the whole TJSR, but 

the poloidal flow component is much greater in the strong recirculation zone. As in the cold flow 

solution, the penetration of PRZ flow into the TRZ results in the formation of the asymmetric jet. 

The entrainment of TRZ gas into the fresh fuel-air mixture is blocked, and only the hot combustion 

products from PRZ are entrained by the jets. In this scenario, flame stabilization primarily depends 

on the temperature and gas composition of the strong PRZ. The combustion in the TRZ is sustained 
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mostly by the escaped gas from the PRZ due to the flow penetration and turbulent diffusion. From 

a modeling perspective, the selection of the numerical approach is critical to the analysis of the 

flow patterns in the reactor: the numerical scheme should be able to describe the highly swirling 

flow of the PRZ and the interaction between the jet and the surrounding flow structures. From the 

design and application perspective, the choice of the numerical scheme is driven by the 

computational turn around cycle time and computational cost. However, the easy to converge first 

order numerical schemes may not be appropriate due to their high numerical viscosity and 

inadequate pressure-strain relationship for predicting high swirling flows.  

 

 
FIG 55: Section view of the toroidal reactor for stable combustion ϕ=0.548, vectors colored by temperature; the 

strong PRZ displaces the jet downwards. In the transition zone, PRZ flow penetrates between the jets into the TRZ, 
breaking the coherent poloidal vortex below the jet. The transitional zone sheathes the entrainment of the flow from 

the TRZ. The maximum temperature is 1667 K and minimum temperature is 351.9 K. 
 

FIG 56 shows the temperature contours on a periodic plane for first and second order schemes under a 

stable combustion condition (top) and approaching LBO (bottom). Both numerical schemes show large 

temperature gradients between the PRZ and the TRZ near blowout. The first order scheme has more defined 

flow structures for both conditions due to the added numerical viscosity in the turbulence equation. The 

added numerical viscosity tends to reduce the gradients and thus the turbulent kinetic energy (k) production, 

which is likely to result in reduced turbulent diffusion. For example, the jet penetration is better defined in 

the lower order simulation; the first order shows four distinct jets on a periodic plane vs. two for the second 

order scheme. Furthermore, when approaching the blowout, the lower order solution has a well-defined 

stabilization vortex, which explains the increased flame stability of the lower order numerical scheme. FIG 
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56 also indicates the jet-jet interaction modeled by the two-jet system. There are at least 3 cold pockets in 

the cross-section indicating the entrainment of jets, while a similar figure (Figure 11) in previous work 306 

does not show the jet-jet interaction clearly. 

 

 

 
FIG 56: Temperature contours for the stable solution and solution at the incipient LBO. The higher ϕ (top panel) 
shows more uniform temperature fields. The lowest stable ϕ is 0.48 for second order scheme and 0.47 for the first 

order scheme (bottom panel). The maximum temperature is 1667 K, and the minimum temperature is 351.9 K. 
 

FIG 57 shows the maximum temperature ratio of PRZ to TRZ. At stable combustion conditions, 

the ratio is nearly constant. The temperature ratio increases non-linearly approaching blowout, 

which is associated with the cooling of a less intense TRZ. In general, the first order scheme 

simulations have a greater ratio than the second order scheme, which agrees with the earlier 

observation that the first order has less mixing due to the increased numerical viscosity.  
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FIG 57: Ratio of maximum temperatures (TPRZ/TTRZ). The first order scheme shows a greater difference. For both 

schemes, the ratio increases approaching blowout due to a nonlinear temperature decrease in TRZ.   
 

FIG 58 compares modeling results from this and the previous study to the data of Vijlee et al. 

Experimental temperature measurements are taken “roughly 5 mm above the bottom wall of the 

TJSR” 305. The temperature from the CFD solution corresponds to the same location—5 mm from 

the lower TJSR wall. All CFD solutions consistently under-predict the experimental data by 20-

40 K, possibly due to the numerical diffusivity of the models, the ambiguity of the temperature 

measurement location, thermocouple correction calculation, or uncertainties in the mass flow rate 

calculations. Though the absolute temperature from CFD does not match experiments perfectly, 

the trend matches well and can be used for the analysis of flame stability. The model of Vijlee et 

al. shows the closest agreement with the experimental temperature measurement with the location 

of the hot stabilizing vortex in the lower part of the TJSR (the gravity was not included in the 

previous study. These results do not have good agreement with the experimental blowout 

conditions, showing a stable solution for ϕ values as low as 0.45. The discrepancy can be attributed 

to the approximation in the heat transfer model, the added numerical viscosity of the low order 

numerical schemes, and the absence of the jet-jet interaction in the single nozzle reactor domain, 

and other numerical approximations, see Table 2. In the previous model, a simplified approach to 

heat transfer is used: a constant wall temperature and 2.5% heat loss to the reactor wall 306. The 

solution did capture the wall temperature variation. In our model, convection, radiation, and shell 

conduction are included; the local wall temperatures and overall heat loss are computed explicitly. 

Our CFD simulations show a similar trend between temperature and ϕ in the stable combustion 

region. The temperature decreases linearly from a high ϕ value down to the experimental blowout 
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point (ϕ ≈ 0.5). The nonlinear CFD trend approaching blowout is due to the temperature decrease 

of the TRZ.   

 
FIG 58: Temperature comparison of the experimental data and numerical solution. The CFD temperature is taken 5 

mm from the wall of the lower toroid; the CFD temperature is lower than the data by 20-40K for all stable 
experimental conditions. The CFD solution shows a nonlinear trend in the region below the experimental LBO 

associated with the TRZ cooling. The first order scheme sustains combustion at a lower ϕ.  
 

FIG 59 shows the contours of the species mass fraction for first and second order schemes under 

a stable combustion condition and the leanest stable conditions. Similar to the temperature profiles, 

the species profiles from the lower order calculations are less uniform owing to the added 

numerical viscosity. The first order scheme shows a better-defined flame region indicated by the 

maximum CO concentrations, as well as the flame stabilization vortex indicated by the maximum 

values of the OH radical. The turbulent diffusion of the second order scheme allows the species to 

populate the TRZ, especially approaching LBO conditions where the chemical reaction time 

increases while the mixing time stays relatively constant. FIG 59 shows that the higher CO 

concentration for the first order scheme is about 0.014 kgCO/kgtotal and only 0.01 kgCO/kgtotal for 

the second order scheme. The high concentration of CO in the TRZ for near blowout conditions 

suggest a quenched CO oxidation, which is typically associated with local blowout conditions. 
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FIG 59: The CO mass fraction contours of a stable solution and at the incipient blowout. The first order solution 

shows more defined regions with high concentrations of CO at stable conditions. The lower ϕ solutions show 
significantly higher and more uniform CO concentrations in the weak recirculation zone due to the increased 

chemical time constant.  
 

FIG 60 shows the OH-radical mass fraction; the second order scheme has higher dissipation of 

OH-radicals, which agrees with the previous discussion that the recirculation zones in the second 

order simulation have more interaction than in the less diffusive lower order scheme. The 

maximum values of the OH-radical mass fraction in the flame stabilizing structure at blowout 

conditions is about 7e-4 kgOH/kgtotal or about 0.1% by volume. The OH-radical blowout threshold 

values are independent of the numerical scheme. One approach is to consider the average OH 

concentration in the domain as a criterion for a blowout. The average OH for stable solutions (ϕ 

=0.548) is 4.35e-4 kgOH/kgtotal and 5.78e-4 kgOH/kgtotal for first and second order schemes, 

respectively. The average OH for solutions approaching blowout is 2.17e-4 kgOH/kgtotal and 2.97e-

4 kgOH/kgtotal for first and second order schemes, respectively. The average value of OH reduced 

when approaching the LBO; this may provide useful criteria for proximity to LBO. However, the 

criteria do not account for the spatial distribution of the OH radical within the reactor and are 

limited, as shown in the PSR analysis of Vijlee et al. 306   
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FIG 60: The OH-radical mass fraction contours of a stable solution and at an incipient blowout. The higher ϕ shows 

higher OH concentrations; the first order solution shows lower concentrations in TRZ. The maximum OH mass 
fraction at the incipient blowout for both schemes is about 7e-4 kgOH/kgtotal. 

 

FIG 61 shows the maximum computed species mass fraction as a function of ϕ; the concentrations 

decrease with ϕ. The trend of decay is comparable to the levels shown in DePape et al.319 The 

threshold concentrations at the blowout are independent of the convergence scheme. The second 

order scheme shows nonlinear behavior for ϕ<0.5 indicating a high-temperature gradient, thus the 

non-uniform combustion chemistry rates between the PRZ and the TRZ. 
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FIG 61: Maximum species mass fraction versus ϕ for OH radical, O-atom, and H-atom.  

 

FIG 62 and FIG 63 show the local Da number for considered cases. The Da number is calculated 

as the ratio of the turbulent time scale '
0 /T rmsl v =  to the characteristic chemical time scale 

/chem L LS = , where 0l is the extreme of the length-scale spectrum characterizing the largest eddy 

sizes, '
rmsv  is the root-mean-square of the turbulent velocity fluctuations related to turbulent kinetic 

energy, L is the laminar flame thickness, and LS is the laminar flame speed for premixed methane 

combustion 270, The turbulent time scale is based on turbulent kinetic energy calculated by the 

CFD, and the chemical time scale is based on the laminar flame speed of the lean premixed 

methane/air fuel 320,321. Previously, Koutmos et al. suggested that the local Da number needs to be 

greater than the critical Da number for stable combustion 322. The threshold (critical) Da number 

in our simulations in the flame stabilizing zone is in the range of 0.2-0.3. For the reactors where 

the well-stirred conditions are met, such as in this case, the flow field can be described by the local 

parameters; here the Da number can be obtained from the local properties calculated using CFD. 

The Da number definition can be modified as shown by previous researchers 322,323. The local Da 

number in the TRZ is an order of magnitude less than the Da in the flow stabilizing region. At ϕ 

~0.5-0.52, the Da levels in TRZ fall below the values of 0.1; at the same ϕ, the temperature and 

species concentration in this region exhibit nonlinear trends. We conclude that the TRZ cannot 

sustain combustion by itself and is likely to result in local flame extinction events, which, by 

themselves, do not result in the global blowout in the CFD simulation. The flame front Da is 
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calculated for the location of maximum CO concentration, as shown in FIG 59. The flame front 

Da monotonically decreases with ϕ; the stable experimental conditions (ϕ > 0.5-0.51), Daflame < 

0.1 which not sufficient to sustain combustion by itself, additional flame stabilization (entrainment 

of recirculating gas) is required for TJSR combustion.  

 
FIG 62: Da number contours of a stable solution and at the incipient LBO. The maximum Da in the PRZ.  
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FIG 63: Maximum Da number vs. ϕ for the first and second order scheme in the PRZ and TRZ. The Da number 
decreases for leaner combustion; the Da number in TRZ is an order of magnitude lower, indicating that the PRZ 

provides a more stable flame structure. At LBO, DaPRZ ~ 0.2-0.3, DaTRZ ~0.03- 0.04, Daflame ~0.005-0.01.   
 
CONCLUSIONS 

Atmospheric-pressure TJSR is studied using 3D CFD; the computational domain includes a two-

jet sector (out of 48) with periodic boundary conditions to capture the jet-jet interaction. The 

solutions for first and second order steady-state numerical schemes over a range of ϕ from 0.55 to 

LBO are compared with the experimental data. Compared to the previous studies, this study 

employs higher order convergence schemes; the heat transfer model accounts for convective and 

radiative mechanisms and conduction through the reactor wall. The quadratic stress-strain relations 

with the RSM turbulence closure and EDC model with a skeletal mechanism are used. The 

modeling gains insight into the LBO mechanism of the TJSR and allows for some generalizations 

of the flow behavior in aerodynamically stabilized reactors. The conclusions of this work are as 

follows: 

 

The steady-state numerical solution shows the formation of a strong poloidal recirculation and 

weak toroidal recirculation zones. The interaction between the two (initially counter-rotating) 
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vortices results in the formation of the local stagnation region (in the poloidal plane) in one of the 

vortices, breaking down its coherent structure and leading to a loss of the vorticity in the poloidal 

plane. The toroidal reactor is not well-stirred as suggested in the previous literature, large 

temperature and species gradient exist for all investigated condition.  

 

Due to the penetration of the strong PRZ flow into the weak vorticity region, the entrainment from 

the TRZ is limited; flame stabilization depends on gas entrainment from the PRZ. The ability to 

model the high swirling flow in the flame stabilizing recirculation region is critical for the analysis 

of the LBO mechanism.  

 

The first order solution shows more defined PRZ with a higher concentration of free radical species 

for the same ϕ. The presence of this region in the steady-state simulation (which does not consider 

the jet instability) leads to combustion stabilization at a lower overall ϕ. The second order scheme 

does not sustain this well-defined vortex yielding more uniform temperature and species 

distribution in the reactor. 

 

Maximum concentrations of the major free radicals in the PRZ at the incipient blowout are: OH – 

0.07 kgOH/kgtotal, O-atom - 0.037 kgO/kgtotal, and H-atom – 0.0006 kgH/kgtotal; the maximum 

temperature is 1510 K. Although the shape of the flame and the recirculation zone and the 

interaction between flow structures may be different, the threshold level of free radicals for 

sustained combustion is found to be independent of the numerical scheme. 

 

The Da number in the stabilization zone can be considered as the critical blowout parameter. At 

the LBO conditions the maximum DaPRZ ~ 0.2-0.3, Daflame ~0.005, DaTRZ ~0.04. We conclude that 

unassisted fuel-air jet or TRZ cannot sustain combustion by itself resulting in local flame 

extinction, which agrees with the experimental results of Barat who reported that the local blowout 

events were observed before the global blowout. The local blowout events are likely to be 

accompanied by the flame movement and negative feedback on the stability of the PRZ vortex, 

leading to reactor blowout at a higher fuel equivalence ratio than predicted by the CFD.  
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Though the validity of the turbulence and combustion models used in the study may be sources for 

discrepancies between numerical prediction and experiments, and needs further investigation; the 

flow field analysis for both schemes suggests that the use of the local parameters for LBO 

prediction is a promising approach. 

 

Some general conclusions can be made based on the CFD simulations and experimental 

observations of the TJSR. For aerodynamically stabilized combustors with opposing recirculation 

zones, a dominant flow structure with faster mixing and faster overall combustion chemistry may 

develop. Poor mixing and slower chemistry in the weak recirculation zone lead to incomplete 

combustion, high UHC and CO emissions, and poor carbon conversion efficiency. Due to high 

numerical viscosity, low order numerical simulations are not well-suited for studies of the blowout 

due to their inability to capture mixing behavior in the shear layer between the jet and stabilizing 

vortex. While the critical Da number may be a good indicator for assessing proximity to the 

blowout, a high Da number non-uniformity in the combustor may result in local flame blowouts, 

flame instability leading to global LBO before the critical Da number is reached. 

 
Nomenclature for Appendix D 

CFD Computational fluid dynamics 

Cp Specific heat 

Da Damkohler number 

EBU Eddy breakup model 

EDC Eddy dissipation concept 

k Turbulent kinetic energy 

LBO Lean blowout 

PRZ Poloidal recirculation zone 

P-V Pressure-Velocity 

TJSR Toroidal jet-stirred reactor 

RANS Reynolds averaged Navier-Stokes 

RSM Reynolds stress model 

TRZ Toroidal recirculation zone 

Φ Fuel-air equivalence ratio 
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τ Characteristic time scale  

ρ Mean density 
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