Central Nervous System (CNS) Escape in HIV

Christina Marra, MD
Neurology and Medicine (Infectious Diseases)
University of Washington

Presentation prepared by: Christina Marra
Presenter: Christina Marra
Last Updated: Date: 3/30/2016

This presentation is intended for educational use only, and does not in any way constitute medical consultation or advice related to any specific patient.
CNS Escape

Loss of control of brain HIV infection in a patient on effective antiretroviral therapy
Patient

• 50 year old HIV-infected man
• Stable combination antiretroviral therapy (CART) X 9 years
 - No pre-treatment resistance mutations in plasma
 • Tenofovir
 • Emtricitabine
 • Atazanavir-ritonavir
 - Undetectable plasma HIV RNA
• 2 months of gait ataxia, headache, memory loss

Béguelin C. et al. OFID 2015
T-2 Weighted MR Brain

Béguelin C. et al. OFID 2015
Laboratory Data

- Plasma HIV RNA <20 c/ml
- CD4 790 (28%)
- CSF
 - WBC 75 cells/ul
 - Protein 99 mg/dl
 - CSF HIV RNA 1184 c/ml
 - M184V, K65R, K103N mutations
- Neuropsychological testing abnormal
 - Minor neurocognitive disorder
Course

• CART change
 - Zidovudine
 - Lamivudine
 - Darunavir-ritonavir
 - Raltegravir

• Clinical improvement
Three things to note: diagnosis is based on CSF, CNS ≠ CSF, and all “CNS escape” is not the same.
Source of CSF HIV?

• Early in infection
 - Derived from blood
 - Trafficking CD4+ T cells and monocytes
 - R5 and T-tropic
 - Centered in meninges
 - CSF pleocytosis
 - *Non-compartmentalized, equilibrated*
 - CART control of peripheral virus controls CSF virus

Source of CSF HIV?

- Later in infection (hypothesis)
 - R5 and M-tropic
 - Infection of brain macrophages and microglia
 - *Compartmentalized*
 - Requires local antiretroviral concentrations sufficient to control virus in brain

Systemic CART is largely effective in treating CSF HIV

<table>
<thead>
<tr>
<th>2010 CPE Rank</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRTIs</td>
<td>Zidovudine</td>
<td>Abacavir</td>
<td>Didanosine</td>
<td>Tenofovir</td>
</tr>
<tr>
<td></td>
<td>Emtricitabine</td>
<td>Lamivudine</td>
<td>Zalcitabine</td>
<td>Stavudine</td>
</tr>
<tr>
<td>NNRTIs</td>
<td>Nevirapine</td>
<td>Delavirdine</td>
<td>Etravirine</td>
<td>Efavirenz</td>
</tr>
<tr>
<td>PIs</td>
<td>Indinavir-r</td>
<td>Darunavir-r</td>
<td>Atazanavir-r</td>
<td>Nelfinavir</td>
</tr>
<tr>
<td></td>
<td>Fosamp-r</td>
<td>Atazanavir</td>
<td>Ritonavir</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indinavir</td>
<td>Fosamp</td>
<td>Saquinavir-r</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lopinavir-r</td>
<td>Saquinavir</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tipranavir-r</td>
<td></td>
</tr>
<tr>
<td>Fusion/Entry</td>
<td>Maraviroc</td>
<td></td>
<td>Enfuvirtide</td>
<td></td>
</tr>
<tr>
<td>Integrase</td>
<td>Raltegravir</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Higher CPE Regimens More Effectively Suppress CSF HIV RNA

Letendre S. Top Antivir Med 2011;19
Predicting Detectable CSF HIV RNA

 - Modeled probability of detectable CSF HIV RNA in 1053 CHARTER participants on CART
 - Devised a “CSF HIV risk score” (0-42 points)
 - CPE: 0, 6, 9 points
 - Race: 0, 3, 4 points
 - Current depression: 0, 4 points
 - CART adherence: 0, 3, 3 points
 - Plasma HIV RNA: 2, 2, 10, 18 points
 - CART months: 0, 2, 3, 4 points
Predicting Detectable CSF HIV RNA

OR detectable CSF HIV RNA 1.26 (1.21-1.31) per 1-point increase in score

CSF Escape

• Symptomatic
• Asymptomatic
• Secondary
Symptomatic CSF Escape

- Presumed to reflect virological failure in CNS
 - New or progressive neurological symptoms and signs
 - CSF pleocytosis

<table>
<thead>
<tr>
<th>HIV RNA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td>CSF</td>
</tr>
<tr>
<td><50 c/ml</td>
<td>>50 c/ml</td>
</tr>
<tr>
<td>50-500 c/ml</td>
<td>> 2 X plasma</td>
</tr>
</tbody>
</table>

Treatment of Symptomatic CSF Escape

• Optimize CART
 - Ideally based on CSF resistance pattern
• Empirically increase CPE?
Asymptomatic CSF Escape: CSF Blips? No Change in CART recommended

- Edén A. et al. JID 2010;202
 - 69 neurologically asymptomatic or stable HIV-infected
 - CART X > 6 mo.
 - Plasma HIV RNA <50 c/ml
 - 7 (10%) detectable CSF HIV RNA
 - Median 121 c/ml (IQR 54-213)
 - Not related to CPE of CART regimen
 - Longer duration of CART
 - More treatment interruptions
 - More plasma blips
 - Higher CSF neopterin
 - Measure of immune activation
Secondary CSF Escape

- Superimposed CSF or CNS infection or inflammation
 - Influx of CD4+ T cells into CSF that are susceptible to HIV infection
 - Syphilis
 - Lyme
 - Varicella zoster
 - Accompanied by pleocytosis
 - Unclear significance
 - No change in CART recommended

Summary

• Symptomatic CSF escape is probably uncommon
 - Likely reflects loss of control of CNS virus
 - Should be explored in patients on therapy with new neurological symptoms and signs
 - May improve with CART optimization
 • Ideally based on genotype

• Asymptomatic CSF escape may be common
 - CSF “blips”?
 - CART change not recommended
 - Unknown prognosis

• Secondary CSF escape
 - Epiphenomenon of CSF or CNS infection or inflammation
 - CART change not recommended