

NORTHWEST AIDS EDUCATION AND TRAINING CENTER

Introduction to HIV Resistance Testing

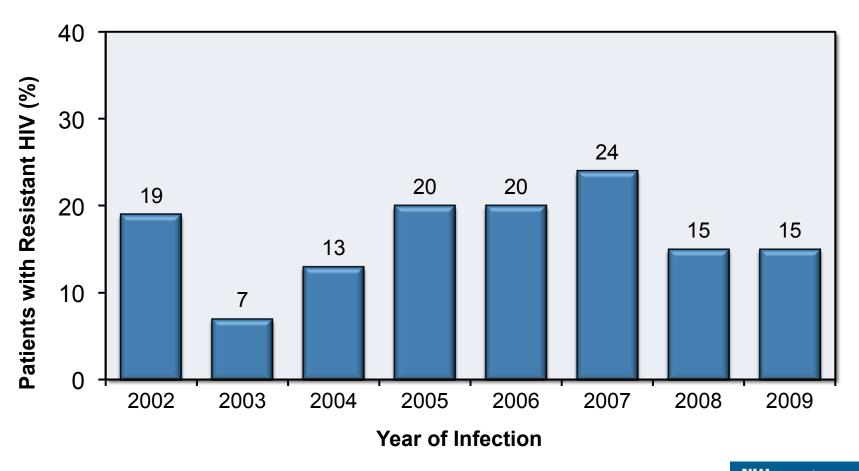
David Spach, MD
Clinical Director, Northwest AETC
Professor of Medicine, Division of Infectious Diseases
University of Washington

Presentation Prepared by: David Spach, MD Last Updated: May 8, 2012

HHS Antiretroviral Therapy Guidelines: March 2012 Recommendations for Drug Resistance Testing

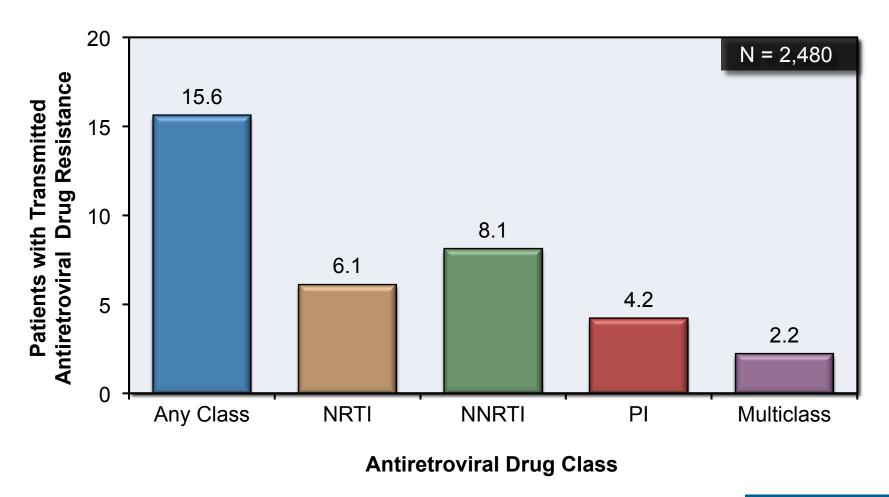

Clinical Setting	Recommendation for Drug-Resistance Testing				
Acute HIV infection	Recommended: Genotype				
Treatment-naïve with Chronic HIV	Recommended: Genotype				
Virologic failure	Recommended if HIV RNA >1,000 copies/mL Consider if HIV RNA >500 but <1,000 copies/mL Consider integrase genotype when failing INSTI Add phenotype with known or suspected complex drug-resistance patterns, particularly to PIs				
Suboptimal HIV RNA Suppression	Recommended: Genotype				
HIV-infected and Pregnant	Recommended: Genotype prior to starting ART				

HIV Resistance Testing


Why order a genotype in someone who has never received antiretroviral therapy?

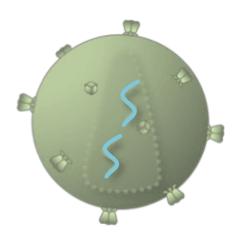
Transmission of Drug-Resistant HIV

Transmitted Drug Resistance in Persons with Acute/Early HIV-1 in San Francisco, 2002-2009


Any Resistance

Source: Jain V, et al. PLoS One. 2010;5:e15510.

Prevalence of Antiretroviral Drug Resistance among Newly-Diagnosed HIV-Infected Persons, US, 2007

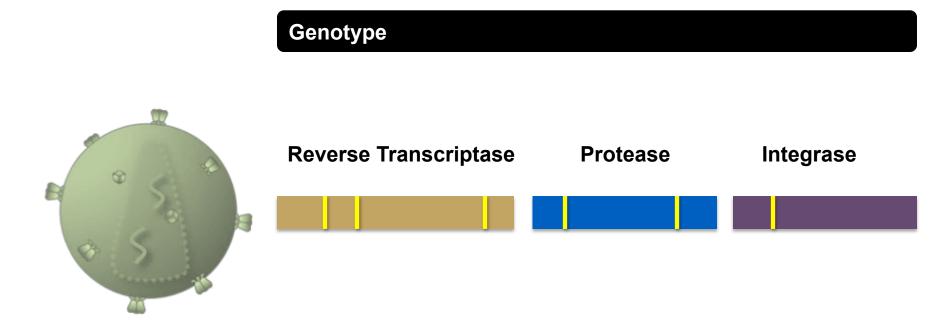


Source: Kim D, et al. CROI 2010. Abstract 580.

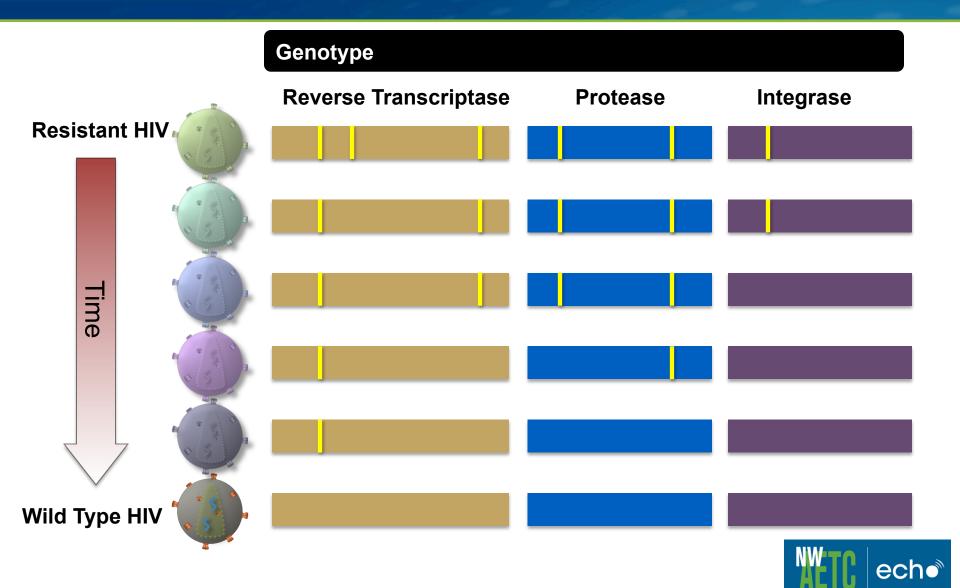
HIV Resistance Testing

Why not wait and order the genotype when the patient will start antiretroviral therapy?

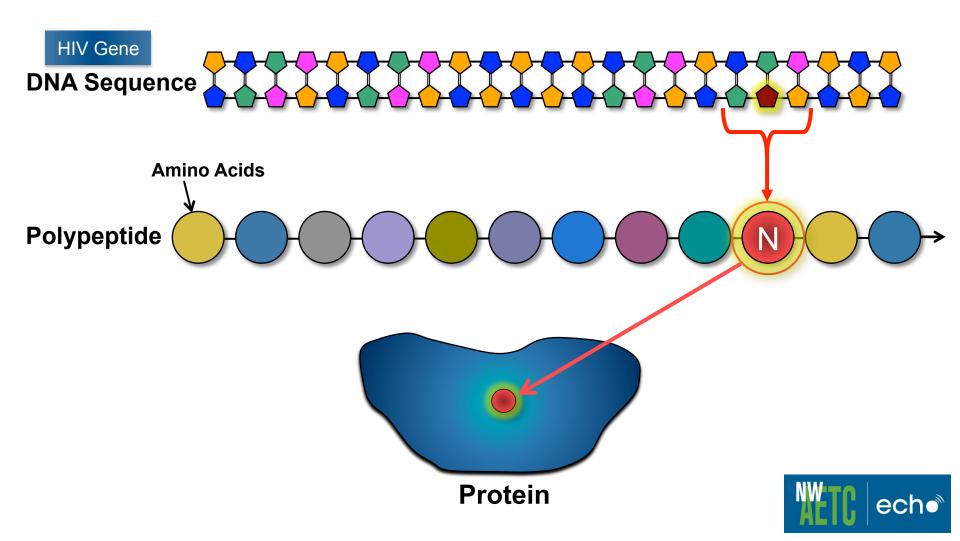
Transmitted Drug Resistant HIV

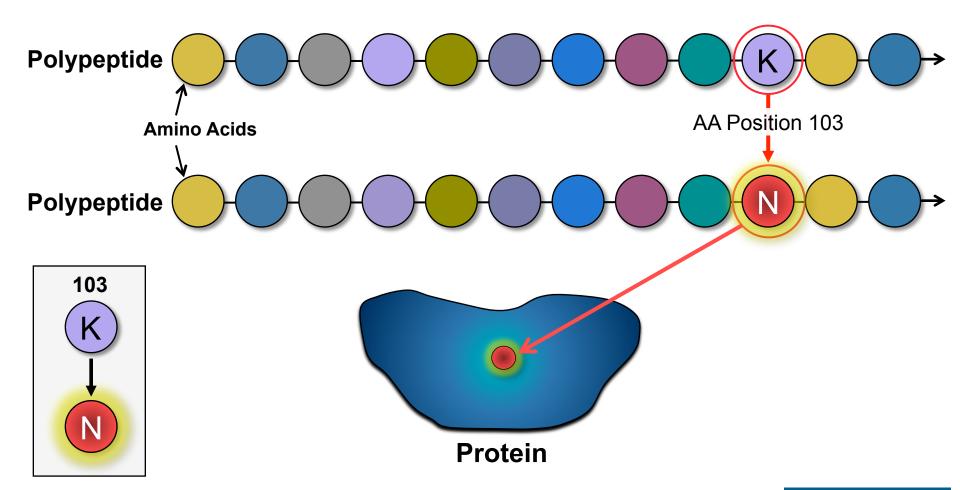


HIV RNA with Multiple Mutations


Transmitted Drug-Resistant HIV

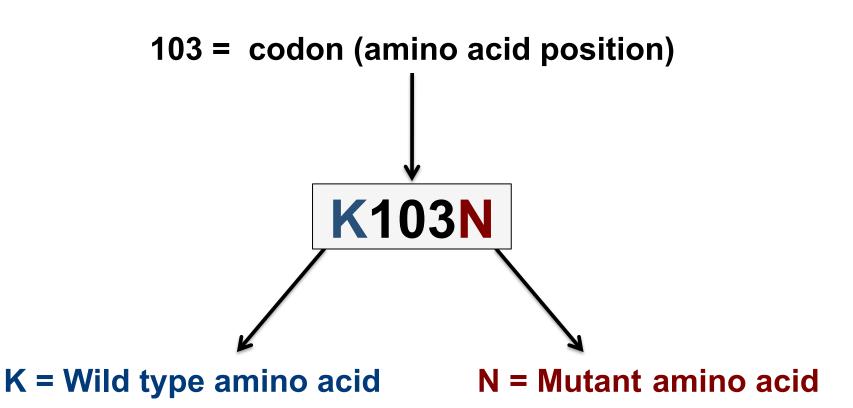
HIV with Multiple Mutations


Reversion of Transmitted Drug-Resistant HIV


HIV Resistance Testing

How do you interpret the genotype?

Basic Principles of HIV Genotype



Basic Principles of HIV Genotype

Interpreting Genotypic Resistance Reports Understanding Genotype Mutation Nomenclature

Amino Acids

Reverse Transcriptase: 1-560 Protease: 1-99 Integrase: 1-288 Envelope: 1-510

Interpreting Genotypic Resistance Reports International Antiviral Society-USA: Mutation Li

Google™ Custom Search

(IAS-USA Search

HIV Drug Resistance Mutations

The HIV Drug Resistance Mutations Figures and User Notes are regularly revised and disseminated by the IAS-USA <u>Drug Resistance Mutations Group</u>, an independent volunteer panel of experts focused on identifying key HIV-1 drug resistance mutations. The group strives to provide current, accurate, and unbiased information on these mutations for HIV practitioners. The mutations figures and accompanying text are published in *Topics in HIV Medicine*. The most recent revision is available in the <u>December 2009</u> issue.

The IAS-USA has recently compiled a list of <u>resources</u> related to HIV drug resistant mutations.

The Mutations Figures and User Notes are available as a <u>downloadable PowerPoint file</u>. The figures will also be available in pocket-sized folding cards. To request folding cards, complete the <u>card request form</u> and return via fax at (415) 544-9401, or by mail to the address shown on the form. You may also send an e-mail to <u>resistance2010 "at" iasusa.org</u> or call the IAS-USA at (415) 544-9400.

Request to Reprint Figures

www.iasusa.org/resistance_mutations/index

Contact
Home

require that permission be obtained. Please send your request to the IAS-USA via e-mail at resistance2010 "at" iasusa.org or by fax at (415) 544-9401. Requests to reprint the material should include the name of the publisher or sponsor, the name or a

Interpreting Genotypic Resistance Reports International Antiviral Society-USA: Mutation List

MUTATIONS IN THE REVERSE TRANSCRIPTASE GENE ASSOCIATED WITH RESISTANCE TO REVERSE TRANSCRIPTASE INHIBITORS

	Nucleoside and Nucleo	tide Analogue Reverse	Transcriptase	Inhibitors	(nRTIs)a
--	-----------------------	-----------------------	---------------	------------	----------

	Multi-nR1	Π Resistan A	ce: 69 I	nsertion Com K	plex ^b (affects all nRTIs cur	rently appr	oved by the US	FDA) L T	К
	41	62	69	70				210 219	5 219
	L	٧	Inser	R				W Y	Q E
	Multi-nR1	Π Resistan A	ce: 151	Complex ^c (af	fects all nRTIs currently ap	proved by		cept teno	fovir)
		62		75 77	1	116 15	1		
		٧		I L		Y M			
	Multi-nR1 by the US		ce: Thy	midine Analo	gue-Associated Mutation	s ^q e (TAMs; a	affect all nRTIs	currently	approved
	М		D	K				L T	
	41		67	70				210 219	
	L		N	R				W Y	Q E
		K		L	Υ		М		_
Abacavir ^{f,g}		65		74	115		184		
		R		٧	F		٧		
		К		L					
Didanosine ^{9h}		65		74					
Didanosine ⁹ⁿ		R		٧					
Emtricitabine		K					M		
Emtricitabine		65					184 V		
		n					ľ		
		K					М		
Lamivudine		65					184		
		R					V		
	М	K	D	K				L T	K
avudineطبوريا,ال	41	65		70				210 219	
avadine	L	R	N	R				W Y	Q E
		v		К				F	Ł
Tenofovir ^l		65		70					
		R		70 E					
				-					
	М		D	K				L T	K
idovudine ^{d,e,j,k}	41		67	70				210 219	
	L		N	R				WY	Q.

Interpreting Genotypic Resistance Reports Stanford HIV Drug Resistance Database

STANFORD UNIVERSITY HIV DRUG RESISTANCE DATABASE

A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

GENOTYPE-RX GENOTYPE-PHENO GENOTYPE-CLINICAL

HIVdb PROGRAM

proportions with Surveillance Drug Resistance Mutations (SDRMs)

» Tools for predicting the virological response to ARV

ART-AIDE

ARV Therapy -Acquisition &

Database Mirror

Collaboration with Africa Centre for Health and Population Studies and South African

HBVseq Program

Provides HBV RT mutation

» IAS 2011 (Rome) Oral Presentation: Comparative Analysis of Virological Efficacy of WHO 2010 TDF-Containing First Line Regimens

» Stanford Provost Statement Supporting Expansion of HIVDB

Calibrated Population Resistance (CPR) Tool Version 6.0

New transparent sequence and codon specific quality control analysis, PDF report, phylogenetic analysis, and excel download

Treatment-Change Episode (TCE) Suite of Programs and Repository Version 1.0

Designed for researchers studying the predictors of virological success with new antiretroviral (ARV) regimens. Contains a TCE Viewer, TCE Finder, and TCE Repository.

GENOTYPE-TREATMENT CORRELATIONS

- Retrieve sequences (and/or mutations) from persons receiving selected HIV drugs
- Retrieve sequences and treatments from viruses with specific mutations

GENOTYPE-PHENOTYPE

- Retrieve drug susceptibility data for
- Download genotype-phenotype

CORRELATIONS

isolates with selected mutations

GENOTYPE-CLINICAL CORRELATIONS

research datasets

Summaries of genotype-clinical

outcome studies

SURVEILLANCE MUTATIONS

in HIVRT&PrDB

database group

World Health Organization 2009 Mutation List

REFERENCES

Published drug resistance studies

Published studies by Stanford

- Geographic Information System
- Mutation Prevalence
- Surveillance Drug Resistance Mutation (SDRM) Worksheet

ANALYSIS TOOLS

REGA HIV-1 Subtyping Tool

HIVdb Resistance PROGRAM Interpretation rets user-entered resistance to NRTIs. NNRTIs. Pls. Web Service is available.

MARVEL

» Mutation ARV Evidence Listing

HIVseq Program

» Provides mutation frequencies by subtype and treatment

HIValg Program

» Compare HIVdb, ANRS, Rega or create your own algorithm

Drug Resistance Summaries

PDF handouts

http://hivdb.stanford.edu

- ▶ Hamers, et al. TDR in ARV-Naive Persons in Sub-Saharan Africa.
- Barber, et al. PI-Resistance Mutations In Persons with LPV-Associated Virological Failure.
- Deshpande, et al Molecular Phylogeny of HIV-1 RT Sequences in Mumbai.
- ▶ Truong, et al Ongoing TDR in California, U.S.
- Kulkarni, et al E138K + M184I Induced Rilpivirine Resistance.

Interpreting Genotypic Resistance Reports Stanford HIV Drug Resistance Database

STANFORD UNIVERSITY HIV DRUG RESISTANCE DATABASE

A curated public database designed to represent, store, and analyze the divergent forms of data underlying HIV drug resistance.

HOME GENOTYPE-RX

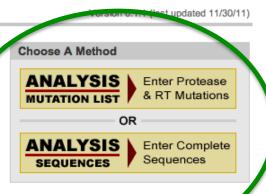
GENOTYPE-PHENO

GENOTYPE-CLINICAL

HIVdb PROGRAM

HIVdb Program

Genotypic Resistance Interpretation Algorithm


HIVdb accepts user-submitted protease and RT sequences and returns inferred levels of resistance to 19 commonly used protease and RT inhibitors. Its purpose is educational and as such it profides extensive comments and a highly transparent scoring system that is hyperlinked to data in the HIV Drug Resistance Database. In clinical settings, genotypic data must be used in conjunction with a patient's clinical history (including past treatments) and a solid understanding of the principles of antiretroviral treatment (http://www.aidsinfo.nih.gov/guidelines/).

The drug resistance interpretation system used here is similar to the one used by the Stanford University Hospital (SUH) Diagnostic Virology Lab. However, each of the SUH Diagnostic Virology Lab reports is manually reviewed before being reported to the ordering physician.

A detailed description of the program as well as all updates can be found in the Release Notes.

Web Service

A web service (known as Sierra) has been created to allow users to take advantage of HIVdb programmatically. If you handle large numbers of sequences, or if you want to integrate HIVdb into your IT infrastructure, be sure to check out this new offering.

Interpreting Genotypic Resistance Reports Stanford HIV Drug Resistance Database

HIVdb Program: Mutation List Analysis

Protease, RT, and integrase mutations can be entered using either the text box or pull down menus (<u>detailed usage is found below</u>).

The output can then be customized to display mutation comments, mutation scores, and an optional identifier and date. For further explanations and sample datasets please see the Release Notes.

Reverse Transcrip	otase	Protease			Integra	ise		
Enter Mutation List:		Enter Mutation	ı List:		Enter M	utation L	ist:	
OR —			OR				OR —	
Use The Pulldown Me	enus:	Use The Pulld	own Menus:		Use The	Pulldow	n Menus:	
41 44	62 65	10 11	13	16	51	54	66	68
67 69	70 74	20 23	24	30	74	92	95	97
75 77	90 98	32 33	35	36	114	121	125	128
100 101	103 106	43 46	47	48	138	140	143	145
108 115	116 118	50 53	54	58	146	147	148	151
108 115	🗘 🕏	50 53	\$ \$		146			
138 151	179 181	60 62	63	71	153	154	155	157
184 188	190 210	73 74	76	77	163	203	230	263
215 219	221 225	82 83	84	85				
227 230	234 236	88 89	90	93				
238 318	333 348		:					
	• •							
Identifier (Optional)			Output Ana	lysis:				
Date (Optional)			✓Mutation	Scores	✓Muta	tion Com	ments	
RESET							ANALYZE	

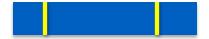
Detailed usage

To use the text box, type each mutation in uppercase separated by one or more spaces (the consensus wildtype amino acids and separating commas are optional). If there is a mixture of more than one amino acid at a position, write both amino acids at a lash is optional). Use lowercase "ims" in indicate an insertion and lowercase "del" to indicate an insertion; if you type a mixture of "i/n/s" or "ins", this will be assumed to be an insertation rather than a mixture, to avoid this, enter this mixture in uppercase (likewise for "del"). Otherwise, lowercase mutations are allowed.

HIV Resistance Testing

When and how do you order a integrase genotype?

Genes Sequenced in Standard Genotype


Standard Genotype

Reverse Transcriptase

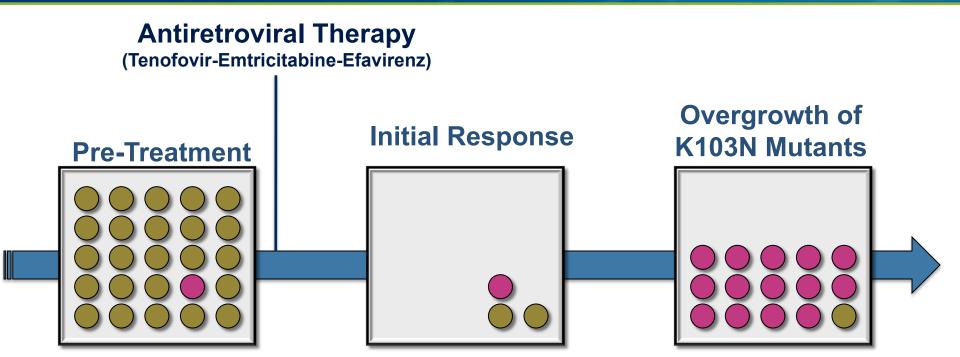
Protease

Indications for HIV Integrase Genotype

- Consideration for use of ISTI in regimen
- Virologic Failure on INSTI

Integrase Genotyping

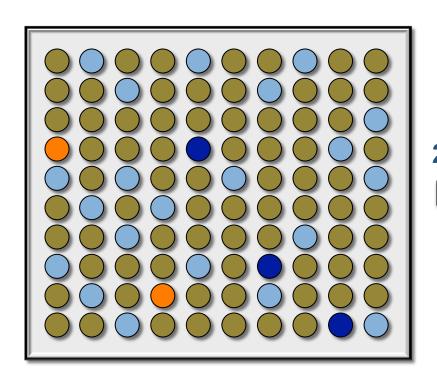
- Integrase Genotype
 - Quest Diagnostics
 - Lab Corp
 - Virco
- Integrase Phenotype
 - Lab Corp (Monogram Biosciences)
 - Virco


HIV Resistance Testing

When do you order a phenotype?

ADVANCED TOPIC Minority Quasispecies

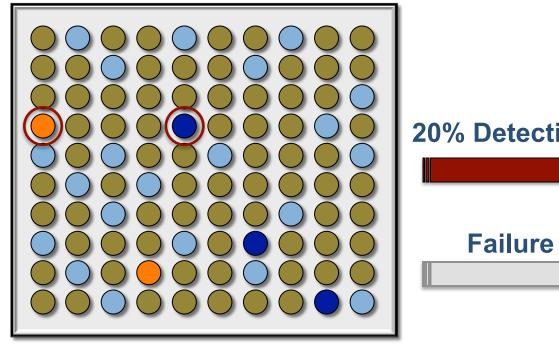
Minority Quasispecies of Drug-Resistant HIV

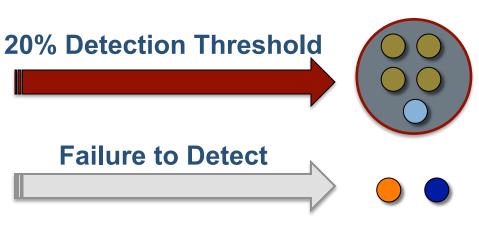

Metzner KJ, et al. Clin Infect Dis. 2009;48:239-47.

CONCLUSIONS: Minority quasispecies of drug-resistant viruses, detected at baseline, can rapidly outgrow and become the major virus population and subsequently lead to early therapy failure in treatment-naive patients who receive antiretroviral therapy regimens with a low genetic resistance barrier.

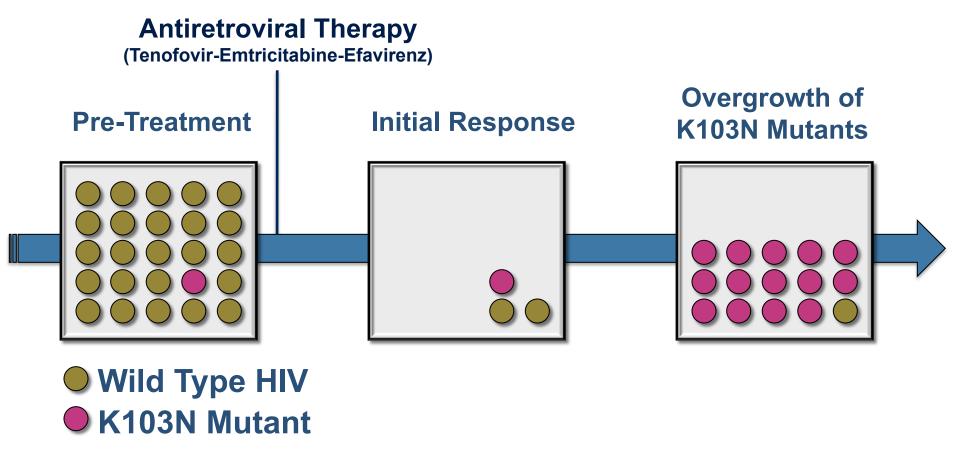
Genotyping: Conventional Bulk Sequencing

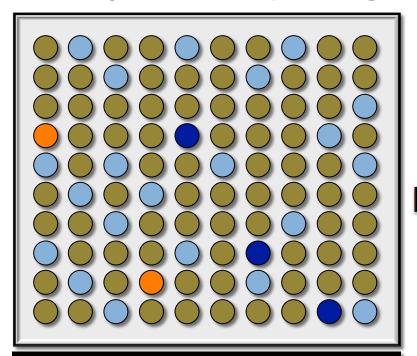
Conventional Bulk Sequencing





Genotyping: Conventional Bulk Sequencing


Conventional Bulk Sequencing


Potential Impact of Minority Quasispecies of Drug-Resistant HIV

Genotyping: Minority Variant Sequencing

Minority-Variant Sequencing

Point Mutation Assays Clonal Sequencing Ultra-deep Sequencing < 1% Detection Threshold

