
Singular Value Decomposition and Empirical Orthogonal Functions (EOFs)

For any matrix A, one can always define matrices U, L and V such that:

A(M¥N) = U(M¥M)L(M¥N)VT(N¥N).

We can write U and V as:

U=[u1 u2 ... uM], where ui are M¥1 column vectors, and

V=[v1 v2 ... vN], where vi are N¥1 column vectors.

L has the form:
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    for M>N

To match the situation in Assignment #3 and for simplicity, we will now just work with
the case M < N.

This decomposition of a matrix is called the singular value decomposition (SVD).  The
li are called the singular values.  (Sometimes the columns of U are called the left
singular vectors and the columns of V the right singular vectors, sometimes “singular
vectors” is used more casually to refer to them both.)  The ui are orthogonal to each other,
as are the vi

The matrix A can be reconstructed by multiplying each column and row vector from,
respectively, U and V with the corresponding singular value and adding them all
together:
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A = u1(M ¥1)l1v1
T 1¥ N( ) + u2l2v2
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The decomposition is arranged so that li > 0 and l1 > l2 > ...>lM.

We can geometrically interpret the column and row vectors that correspond to the largest
singular value:

u1 is the vector most parallel to columns of A
v1 is the vector most parallel to rows of A
l1 is the best fitting scale factor

In applying SVD to determine the dominant modes of climate variability, each row of the
matrix A will represent a spatial map of a field at a given time.  M is the number of
observation points in time.  N is the number of observation points in space.  (We assume
that the data has already been interpolated onto a regular grid in space and time, and the
mean of each time-series has been removed.)
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We can then interpret the singular vectors:
v1 is the vector that captures most of the space-dependence of the field.  It is
called the first Empirical Orthogonal Function (EOF) of the field. v2 is called
the 2nd EOF and so on.  The EOF is non-dimensional.
u1l1 is describes the evolution in time of this spatial function.  It is often referred
to as the Principal Component (PC).  The time-series has the units of the
original data.

 (The matrix of observations can be defined the other way with M space points, N time
points and the physical interpretations reversed.)

The fraction of total variance explained by the ith EOF is given by:
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Notes:  Since we represent two dimensions of space with one dimension across the rows
of matrix A, the “map” has to be carefully constructed.  Usually, to transform a 2-D map
into a 1-D row of the matrix, one goes from left to write, top to bottom as if one were
“reading” the data at each grid-point.  Keep this in mind when you do the exercise.



Glossary

There are a confusing number of different terms for the same thing that have evolved in
different fields.

The process  vi  li ui li

EOF analysis EOF Singlar value Amplitude time-series
Eigenvector analysis Eigenvector Eigenvalue Principal Component
Principal Component
Analysis (PCA)

Principal
Component
loading pattern

Expansion coefficients

Expansion coefficient
time-series

There are also a number of variations on the method:

Joint EOF analysis.  Applies the method to two different fields.  Given data matrices, as
above, for two fields A and B, form the cross-covariance matrix, C = ATB.  A SVD is
made on matrix C to find matrices U, L and V as above.  Now the ui and v i are
interpreted as spatial patterns of co-variability modes for the two fields.  The columns of
AU and BV contain the expansion coefficients of each mode.

Complex EOF analysis (CEOF).  Used to analyze velocity records, as u + iv, where u is
east-west velocity and v is north-south velocity.  This allows for rotation of the field as
observed in velocity for various waves.

Rotated EOF analysis, Varimax rotation of EOFs.  Takes linear combinations of the
EOFs and projects them onto the original data matrix to determine the corresponding
expansion coefficient time-series.  It is an attempt to fix problems with dependence of the
results on the domain being analyzed.

Extended EOF analysis (EEOF).  An extension of EOF analysis that allows for time-
lagged covariance.


