Singular Value Decomposition and Empirical Orthogonal Functions (EOFs)

For any matrix A, one can always define matrices U, L and V such that:

$$\mathbf{A}(M \times N) = \mathbf{U}(M \times M)\mathbf{L}(M \times N)\mathbf{V}^{T}(N \times N).$$

We can write U and V as:

 $\mathbf{U} = [\mathbf{u}_1 \, \mathbf{u}_2 \, \dots \, \mathbf{u}_M]$, where \mathbf{u}_i are $M \times 1$ column vectors, and

 $\mathbf{V} = [\mathbf{v}_1 \, \mathbf{v}_2 \dots \mathbf{v}_N]$, where \mathbf{v}_i are $N \times l$ column vectors.

L has the form:

the case M < N.

or

$$\mathbf{L} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{M} & 0 & \dots & 0 \end{bmatrix} \text{ for } \mathbf{M} < \mathbf{N}$$
$$\mathbf{L} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{M} \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} \text{ for } \mathbf{M} > \mathbf{N}$$

To match the situation in Assignment #3 and for simplicity, we will now just work with

This decomposition of a matrix is called the **singular value decomposition (SVD)**. The λ_i are called the **singular values**. (Sometimes the columns of **U** are called the **left singular vectors** and the columns of **V** the **right singular vectors**, sometimes "singular vectors" is used more casually to refer to them both.) The \mathbf{u}_i are orthogonal to each other, as are the \mathbf{v}_i

The matrix \mathbf{A} can be reconstructed by multiplying each column and row vector from, respectively, \mathbf{U} and \mathbf{V} with the corresponding singular value and adding them all together:

$$\mathbf{A} = \mathbf{u}_1(M \times 1)\lambda_1\mathbf{v}_1^T(1 \times N) + \mathbf{u}_2\lambda_2\mathbf{v}_2^T + \dots$$

The decomposition is arranged so that $\lambda_i > 0$ and $\lambda_1 > \lambda_2 > ... > \lambda_M$.

We can geometrically interpret the column and row vectors that correspond to the largest singular value:

 \mathbf{u}_1 is the vector most parallel to columns of A

 \mathbf{v}_1 is the vector most parallel to rows of A

 λ_1 is the best fitting scale factor

In applying SVD to determine the dominant modes of climate variability, each row of the matrix \mathbf{A} will represent a spatial map of a field at a given time. M is the number of observation points in time. N is the number of observation points in space. (We assume that the data has already been interpolated onto a regular grid in space and time, and the mean of each time-series has been removed.)

$$\mathbf{A} = \begin{bmatrix} T(\mathbf{x}_1, t_1) & T(\mathbf{x}_2, t_1) & \dots & T(\mathbf{x}_N, t_1) \\ T(\mathbf{x}_1, t_2) & T(\mathbf{x}_2, t_2) & \dots & T(\mathbf{x}_N, t_2) \\ \vdots & \vdots & \ddots & \vdots \\ T(\mathbf{x}_1, t_M) & T(\mathbf{x}_2, t_M) & \dots & T(\mathbf{x}_N, t_M) \end{bmatrix}$$

We can then interpret the singular vectors:

 \mathbf{v}_1 is the vector that captures most of the space-dependence of the field. It is called the first **Empirical Orthogonal Function** (EOF) of the field. \mathbf{v}_2 is called the 2nd EOF and so on. The EOF is non-dimensional.

 $\mathbf{u}_1 \lambda_1$ is describes the evolution in time of this spatial function. It is often referred to as the **Principal Component** (PC). The time-series has the units of the original data.

(The matrix of observations can be defined the other way with M space points, N time points and the physical interpretations reversed.)

The fraction of total variance explained by the *i*th EOF is given by:

$$\frac{\lambda_i^2}{\displaystyle\sum_{j=1}^M\lambda_j^2}$$

Notes: Since we represent two dimensions of space with one dimension across the rows of matrix A, the "map" has to be carefully constructed. Usually, to transform a 2-D map into a 1-D row of the matrix, one goes from left to write, top to bottom as if one were "reading" the data at each grid-point. Keep this in mind when you do the exercise.

Glossary

There are a confusing number of different terms for the same thing that have evolved in different fields.

The process	\mathbf{v}_i	λ_i	$\mathbf{u}_i \lambda_i$
EOF analysis	EOF	Singlar value	Amplitude time-series
Eigenvector analysis	Eigenvector	Eigenvalue	Principal Component
Principal Component Analysis (PCA)	Principal Component loading pattern		Expansion coefficients
			Expansion coefficient time-series

There are also a number of variations on the method:

Joint EOF analysis. Applies the method to two different fields. Given data matrices, as above, for two fields A and B, form the cross-covariance matrix, $C = A^T B$. A SVD is made on matrix C to find matrices U, L and V as above. Now the \mathbf{u}_i and \mathbf{v}_i are interpreted as spatial patterns of co-variability modes for the two fields. The columns of AU and BV contain the expansion coefficients of each mode.

Complex EOF analysis (CEOF). Used to analyze velocity records, as u + iv, where u is east-west velocity and v is north-south velocity. This allows for rotation of the field as observed in velocity for various waves.

Rotated EOF analysis, Varimax rotation of EOFs. Takes linear combinations of the EOFs and projects them onto the original data matrix to determine the corresponding expansion coefficient time-series. It is an attempt to fix problems with dependence of the results on the domain being analyzed.

Extended EOF analysis (EEOF). An extension of EOF analysis that allows for time-lagged covariance.