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Summary

1. Ecologists have long sought to distinguish relationships that are general from those that are

idiosyncratic to a narrow range of conditions. Conventional methods of model validation and

selection assess in- or out-of-sample prediction accuracy but do not assess model generality or

transferability, which can lead to overestimates of performance when predicting in other locations,

time periods or data sets.

2. We propose an intuitive method for evaluating transferability based on techniques currently in

use in the area of species distributionmodelling. Themethod involves cross-validation inwhich data

are assigned non-randomly to groups that are spatially, temporally or otherwise distinct, thus using

heterogeneity in the data set as a surrogate for heterogeneity among data sets.

3. We illustrate the method by applying it to distribution modelling of brook trout (Salvelinus

fontinalisMitchill) and brown trout (Salmo truttaLinnaeus) in westernUnited States.We show that

machine-learning techniques such as random forests and artificial neural networks can produce

models with excellent in-sample performance but poor transferability, unless complexity is

constrained. In our example, traditional linear models have greater transferability.

4. We recommend the use of a transferability assessment whenever there is interest in making

inferences beyond the data set used for model fitting. Such an assessment can be used both for

validation and for model selection and provides important information beyond what can be learned

from conventional validation and selection techniques.

Key-words: cross-validation, generality, niche model, performance, species distribution

model, statistical

Introduction

A fundamental goal of ecology, as in other branches of

science, is to identify relationships and patterns that are

repeatable or general (Peters 1991). Although a relationship

that is idiosyncratic to a narrow set of conditions may be

interesting and informative, no ecologist would wish to

mistake it for an association that is broadly applicable and

constitutes a general rule. Such relationships or models can

be said to have generality (Fielding & Haworth 1995; Olden

& Jackson 2000), generalizability (Justice, Covinsky & Berlin

1999; Vaughan & Ormerod 2005) or transferability (Thomas

& Bovee 1993; Randin et al. 2006) to data sets other than the

one for which they were developed. However, conventional

approaches to evaluating ecological models do not com-

monly provide inference into transferability. As a result, the

generality of a model is often unknown, and the model

selected as ‘best’ for a given data set may have worse trans-

ferability than an alternative, rejected one.

The issue of transferability has been the subject of intermit-

tent ecological interest for a number of years, but this greatly

increasedwith the rise of the field of species distributionmodel-

ling (Elith & Leathwick 2009) in the 2000s. Researchers have

investigated whether a species model developed in one region

can successfully predict in a different region (Peterson, Papeş &

Kluza 2003; Randin et al. 2006; Peterson, Papeş & Eaton

2007; Barbosa, Real & Vargas 2009; Sundblad et al. 2009;

Wenger et al. 2011a) and to a smaller extent whether models

developed in one time period can predict a different time period

with different weather or climatic conditions (Boyce et al.

2002; Araújo et al. 2005; Varela, Rodrı́guez & Lobo 2009;

Buisson et al. 2010; Tuanmu et al. 2011). However, the

question of model transferability is a general one that is com-

mon to questions other than those of species–environment

relationships. It is equally important to consider the generality
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ofmodels of physical phenomena (e.g. models of temperature),

of ecological processes (e.g. denitrification rates) or of popula-

tion parameters (e.g. growth rates). The fundamental problem

is that there can be considerable spatial or temporal heteroge-

neity in ecological relationships, and this heterogeneity can

limit model generality.

Lack of model generality is often a result of overfitting

(Chatfield 1995; Sarle 1995), which can be defined as accepting

a predictor variable (or a form of a predictor variable, such as

a squared term or interaction term) that is nominally corre-

lated with the response variable in the data set, but which does

not represent a relationship that holds generally. Overfitting

may occur for two rather different reasons. First, weak correla-

tions among variables arise as a result of random noise, and

thesemay be incorrectly interpreted as legitimate relationships.

Model selection criteria such as the Akaike Information Crite-

rion (AIC) and the Bayesian Information Criterion (BIC) are

designed to minimize this kind of overfitting by penalizing

models for excess complexity, resulting in the rejection of

spurious relationships. By and large, these criteria are effective

at this goal (Burnham & Anderson 2002, 2004) and have been

widely adopted by ecologists. Traditional cross-validation

techniques such as leave-one-out can also provide an unbiased

assessment of model performance that does not favour such

overfitted models (Olden & Jackson 2000; Olden, Jackson &

Peres-Neto 2002). The second cause of overfitting is when there

are statistical associations between predictor and response

variables that are real in a given data set but do not occur

under a wide range of conditions. For example, with the large

data sets now commonly used in species distribution model-

ling, models with over 100 terms may be justifiable under

traditional criteria, but such a precise description of a distribu-

tion in one location often transfers poorly to other locations

(Tuanmu et al. 2011). This is especially true when using indi-

rect predictors without a close, perceived mechanistic link to

the response variable (Randin et al. 2006). Of course, underfit-

ting is also possible. For example, a model predicting species

occurrence as a function of elevation may be more parsimoni-

ous than a more complex one based on temperature and

precipitation, but the elevation model will likely transfer

poorly to other latitudes.

An estimate of transferability is especially important with

the increased use of machine-learning modelling techniques

such as neural networks (Lek & Guegan 1999), genetic algo-

rithms (Stockwell & Noble 1992), maximum entropy (Phillips,

Anderson & Schapire 2006), support vector machines (Drake,

Randin & Guisan 2006), classification and regression trees

(De’ath & Fabricius 2000) and random forests (RF) (Breiman

2001). These methods have the potential to match highly

nonlinear, complex relationships, yielding in-sample and

randomly cross-validated performance superior to that of

traditional generalized linear modelling (Elith et al. 2006;

Olden, Lawler & Poff 2008), but at the risk of limited transfer-

ability if model complexity is not constrained (Sarle 1995;

Tuanmu et al. 2011). Assessment of generality of such models

is critical if they are to be used in a predictive manner beyond

the conditions under which they were trained – for example, if

species distribution models are used to make projections under

climate change conditions (Araújo et al. 2005).

Our primary objective in this paper is to present a general

approach to estimating model transferability by extending and

formalizing methods currently in use in the species distribution

modelling literature. A secondary objective is to illustrate why

transferability assessment can be important. We do this by

fitting different kinds of models to an example data set and

then comparing model transferability to traditional perfor-

mance measures, showing how apparently good models can

transfer very poorly. We then discuss practical aspects, limita-

tions and appropriate use of themethod.

The method: estimating transferability via
non-random cross-validation

In species distribution modelling, transferability has often

been estimated by splitting the data set into geographically

distinct subsets, fitting the model with the first subset (called

the training data set) and validating with the second (called the

test data set). Then, the process is reversed, with the second

subset used for fitting and the first for validation. This is noth-

ing more than a form of cross-validation in which the subset

membership is assigned non-randomly based on a relevant

factor such as geography. We propose that this approach

can be generalized to serve as a standard method for transfer-

ability assessment. We introduce the method by first reviewing

conventional validation techniques.

A model’s performance can be validated based on the error

in its predictions of observed data. If these predictions involve

the same data used to fit the model (i.e. the training and testing

data sets are identical), then the errors are the model residuals

and are called in-sample or resubstitution error. However,

in-sample error underestimates true model error, especially for

small sample sizes (Efron 1986; Fielding & Bell 1997; Olden &

Jackson 2000; Burnham & Anderson 2002; Olden, Jackson &

Peres-Neto 2002). An alternative approach is to use a fully

independent validation data set, which provides an indepen-

dent test of model error and a direct measure of transferability

(Fielding & Bell 1997). The downside, of course, is that the test

data are not used formodel fitting.

A useful compromise is cross-validation, which uses all of

the data but also can provide unbiased error estimates. With

cross-validation, a portion of the data is withheld for model

training, and a different portion is withheld as the test data set.

In this way, all data are iteratively used for both training and

testing. There are various types of cross-validation depending

on what fraction of the data set is excluded from model train-

ing and used for validation. In fivefold cross-validation, the

data are divided into five groups, and one-fifth of the data are

withheld at a time; in n-fold or leave-one-out cross-validation,

only one data point is withheld at a time. It has been shown

that leave-one-out provides an unbiased estimate of model

error, even at small sample sizes (Olden & Jackson 2000) and

furthermore that when used as the basis for model selection, it

is (asymptotically) consistent with the widely used AIC (Shao

1993). However, neither leave-one-out nor other forms of
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cross-validation, as conventionally applied, provide an esti-

mate of model transferability. This is because unless sample

size is very small, subsamples randomly selected from the full

range of data provide an unbiased estimate of the overall rela-

tionships in the full data set, but do not necessarily reflect the

heterogeneity that may exist across space or time. The problem

is compounded when there is autocorrelation in the data, such

that for any given data point in the training data set, there is

likely to be a similar, correlated data point in the validation

data set (Araújo et al. 2005).

An alternative is to divide the data non-randomly into groups

for cross-validation, such that any group used for validation

differs from those used for training the model in the same way

that an independent data set would. That is, we use heterogene-

ity within the data set as a surrogate for heterogeneity among

data sets. For a species distribution model, for example, cross-

validation based on dividing data into multiple geographic

regions provides inferences into how the model will perform in

an unsampled region (e.g. Olden & Jackson 2001; Kennard

et al. 2007) or under future climate conditions in the same

region (Vaughan & Ormerod 2005). This can readily be

extended to other types of data sets. For example, in a data set

with 5 years of annual observations, a full year of data could

be withheld at a time; this ought to provide a reasonable esti-

mate of the model’s predictive ability in a future, as yet unob-

served year. In general terms, we can define the transferability

of amodel as the accuracy of its predictions for an independent

data set; an estimate of transferability (which we refer to as a

‘transferability assessment’) is provided by non-random cross-

validation.

An intuitive extension of assessing transferability is to use

the results to select among competing models. Model valida-

tion and model selection are two sides of the same coin; it is

reasonable to rank models based on their validated predictive

performance and select the best performing model or a confi-

dence set of good performing models (Arlot & Celisse 2010).

Evaluating models based on transferability should provide a

highly robust method of identifying relationships with predic-

tor variables that are truly general, thus greatly reducing the

risk of overfitting and increasingmodel utility.

Example: invasive trout in the western United
States

Brook trout (Salvelinus fontinalis Mitchell) and brown trout

(Salmo trutta Linnaeus) are introduced species in the western

United States, where they are considered invasive and a threat

to the persistence of native trout (Thurow, Lee & Rieman

1997; Dunham et al. 2002; McHugh & Budy 2006). Relation-

ships between the species’ distributions and climatic and land-

scape variables are of interest for predicting future invasions,

as well as the species’ potential response to projected climate

change.We used a data base of 9890 presence ⁄absence fish col-
lection records from the interior west of the United States

(Fig. 1) to model brook and brown trout occurrence as a func-

tion of predictor variables that were selected a priori to be likely

influences on the species distributions: mean summer air

temperature, winter high flow frequency, mean flow, slope,

presence ⁄absence of a road within a kilometre of the stream

and distance to the nearest unconfined valley. Details on the

data and variables are in Wenger et al. (2011b); here, we sum-

marize the statistical analysis methods used here.

Three modelling approaches were employed: (i) multilevel

generalized linear modelling [or generalized linear mixed mod-

elling (GLMM)] with a logit link; (ii) artificial neural networks

(ANN) and (iii) the RF classifier. In theGLMMmodelling, we

used a multilevel analysis because sites were not distributed

randomly across the landscape, but were often clustered; a

multilevel approach (with sites nested within watersheds)

reduces the bias caused by such spatial autocorrelation (Rau-

denbush & Bryk 2002; Gelman & Hill 2007). We used AIC to

select the best model for each species from among a candidate

set of GLMMmodels with different combinations of predictor

variables. The second method, ANN, is a widely used

machine-learning technique that can account for nonlinearities

and complex interactions among variables (Olden, Lawler &

Poff 2008). For the ANNmodelling, we included all six predic-

tor variables for each species and specified three types of

network architecture of increasing complexity: one with six

hidden nodes, one with 12 hidden nodes and one with 18 hid-

den nodes, all in a single layer. The third method, RF, is a type

of sophisticated classification and regression tree analysis

(see De’ath & Fabricius 2000) that has been shown to display

Fig. 1. Collection sites (black dots) and study area (grey shading) in

the western United States used in the example. For the fivefold trans-

ferability assessment, sites were assigned non-randomly to five groups

(labelled with numbers) based on latitudinal bands (delineated by

heavy black lines). For the 10-fold cross-validation, each of these

bands was divided by latitude into two equal-sized groups, producing

10 groups. For the twofold cross-validation, the entire data set was

divided by latitude into two equal-sized groups.
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excellent in-sample predictive performance (e.g. Lawler et al.

2006; Holden,Morgan & Evans 2009). Random forest classifi-

ers are a model-averaging or ensemble-based approach in

whichmultiple classification or regression tree models are built

using random subsets of the data and predictor variables (Cut-

ler et al. 2007). We grew a forest of 1000 classification trees by

sampling with replacement randomized subsets of the original

observations (using default software settings). We included all

six predictor variables. Models were fit in the R Statistical

Package (http://www.R-project.org) using the packages lme4,

nnet and randomForest.

Model performance was evaluated in three ways. First, we

calculated in-sample model performance by using the models

to predict the training data used for fitting. Secondly, we per-

formed a traditional type of fivefold cross-validation in which

data points were randomly assigned to groups. We iteratively

trained the model using 4 ⁄5 of the data and validated it using

1 ⁄5 of the data. Third, we assessed transferability by partition-

ing the data non-randomly into latitudinal bands. We exam-

ined 2-, 5- and 10-fold cross-validation (Fig. 1 shows fivefold

group assignments as an example), iteratively fitting with one

group withheld at a time and evaluating performance in pre-

dicting the withheld data. The use of latitudinal bands was

designed to roughly separate the data climatically, providing

inference into transferability to a future climate (Wenger et al.

2011b). For the GLMMs, only the fixed effects were used to

make predictions for validation, as it is not possible to estimate

random effects for regions outside the fitting data set. Because

ANNs and RF are subject to random variability in model

fitting, we ran 100 iterations of each validation. For the

traditional cross-validation, different training and fitting

subsets were selected randomly at every iteration, but for the

transferability assessments, group assignments were constant

across iterations. For each validation, we calculated area under

the curve (AUC), the AUC of the receiver-operator character-

istic plot, a widely used and unbiased summary metric of

model performance for binary data (Guisan & Zimmermann

2000; Manel, Wiilams & Ormerod 2001; but see Lobo, Jime-

nez-Valverde & Real 2008 for limitations). We explored alter-

native performance measures, but as all gave results that were

essentially identical toAUC, we report only the latter.

Results showed that the RF models had the highest

performance based on in-sample and random cross-validation,

followed by models developed using ANNs and GLMMs

(Table 1). Among the three ANN models, the more complex

formulations (models with many nodes) tended to have better

in-sample and random cross-validation performance than the

simpler ones (with few nodes). The comparison ofmodel trans-

ferability among the methods showed nearly opposite trends.

The GLMM models displayed the highest transferability,

while the RF and ANN models exhibited substantially lower

transferability. The ANN models with simpler formulations

(in terms of the number of nodes) had greater transferability

than the more complex versions. Note that for brook trout,

even the GLMM transferability was not very good, but the

performances of the othermodellingmethods were evenworse.

The 2-, 5- and 10-fold transferability assessments all showed

the same trends, but the twofold transferability assessment

produced the lowest AUC scores, followed by 5- and 10-fold.

Examination of the predictor–response relationships from

the different models sheds insight into the cause of the poor

transferability performance of the machine-learning approaches

(RF and ANN). As an example, consider the temperature

response for the RF and GLMM models. In the GLMM

models, this was represented by a quadratic relationship,

temperature + temperature2 (Fig. 2), selected a priori as a

candidate relationship because it represents the classical spe-

cies niche association with temperature as an ecological

resource (Magnuson, Crowder & Medvick 1979; Austin

2002). By contrast, the RF model empirically describes the

observed relationships in the data, with no assumptions of

form, as shown in the partial dependence plot (Hastie, Tib-

shirani & Friedman 2001) of occurrence in response to tem-

perature (Fig. 3). The jagged shape of the response curve

Table 1. Area under the curve (AUC) of the receiver-operator characteristic plot for models based on in-sample validation, random cross-

validation and transferability assessment (non-random cross-validation)

Species

Model In-sample

Random

CV

Transferability

10-fold

Transferability

fivefold

Transferability

twofold

Brown trout

Random forests 0Æ918 0Æ912 0Æ749 0Æ717 0Æ711
ANN – 18 hidden nodes 0Æ906 0Æ848 0Æ729 0Æ711 0Æ646
ANN – 12 hidden nodes 0Æ892 0Æ838 0Æ738 0Æ719 0Æ665
ANN – 6 hidden nodes 0Æ865 0Æ834 0Æ756 0Æ740 0Æ703
Multilevel GLMM 0Æ822 0Æ820 0Æ788 0Æ783 0Æ757

Brook trout

Random forests 0Æ884 0Æ873 0Æ625 0Æ603 0Æ516
ANN – 18 hidden nodes 0Æ783 0Æ745 0Æ618 0Æ596 0Æ551
ANN – 12 hidden nodes 0Æ764 0Æ738 0Æ627 0Æ604 0Æ553
ANN – 6 hidden nodes 0Æ728 0Æ717 0Æ640 0Æ618 0Æ563
Multilevel GLMM 0Æ674 0Æ673 0Æ650 0Æ653 0Æ574

Best models for each species for each performance measure are shown in bold. An AUC score of 0Æ5 is no better than random; scores

>0Æ7 are good, and scores >0Æ9 are excellent. Each value is the mean of 100 iterations.

ANN, artificial neural networks.
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matches the fitting data set extremely well, but likely has no

basis in biology, and it is perhaps no wonder that it fails to

transfer to other data sets.

Discussion and practical guidance

Our example demonstrates the importance of considering

model transferability, in addition to traditional measures of

model accuracy, when assessing model performance. Based on

in-sample validation and conventional cross-validation, the

RF models for both brook trout and brown trout appeared

to be excellent, and it would be tempting to use them as a

forecasting tool – such as for projections of future invasion

potential or distributional responses to projected climate

change. However, the transferability assessment indicates this

could be a mistake. The RF and many ANN models per-

formed relatively poorly when just a fifth of the data was non-

randomly withheld, suggesting possible overfitting and the

need for great caution in making inferences in new locations or

new climates. Our case study illustrated that simpler models

can, at least in some cases, bemore transferable.

It is now common to see machine-learning methods like RF

applied to a range of ecological data analyses, including projec-

tions of species distributions under climate change scenarios,

without any assessment of transferability (e.g. Ledig et al.

2010). Because RF is, by design, immune to overfitting associ-

atedwith randomnoise (Breiman 2001), researchers maymake

the incorrect assumption that it is also immune to overfitting

caused by heterogeneity in predictor–response relationships.

Of course this cannot be true; for example, no reasonable ecol-

ogist would interpret the complex relationship shown in Fig. 3

to be a general one that can be applied with high accuracy in

other locations. It may be surprising that a method like RF

that is robust to overfitting in the conventional sense should

suffer poor transferability. However, RF, like all analytical

methods, is designed to seek the best fit for a data set as a

whole. It cannot distinguish between predictor–response rela-

tionships with high generality from those that have less gener-

ality, but are nevertheless legitimate relationships in the data

set. The only way to gain insight into the degree of model gen-

erality or transferability is either to test the model with a new,

independent data set or to cross-validate it using non-random

subsets, as we advocate here.

We suggest that a transferability assessment be conducted

whenever there is interest in making projections or inferences

beyond the data set used for model fitting. If results suggest

that transferability is substantially worse than in-sample

performance, simpler alternative models should be consid-

ered. With RF, it is possible to simplify by reducing the num-

ber of parameters used in modelling, reducing the maximum

number of nodes per tree and specifying a minimum number

of cases per node (although our attempts to use these resulted

in minimal improvements, as evidenced by partial dependence

plots and transferability; S.J. Wenger, unpublished data).

Other classification algorithms such as boosted regression

trees have alternative settings to manage complexity (Elith,

Leathwick & Hastie 2008). Neural networks offer multiple

ways to control complexity, including managing the number

of nodes (as we did here), stopping the algorithm early and

weight decay or weight elimination (Bishop 1995; Sarle 1995;

Olden & Jackson 2002). We possibly could have achieved

higher transferability in the ANN models in our example if

we had used these techniques to more aggressively control

complexity. For general additive models, the order and

number of knots in the splines may be limited on a variable-

by-variable basis; for GLMMs and GLMs, complexity may

be similarly controlled by limiting higher-order terms; and for

both general additive models and GLMMs, interactions may

be specified or not.

Fig. 2. Plot of the probability of brook trout occurrence in response

to air temperature, with other variables held to their mean values,

based on the best-supportedGLMMmodel.

Fig. 3. Partial dependence plot for the probability of brook trout

occurrence in response to air temperature, based on random forests

model. The Y-axis is 0Æ5 · the logit of the occurrence probability; for

practical purposes, this may be viewed as relative occurrence proba-

bility. It is the shape of the plot that should be comparedwith Fig. 2.
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Another factor that may influence transferability is the dis-

tance of the causal links between the predictor variables and

the response variable. Predictor–response relationships that

have a sound ecological basis and direct causal linkages are

likely to bemore transferable than those based on indirect rela-

tionships or pure correlation (Austin 2002; Sundblad et al.

2009). For this reason, we suggest selecting predictor variables

and possibly even the form of the expected response (e.g. posi-

tive, negative and quadratic) on the basis of reasonable a priori

hypotheses, unless the goal of the modelling is purely explor-

atory. This is perhaps best performed using methods such as

GLMs, GLMMs and GAMs that offer a high degree of user

control. Such models benefit further from well-developed the-

ory andmethodologies for addressing autocorrelation (Cressie

1993; Lichstein et al. 2002; Dormann et al. 2007), a problem

that is generally ignored in the application of machine-learning

methods. Of course, GLMs and their variants are not immune

to overfitting, and GLMs with excessive parameters, higher-

order terms or interactions can suffer from decreased transfer-

ability (Wenger et al. 2011a).

In devising a transferability assessment, the researcher must

make several key decisions requiring a degree of professional

judgment. The first of these is deciding how many groups into

which to divide the data set (i.e. the number of folds of k-fold

cross-validation), which is essentially a decision on how con-

servative a test to run. In our example, we found that the fewer

the groups, the more conservative the assessment. We expect

this to be a general rule and to be true regardless of the size of

the data set, which stands in contrast to random cross-valida-

tion, in which the number of groups becomes irrelevant as the

size of the data set grows arbitrarily large (Olden & Jackson

2000). To date, transferability assessments in the field of species

distribution modelling have tended to use twofold cross-vali-

dation (e.g. Randin et al. 2006; Peterson, Papeş & Eaton 2007;

Barbosa, Real & Vargas 2009). We suspect this will be overly

conservative for many applications. On the other hand, cross-

validation with more than 10-fold may be too liberal, so we

recommend between 3- and 10-fold for most applications. The

choice depends largely on how projections are to be used. If the

data set covers most of the area of potential inference, a more

liberal test is reasonable; if the coverage of the data set is small

relative to the area of inference, then a more conservative test

is appropriate. For example, consider a case where researchers

wish to parameterize survival estimates in a population model

based on a targeted study involving six populations, and then

apply the results to forecasts of 60 populations across a large

region. In such a case, a conservative transferability assessment

based on twofold or threefold cross-validation would be essen-

tial to avoid overly optimistic predictions of the generality of

the observed relationships. If there is difficulty in deciding how

many groups to use, it is perfectly reasonable and usually quite

practical to run multiple tests with different numbers of

groups, as we did.

A second key decision is how to assign data to the groups.

Two principles should guide this process. The first is that all of

the fitting data sets should cover a large portion of the range of

variability of the predictor variables of interest. For example,

in building a species–climate model, if all high elevation loca-

tions are placed in a single group, that group will likely be

poorly predicted because it lies outside the range of variability

of the other groups. This would be overly conservative, so it is

preferable to assign those high elevation sites to at least two

groups, so some of them are always available for model train-

ing. We used latitudinal bands in our example because the

large elevational gradient in this region produced a climatic

range of a magnitude at least as great as that produced by the

latitudinal gradient, preserving the range of variability in pre-

dictor variables when a band is removed (except in the very

conservative case of twofold validation). However, such an

assignment would probably not be appropriate for a data set

from the Great Plains of the United States, which have little

elevational gradient. The second principle for guiding group

assignments is that the heterogeneity among the groups (in

terms of predictor–response relationships) should be in the

range of the expected heterogeneity between the full data set

and other locations or data sets for which inferences are of

interest. In our example, we were interested in the temporal

climatic variability between current conditions and future

conditions and made the assumption that climatic variability

across latitudinal bands provided a reasonable surrogate.

These guidelines notwithstanding, concern over optimizing

group assignments should not become an obstacle to perform-

ing a transferability assessment, as any rational method of

group assignments is likely to yield useful information, espe-

cially for large data sets. With small data sets, where it is possi-

ble for a particular grouping to significantly affect the

outcome, it may be useful to repeat the transferability assess-

ment multiple times with different group assignments in a form

of ensemble prediction (Araújo &New 2007).We explored this

with our example data set (S.J. Wenger, unreported data), but

found it had little effect on the results, likely due to the rela-

tively large sample size.

A transferability assessment is not necessary or appropriate

for all data sets and all circumstances. If projections and infer-

ences do not extend beyond the conditions represented by the

data used to fit the model (e.g. Evans &Cushman 2009), trans-

ferability is less relevant. Most models of data from tightly

controlled experiments also would not benefit from a transfer-

ability assessment because heterogeneity is either limited or is

itself the focus of study. For very small data sets, transferability

assessments may be infeasible because models cannot be effec-

tively fit unless all the data are used, or because the data do not

cover a sufficient range of conditions. Where it is appropriate,

we regard a transferability assessment as a useful tool that

complements existing model performance measures and selec-

tion methods. It has some clear limitations. Dividing the data

into subsets provides some inferences into how a model will

performwith a new data set (e.g. a different region or time per-

iod), but the actual performance could be substantially better

or worse. Using a transferability assessment based on geo-

graphic units to provide inferences into performance under a

future climate requires assumptions that regional climatic dif-

ferences are of a similar magnitude to differences between cur-

rent and future climates in a single area, which cannot really be
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known. In some cases, climates will shift to novel ones that lack

current analogues (Williams, Jackson &Kutzbacht 2007), lim-

iting the value of a spatial transferability assessment. Even

under such circumstances, we argue that a transferability

assessment provides important additional information beyond

what can be learned from traditional performance assessment

methods. Whenever there is interest in extending inferences to

data sets beyond the one used to fit an ecological model, the

researcher is better off armed with some insight into potential

transferability (however imperfect) than proceeding under the

untested assumption that themodel will performwith the same

error rate in new data sets as the one used to create it.
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