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Executive Summary 
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This project seeks to investigate the developments of and the potential for different 

methodologies for gathering arterial traffic performance data. In the effort to build more livable 

communities, this data is essential, but gathering, organizing, and applying it has, historically, 

been a difficult task. This report is organized around product areas, which are 1) an open-source 

tool to monitor dynamic performance measures from high resolution traffic controller data, 2) a 

practical and accurate tool for estimating bike volumes, 3) cost-effective pedestrian detection, 4) 

inexpensive and quickly applied tools to extract probe vehicle data, and 5) a pragmatic approach 

to accurately estimate signalized intersection turning movements. Each chapter of this report is 

an autonomous effort in studying one of these areas in particular. This project developed 

resources and performance measures to inform efforts to achieve the goals of safety and 

efficiency to promote community livability.  

Chapter 2 proposes a tool that facilitates future performance measurement research 

related to traffic signal systems. The tool imports data from a simulation data source for 

experimentation in varied ideal settings or from field traffic signal systems for more rigorous 

application testing. Currently, imported traffic controller data are combined to produce dynamic 

performance measures, including the Purdue Coordination Diagram (PCD), Green Time 

Utilization (GTU), phase termination, and queue length/delay. These are integrated to be 

visualized with the PCD acting as the background. Additional measures and tasks can be 

supported by the tool’s data import and various database functions. 

Chapter 3 uses origin-destination centrality to estimate directional bicycle volumes. 

Limited input data, simple site specific calibration, trivial modeling requirements, and practical 

accuracy make this method very attractive relative to proposed alternatives. In addition, this 



 

 

xi 

 

research provides the tools to import input data, process the data, estimate the bicycle volumes, 

and visualize the results with add-on applications created for industry-standard off-the-shelf 

software. 

Chapter 4 proposes an efficient pedestrian detection method for crowded scenes by fusing 

RGB and depth images from Microsoft’s ® Kinect. While traditional image-based pedestrian 

detectors provide very rich information, their performance degrades quickly with increased 

occlusion. The 3D sensing capabilities of Microsoft’s Kinect present a potential cost-effective 

solution for occlusion-robust pedestrian detection. The results of the study demonstrate the 

feasibility of using the low-cost Kinect device and a proposed detection method for real-world 

pedestrian detection in crowded scenes.  

Chapter 5 documents the research and development of an inexpensive portable wireless 

roadside data collection system using probe vehicles, whose movements are monitored using 

Bluetooth technology. The system addresses industry needs for low-cost portable traffic 

monitoring and supports travel time, origin-destination, and delay performance measures. The 

research also reviewed the potential of Dynamic Short Range Communications (DSRC) for to 

accomplish the same tasks and found DSRC advantages include 1) low-latency communications, 

2) broadcast messages, 3) greater communication range (+200 m), and 4) greater bandwidth. 

Limited availability and expense of supporting hardware are major disadvantages of the system, 

which will subside as technology adoption spreads. 

Chapter 6 presents a method that solves for turning movement volumes using Gauss-

Jordan elimination row operations (e.g., row swapping, multiplying rows by non-zero constants, 

and adding a factor of one row to another row). The input data are phase status, lane-by-lane 



 

 

xii 

 

detector counts, and limited exit detector counts. It evaluates existing intersection detector 

locations for their combined suitability to estimate turning movements and selects detection 

plans that minimize data requirements. The method accommodates varying lane configurations, 

varying detector locations, and includes or excludes phase status. Because the method is founded 

on direct implementation of basic matrix analysis row operations, the solution process is easy to 

implement. Three data sets validate the method’s accuracy, with and without detection error, 

showing the method can be sufficiently accurate for professional applications in planning, 

design, and operations. 

Arterial system performance measurement is important for assessing steps considered or 

taken to accomplish goals directed toward greater community livability. Several tools and 

methods were developed to collect data, import data, process data, and to estimate performance 

measures. These tools were tested to prove their feasibility and each chapter provides an 

insightful and detailed evaluation of these products.  
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CHAPTER 1.0 INTRODUCTION 

 

The problem many transportation professionals face is measuring performance and 

correcting poor performance to meet community goals. Measuring performance using existing 

traffic data is natural. In fact, all performance measures either require traffic data or could greatly 

benefit from it. Fortunately, these traffic data exist in key locations found in signalized arterial 

networks. However, very little of these data are fully utilized to measure performance. This 

project developed methods and technologies to gather data from multiple sources to enable a 

more complete understanding of arterial traffic safety and arterial systems efficiency. This 

understanding will strengthen steps that professionals take to improve service. 

Historically, performance measurement was largely an off-line, labor intensive endeavor. 

Gradually, this is changing to leverage widespread communication systems and technological 

resources for sensing, data processing, and systems management. Transportation systems benefit 

from these changes. For example, data from the large majority of signalized intersections are 

available to measure performance. However, measures need to strongly support local intersection 

and system level diagnostics to inform planning, design, and operational decisions that promote 

livable communities by way of multimodal safety and efficiency improvements. 

This project developed resources and performance measures to guide efforts to achieve 

the goals of safety and efficiency to attain greater community livability. Specifically, this 

project’s goals were to: 1) develop improved performance measurement for a diverse set of 

transportation modes, 2) develop processes/tools needed to estimate performance measures, and 

3) develop a foundation for researching secure control feedback for mode, safety, weather and 

traffic condition sensitive response. 



 

 

3 

 

To achieve the above three objectives, the project team focused their efforts on product 

research and development to foster technology transfer. In light of this product focus, this report 

is organized around these product areas, which are 1) an accessible open-source tools to extract 

dynamic performance measures from high resolution traffic controller databases, 2) a practical 

and accurate tool for estimating bike volumes, 3) a cost-effective pedestrian detection 

technology, 4) inexpensive and quickly applied tools to collect probe vehicle data, and 5) a 

pragmatic method and tool for calculating intersection turning movement volumes. A chapter is 

dedicated to each of these areas. Each chapter is autonomous, containing a literature review, 

methodology, discussion of research, and findings and conclusions. 
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CHAPTER 2.0 PERFORMANCE MEASURE CALCULATION USING HIGH-

RESOLUTION DATA 

 

2.1 Introduction 

2.1.1 Overview 

The purpose of this research project was to create a tool that could be used to facilitate 

future research of traffic signal systems. The tool generates performance measures using high-

resolution data collected by traffic signal controllers. High-resolution data is a record of every 

state change that occurred for a traffic controller. It usually consists of four fields for each state 

change: the intersection number, the phase number, the time, and an event identifier. There are 

all kinds of state changes that can be logged. This project however, is only interested with the 

signal timing and detector activations and deactivations. The tool can also be expanded to use 

multi-source data such as Bluetooth probe data or speed detection. Furthermore, this tool 

facilitates the generation of new performance measures because it can generate high-resolution 

data from traffic simulation software, such as VISSIM. The tool includes some performance 

measures which can be improved by adjusting open-source code for the data processing 

algorithms. Lastly, this tool can be expanded to experiment with the application of performance 

measures for strategic decision making.  

2.2 Literature Review 

2.2.1 Introduction 

The purpose of this literature review is to describe the common performance measures 

that can be generated using high-resolution traffic controller data. The performance measures 
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discussed in this review were all included in the proposed tool. These measures and their 

application continue to be improved and are recommended for future research. In conjunction 

with one another, these measures can identify most operational problems at traffic signals as well 

as help find a solution. As such, they are prime candidates in a prototype performance 

monitoring tool. 

2.2.2 Purdue Coordination Diagram 

Darcy Bullock advanced the application of high-resolution performance measures by 

developing the Purdue Coordination Diagram (PCD) (Brennan, 2011). This diagram is a chart 

that displays arrivals in relation to the time in the cycle and the cycle in relation to the time of the 

day. Only one phase is analyzed on a single diagram. Figure 2.1 below is an example of a PCD. 

It is used to analyze the quality of coordination, among other system monitoring activities. Each 

point on the diagram is a vehicle arriving at the intersection, ideally provided by lane-by-lane 

advanced detectors. If a point lies above the green line, which is the beginning of green (BOG), 

on the graph then the arrival occurred during green. The red line is the end of green (EOG). As a 

result, a well-coordinated system shows vehicle arrivals as a dense cloud, predominantly above 

the green line, as indicated by the “ii” note in Figure 2.1.  
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Figure 2.1 Example of a Purdue Coordination Diagram (Brennan, 2011) 

The PCD does require significant attention to gather all of the important insights that may 

not be obvious. Issues like queues extending over the advance detectors and the lack of 

numerical quantification can make using the PCD challenging. For this reason Utah Department 

of Transportation (UDOT) includes average performance measures for each time of day plan. 

The percent arrival on green, percent green time, and platoon ratio give a numerical 

quantification that is a good representation of one of their diagrams. The percent arrival on green 

is calculated as the number of arrivals during the green time divided by the total arrivals during 

that study period. Similarly the percent green time is simply the total green time divided by the 

total time of the study period. The platoon ratio combines these two measures and is calculated 

as the percent arrivals on green divided by the percent green time. 

The PCD sheds light on a broad range of traffic operations problems, like queue spillback 

or poorly timed offsets. At the same time, the PCD integrates well with more aggregate 

measures. As a result, the proposed tool should include the PCD to help advance performance 
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measurement by generating multiple performance measures, while leveraging the PCD to see 

individual vehicle operations.  

2.2.3 Purdue Split Analysis Chart 

The UDOT has implemented an extensive system that logs high resolution data for the 

majority of the traffic signals on the state system (UDOT, 2013). Their system allows users to 

view performance measures depending on the detection setup. For example if the intersection has 

advance detectors, PCDs can be generated. Most high-resolution performance measures depend 

on detectors. The Purdue Phase Termination Chart is the only measure that does not require 

detector data. This chart, see Figure 2.1, shows the conditions that lead to the green ending. It 

color codes max-outs, gap-outs, and force-offs. Then, comparing different phases, it can help 

identify problems with split times and in some cases find malfunctioning detectors. For instance, 

in Figure 2.1 Purdue Phase Termination Chart (UDOT, 2013)below, shows a plot created on 

UDOT’s performance metrics website. The green dots are gap-outs, the blue dots are force-offs 

and the red dots are max-outs. Since the max-outs are similarly colored to the pedestrian walk 

markers, a group of max-outs has been circled in the figure. The orange dots that are just above 

the phase are pedestrian walk indications. There are two coordinated periods, one in the AM and 

the other in the PM. Because of the consistent force-off phase termination, it is clear that phases 

2 and 6 are the major approach that is coordinated. During plans 1 and 13 where there is 

coordination they are always forced off. 
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Figure 2.1 Purdue Phase Termination Chart (UDOT, 2013) 

This measure is very simplistic but can still be very useful. For instance, in the case 

shown above, if another measure identified a problem on the major corridor this diagram could 

be consulted to compare the different phases. Due to the consistency of the minor phases gapping 

out, this intersection may benefit from having its split times adjusted to better meet its demands. 

Unfortunately, nothing concrete can be determined from this measure alone; it is simply a 

companion to the other measures. Nevertheless, when this measure is considered in parallel with 

other measures, it helps diagnose problems with signal timing plans and should be included in 

the proposed tool. 

2.2.4 Green Time Utilization 

Green Time Utilization (GTU) is a simple performance measure which tells you the 

percent of the green time that the stop bar detectors were active. This serves as a surrogate 
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measure for capacity utilization. However, this measure requires some calibration for proper use. 

Calibration is necessary because the variety of detection types, accuracy, and sensitivity affect 

the GTU significantly. However, even after being calibrated it still does not have a significant 

correlation with delay. A study found that GTU had an r2 of .513 when correlated to delay, 

(Smaglik, 2011). It can be a good indicator of the performance even though it is not very precise. 

In their study, when the GTU was greater than 95%, half of the cycles were split failures, 

meaning the queues failed to clear during the green time (see Figure 2.1). Note that, in Figure 

2.1, Smaglik used the term green occupancy ratio (GOR) instead of GTU.  

 

Figure 2.1 Green Occupancy Ratio and Split Failures (Smaglik, 2011) 

This performance measure is germane to traffic signal systems operation and, as 

illustrated above, is a simple indicator of impending problems and imbalances in phase services. 

As a result, GTU is a strong candidate for inclusion in the proposed tool. 
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2.2.5 Delay Measurement 

UDOT also did a study on estimating delay (Saito, 2011). It used loop detector data to 

estimate delay and travel times using stop bar data from the intersection in question and the 

upstream intersection. The estimated travel time would determine matches between upstream and 

downstream detector hits. The dataset was trimmed to not include vehicles that were already in 

the system at the start of the analysis or still in the system at the end of the analysis. They also 

had to account for vehicles exiting and entering mid segment. This problem led to the creation of 

two methods. The first method had detectors on the mid segment driveways so that the vehicles 

that exited and entered could be accounted for. The other method did not have these mid segment 

detectors. Currently, the second method is the only one that might be viable for use in the 

proposed tool, until a feature for midblock detection is added. Once the vehicles entering and 

exiting mid-stream have been removed from the analysis, the process checks to make sure that 

all the data points from the upstream detectors have matches with data points from the 

downstream detectors. Then the average travel time is calculated. First, the sum of the upstream 

detector hit times is subtracted from the sum of the downstream detector hit times. That value is 

then divided by the total number of vehicles. The average delay time is then defined as the 

difference between the average travel time and the free flow travel time (driving the speed limit). 

The results of this study seemed mixed with errors in delay less than 5 seconds per vehicle for 

most cases and the percent error varied from 30 to 40 percent. The test conditions were not 

sufficiently varied to generally conclude the method’s value. However, longer distances will 

likely require more complex considerations of driver behavior to successfully match a vehicle’s 

upstream and downstream detections. These complications arise from more midblock traffic and 

larger travel time variations.  
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The proposed tool should include delay as a performance measure. However, to minimize 

complications, the distance between entrance and exit detectors should be much shorter than 

what was used in UDOT’s test, at approximately 400 feet. 

2.3 Methodology 

2.3.1 Introduction 

The system for generating performance measures requires two parts. The first part is 

comprised of three different elements: a database that contains the high resolution data, a 

database table that contains the maximum green times, and a tool for converting VISSIM 5 

outputs to a high resolution database (VISSIM is a traffic microsimulation software developed 

by PTV group). The database used in this project was Microsoft SQL Server. The other part is 

the suite of python programs, called the Performance Measurement Research Suite. There are a 

total of seven files that make up the suite, but only two of the files need to be run or edited to use 

the program: the file that produces the graphical user interface (GUI) and the file that controls 

the default information. In order to run the different performance measure programs all that must 

be done is open the GUI program. In order to change the default information the python file 

named “CustomDefaults.py” must be edited. 

2.3.2 High-Resolution Data Emulation 

This high-resolution data emulation program, or emulator, converts VISSIM 5 output 

files to basic eventcode style high resolution data. High resolution data are a record of every 

change of state. It includes the time stamp of the state change, the eventcode to identify the state 

that is changing, the intersection identifier, and the phase identifier. These eventcodes are 

extracted from the detector output files (.ldp) and the signal output file (.lsa). The (.ldp) files 
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must be formatted in a specific format so that the time in seconds of the simulation is the first 

column followed by an empty column and then followed by the corresponding detectors which 

are also separated by an empty column. Any traffic controller in VISSIM 5, including hardware 

in the loop, is acceptable, so long as the (.ldp) and (.lsa) files exist in the VISSIM simulation 

configuration. 

2.3.2.1 Interface 

The input fields for running the emulator can all be customized using the 

CustomDefaults.py. After customizing, the emulator GUI starts by requesting a unique table 

name, so that a table will be created holding the output data in the same format that high 

resolution data would be collected in Centracs. The next item to select is a valid VISSIM 5 (.inp) 

filename for a simulation by browsing or entering in the path and filename. All (.ldp) and the 

(.lsa) files will need to reside in the same directory in order to be found at this time as this is 

where they are output by default from VISSIM 5.  Additional (.kfg) files are also needed to 

determine the correct detector name that corresponds with the data in the (.ldp) output file. The 

program will allow for any number of signal intersections and detectors to be used as long as 

there is an appropriate (.ldp) and (.kfg) file created based on the (.inp) file selected. 
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Figure 2.4 Simulation to High-Resolution Data Emulator 

There are two buttons that follow the entry fields. The first button is a “Browse” button 

for selecting and collecting the simulation output data. First, the detector data are collected in the 

order of the intersections entered into the input field. Following the detector data’s collection, the 

phase changes are collected. These files are then each entered into a table in the database. The 

“Output to Database” button runs the analysis and conversion of the output files to high 

resolution data. The detector data are output by VISSIM every time step. Therefore, it must be 

simplified down to detector activation and deactivation times. The phase changes are already 

output by VISSIM in the form of state changes. Only the format must be changed to fit the event 

code style. Also, the green times are checked with the maximum green to determine the reason 

for phase termination. The maximum green times are retrieved from a table in the database. The 

table is formatted to have 3 fields, the intersection, phase, and maximum green. These fields 

were integers in the example but could be any numerical datatype that is needed. Each file is 

analyzed and entered into a string. This string is then entered into the database. Since the order of 
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the data produced by this program is not chronological, all queries to this table need to include an 

“ORDER BY TimeStmp”.  

2.3.2.2 Flow Chart Narration 

There are two levels of flow charts (see Figure 2.5). The first level introduces each 

function in the program. The second level explains each step through the program’s functions. 

Each of the functions has its own smaller flow chart since they do not need to be run in order, 

although it is recommended.  

This program has three sections of code. The first section of code generates the graphical 

user interface. This consists of two entry fields and two buttons as well as an area at the bottom 

for messages for the user if input needs to be corrected or an error occurs. The first entry is the 

name of the database table that will have all data from the VISSIM 5 simulation entered into it.  

If the table already exists the program will ask for a new table name.  The second entry field is 

for the VISSIM 5 (.inp) configuration file that will tell the program what VISSIM (.ldp) and 

(.kfg) files exist so that the program can insert all available data into the table that will be 

created.  The entry must be a full path to the (.inp) file, a button with three periods is next to this 

entry field so a user can browse to the file if they do not know the full path.  If the file does not 

exist the program will not run.  The last button labeled “Output to Database” will start the 

processing based off of the (.inp) file selected.  If there are any errors, this will be reported in the 

message area at the bottom.  
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Figure 2.5 Simulation to High-Resolution Data Emulator 
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The second section of code is activated when the button with the three periods is pressed.  

This will open a window to browse to an (.inp) file.  This section ties in with the third, since the 

third section will validate that this file is the correct file type. 

The third section is where the processing of the (.inp) file occurs.  The first process that 

occurs is that the (.lsa) file will be looked for, and once found it will be processed so that each 

line is examined for changes in the signal values.  The (.lsa) data will give information of when 

the light status changes and at what time so this can be entered into the table in the appropriate 

formatted state-change events.  In addition to the file being processed for the data that is there, 

any phase state change to amber will result in determining if the change was due to a max-

out/force-off or a gap-out.  The data is saved into a python list until the end of the file.  Once end 

of file is reached, a bulk insert query is initiated so the data will be uploaded into the database 

table. 

After processing the (.lsa) file, the (.inp) file will allow the program to find all relevant 

(.ldp) output files as well as their corresponding (.kfg) file.  The (.kfg) file holds all the relevant 

information about the detectors and how the (.ldp) file is to be formatted.  Once the (.kfg) file for 

the signal is processed, then the (.ldp) file is processed and it is made of 4 sections; the program 

is only interested in the third and fourth section of the (.ldp) files.  The third section will allow 

the data in the (.kfg) file to be validated, so we know the data is formatted correctly. The fourth 

section holds all the relevant detector state data.  The program will process all lines in the fourth 

section and based on the detector status being activated and will record this activated time in a 

python dictionary for later lookup.  If the time in the dictionary of the last activation is more than 

one time step, then the program will append to a python list that the detector has changed status 
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indicating a deactivation at the previous recorded time plus one time step as well as an activation 

at the current time.  At the end of each (.ldp) file a bulk insert statement is made to insert all this 

data into the database table. 

2.3.2.3 Coding Guidance for Anticipated Improvements 

Only VISSIM 5 files can be used at this time.  Additional work is needed to incorporate 

VISSIM 6 files.  

2.3.2.4 Output from Other Micro-Simulation Software 

Changes in output file format will be difficult to address without significant code 

changes. If there are only minor changes, such as detector status changed to “true”/“false” or 

“1”/“0” instead of “.”/“\” then the change will be simple. If the output files are in the form of 

status changes already then it would likely be easiest to recode all the logic, only maintaining the 

writing of events to the string. The “if” statements in the loop that analyzes the signal timing 

output file will require adjustment. The string they check for is very specific, requiring the exact 

number of advance and trailing spaces. One of three alternatives may be easiest: 1) write a 

separate program that changes the output files to match what is required, 2) provide separate 

logic for inputting data, depending on the source simulation, or 3) allow the user to define the 

data delineation. 

2.3.2.5 Incorporation of External Data 

Including other forms of data, like Bluetooth probe detection or manually collected data, 

is fairly simple. As long as you can produce an event code entry from external data, it is a simple 

matter to add it to the database. If it will occur in every study it may be included in the current 

functions. More likely however, this process would be added as a separate function that runs 

upon button press. This would require the external data to be read into the program, either by 
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reading a text file, independently from any existing function in this program, or by inputting a 

file into the database and reading it from there. Then the program would process the data and 

append events to the same string that is produced by the emulator. This can be done entirely with 

processes already developed within the program. 

2.3.3 Purdue Coordination Diagram 

2.3.3.1 Introduction 

This program analyzes high resolution data and outputs an Excel file that contains data 

organized into columns. This Excel file can easily be used to create a Purdue Coordination 

Diagram, or PCD, using an Excel scatter plot. It also produces summary measures including: 

percent time green, percent arrivals on green, and platoon ratio for each cycle and overall. These 

cycle-by-cycle measures are plotted with the PCD.  

2.3.3.2 Interface 

This interface, seen below in Figure 2.6, is the base interface for most of the following 

programs. It has 4 fields that collect information. As with all of the programs, the default values 

for the graphical user interfaces (GUI) can be changed using the CustomDefaults.py file. The 

first field is the intersection numbers separated by commas. The second field is the phase 

numbers separated by commas. Only one phase number can be selected for each intersection 

selected. However, the same intersection may be listed multiple times to include multiple phases 

from one intersection and any number of intersection/phase pairs are acceptable. The detector 

input field is slightly more complicated. The detectors for a given phase are separated by 

commas. Then each phase’s group of detectors is separated from the other detectors by a 

semicolon. The final entry is the database table name, where the data will be retrieved. At the 

very bottom of the GUI, there is a button which will run the program once the four fields are 
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completed. This button will run the entire program from retrieving inputs to creating the excel 

output file. 

 

Figure 2.6 Purdue Coordination Diagram Interface 

2.3.3.3 Flow Chart Narration 

The Purdue Coordination Diagram program has two parts and these are illustrated in the 

flow chart below, Figure 2.7. In the first part, it constructs the graphical user interface, seen in 

steps 2.1 to 2.4 of the flow chart. The second part runs the analysis based on the information 

entered into the graphical user interface, seen in steps 3.1 to 3.12 of the flow chart. 

The user interface is described in detail above, so this discussion emphasizes the 

calculation process, which begins by retrieving the information from the graphical user interface. 

Then the process connects to a database and creates an excel workbook, steps 3.3 and 3.4. Once 

this has been done, it loops through the intersection/phase combinations that were entered into 

the graphical user interface. For each loop, the program uses the remaining input information to 

construct three SQL queries, step 3.6. The queries retrieve all of the intersection green times, red 



 

 

20 

 

times, and detector activations for the given phase. These are stored in three separate lists. The 

process organizes the data cycle-by-cycle by looping through the beginning-of-red time list. The 

beginning-of-red time indicates the ending time of the current cycle for which detection data are 

being organized. For each cycle’s red time, the program loops through the detector times, 

searching for detections that occurred during the cycle. The loop through the detection times 

stops when a detector time occurs after the beginning-of-red time. Each detector time is logged 

as an arrival in the workbook. Next, after completing looping through the detector data the 

program checks the green time list to see if the green time is the correct one. It does this check 

by making sure that the green time occurred between the previous beginning-of-red time and the 

current beginning-of-red time. It then logs the green time in the workbook for the current cycle 

for which data are being organized. Once it is done looking at the detector times and green times, 

it calculates the cycle’s performance measures. Percent arrivals on green, percent green time, and 

the platoon ratio are the measures calculated. The program then moves to the next cycle’s red 

time and repeats this process until there are no more red times. Once all the red times have been 

completed, the program steps to the next intersection and repeats the process again. Last, the 

program saves the workbook and it is ready to be used to create a PCD. All output excel files are 

saved in the same directory as the python programs. The excel files are named as the 

performance measure and datetime separated by an underscore. For example, the format, 

PM_Month_Day_Hour_Year, results in a PCD_Jan_15_2_30.xlsx.  
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Figure 2.7 Purdue Coordination Diagram Flowchart 
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2.3.3.4 Coding Guidance for Anticipated Improvements 

2.3.3.4.1 Incorporating Upstream Intersection Detection for Arrival Estimation 

PCD-oriented information is most useful when detection occurs upstream of the subject 

intersection’s queue. In many cases, there are no detectors at this strategic location. Using arrival 

estimations from an upstream intersection is an easily implemented addition to the program. 

There will need to be an addition to the GUI’s current entry fields, allowing the user to enter the 

upstream intersection information, which is the intersection number and the phase numbers that 

contribute to the subject intersection/phase arrivals. This program would then need to collect 

departure data which will be processed to create the list of arrival times. For example, the 

program would retrieve the departure times and add the travel time between intersections. The 

travel time could be based on probe data or simply defined as the distance divided by the 

estimated speed. The resulting values would be estimated arrival times. The program would then 

need to refer to these estimated arrival time values instead of retrieving arrival times directly 

from queried detector results. 

2.3.3.5 Automating the Generation of Graphs in the Excel Output 

Currently, the user needs to manually create the PCD diagram from the output data that 

this program creates. The program can be modified to automate the generation of graphs in excel 

using Visual Basic for Applications (VBA). The VBA program can either be run in excel after 

the output file has been created or VBA can be executed by the python program after the 

workbook has been saved. 
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2.3.4 Green Time Utilization 

2.3.4.1 Introduction 

This program analyzes high resolution data and outputs to an excel file that contains both 

cyclic and overall performance measures. The primary performance measure calculated is the 

Green Time Utilization. However, detector hits are also counted, which can be used to measure 

the most basic performance measure, flow rates.  

2.3.4.2 Interface 

This interface, shown below in Figure 2.8, is very similar to the Purdue Coordination 

Diagram’s interface. There are four entry fields: Signals, Phases, Detectors, and Table Name. 

They work the same as the Purdue Coordination Diagram. The intersection field accepts comma-

delimited values. The Phases field requires the same number of entries as the intersections field. 

The intersection and phase values are considered as pairs. For instance, the first intersection-

phase pair would be 1-2 and the second pair would be 1-6. The detectors field follows the same 

rules as they have in the previous interface but the user should use a stop bar detectors if they are 

available. For the best results, the Purdue Coordination Diagram program uses advance 

detectors, while stop bar detectors would be best for the GTU measurement. The final entry is 

the name of the high resolution data table. The “Run Calculations” button will run the 

calculations and produce an excel file with the calculated GTU measures. 
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Figure 2.8 Green Time Utilization Chart Interface 

2.3.4.3 Flow Chart Narration 

This discussion provides an overview for the computer program that extracts GTU 

information from high resolution controller data and uses the flowchart in Figure 2.9 for 

illustration. The program starts by importing all the libraries required to function. These are all 

included with the scripts. The graphical user interface is then constructed. There are 4 entry 

fields and a button. The button “Run Calculations” executes this program’s only function. As 

shown in steps 3.1 to 3.13, this function collects the data from the database, processes it, and 

outputs the results into an Excel file.  

The first step is to collect the information entered into the entry fields, step 3.1. Next it 

enters a loop where it analyzes each intersection-phase pair. In the loop, it initializes the 

temporary count and summation variables that will be used, step 3.5. Then it produces a query 

that selects all detector activation and deactivation times along with the start of red and start of 

green times. Each of these times also has a corresponding event. These values are arranged in 

one list which is analyzed in the next steps, 3.8-3.10. Each loop processes one event. If the event 

is a green light a few things are done. First the cycle counter is incremented up one. Then the 

number of hits in the previous cycle is appended to a list where they are stored until the reporting 
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step. This is followed by the green light Boolean being set to true and the previous green time 

being logged. Last the temporary variable that holds the previous detector activation is 

overwritten with the start of green. This has to be done because the detector events are only 

analyzed if the light is green. Therefore, if the detector activates during the red phase, which is 

very likely, the program will recognize the detector as on immediately, at the same time as the 

beginning of green. If the detector is not active when the light turns green then this temporary 

variable will be overwritten with the actual activation time before the time the detector is on is 

calculated. There are also a few steps that are taken if the event is a red light. First the green light 

Boolean is set to false. Then, the green time is calculated and recorded, and if the detectors are 

active the time it has been active is calculated and added to the sum. Similar to storing the start 

of green in the temporary detector, the end of the green must turn off any detectors and log their 

time towards the sum. When the event is not either of these two then the program checks to see if 

the light is currently green. If it is green then it will process the events accordingly. This is done 

because the program is not concerned with detector events while the light is red. The program 

then loops through the detectors to see which detector had a state change. Each of the detectors’ 

states is stored in a list. If any detector is active, then the green is still being used and will be 

counted towards the utilized part of the phase’s green time. When the phase’s detection status 

changes states from off to on, the size of the gap is calculated and the activation is logged. When 

the phase’s detection status changes from on to off the duration of the activation is calculated and 

reported. Once all the events have been analyzed, the performance measures are calculated and 

output to Excel. 
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Figure 2.9 Green Time Utilization Flowchart 
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2.3.5 Phase Termination Analysis 

2.3.5.1 Introduction 

This program looks at the end-of-green events and uses the event code to prepare an 

excel file. The gap-outs are separated from the max-outs and force-offs and both can be easily 

added to a graph for analysis. 

2.3.5.2 Interface 

The interface, shown below in Figure 2.10, is very similar to the GTU interface. It does 

not, however, require detector inputs of any kind, because it only gathers reasons for phase 

termination. Also the phase entry data are formatted similar to the detector input of the previous 

program. There can be multiple phase entries for each intersection entry. Phase entries for the 

same intersection are comma delimited and phase groups for each intersection are separated by a 

semicolon, see Figure 2.11. For instance, to specify phase termination information for all eight 

phases of Intersection 22, the following settings would be the entry for the phases: 

2;1,2,3,4,5,6,7,8;2. 

 

Figure 2.10 Phase Termination Interface 
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2.3.5.3 Flow Chart 

This program has very simple calculations and, as shown in the flowchart used for 

illustration, it is therefore significantly shorter than the others (see Figure 2.11). As with each of 

the programs, the first task is to load the required libraries. Then the program constructs the 

graphical user interface. When the “Run Program” button is pressed, the values of the entry 

fields are retrieved and used to create two queries. The queries collect the end of green times and 

gap-outs in one list and force-offs/max-outs in the other. For isolated intersection operations, 

force-offs should be considered max-outs. The lists retrieved from the queries are written to an 

Excel workbook storing the output data. 
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Figure 2.11 Phase Termination Flowchart 

2.3.6 Delay/Queue Length 

2.3.6.1 Introduction 

This program estimates delay and queue length using high resolution data. The estimates 

are calculated using arrival and departure counts based on detector activations. This program 

requires lane–by-lane detection for both the arrival detection and the departure detection. Ideally, 

arrival detection would be accomplished by advanced detectors located upstream of the queues 

and departure detection would occur by stop bar detectors. 
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2.3.6.2 Interface 

Similar to the previously discussed programs, this interface has entry fields for the 

intersections, phases, arrival detectors, departure detectors, and the table name of the dataset (see 

Figure 2.12 below). The first notable difference is that there are two sets of detector inputs. This 

is because it is important to differentiate between the arrival detection and departure detection in 

the analysis. The intersection field requires that the intersection values be separated by commas. 

Similarly, the phase numbers must be separated by commas and must have the same number of 

entries as intersections. The detectors are broken into groups by semicolons which each refer to a 

phase. The detectors for a given phase are separated by commas and are separated from detectors 

associated with other phases by a semi-colon. All of the information needed for delay at phase 2 

of intersection 11 is indicated by dashed boxes in Figure 2.13. Queue length and delay could be 

extracted for other phases of the same intersection by repeating the intersection number, adding a 

different phase number, specifying the corresponding arrival and departure detector numbers. 
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Figure 2.12 Delay and Queue Estimation Interface 

2.3.6.3 Flow Chart Narration 

The flow chart for this program is shown below in Figure 2.13. This program begins by 

loading the libraries it uses. Then it produces the graphical user interface. When the “Run 

Program” button is pressed it executes the function. This function starts by retrieving the 

information in the entry fields. Then it opens a connection to the database, opens a workbook 

object, and begins looping through each of the intersection/phase combinations. For each 

combination, it creates a worksheet, retrieves the red times, retrieves the arrival times, and 

retrieves the departure times. Then it loops through each time step and checks for when different 

events occur (beginning of red, arrivals, and departures occur). If the event is the beginning of 

red then the queue length is recorded. If an arrival occurs then the queue is incremented up one. 

If a departure occurs, the queue is decremented down one. For each time step, the time, queue, 

and delay are recorded. Then the delay for the next time step is calculated. The loops are 

complete after they have finished cycling through the lists. 
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Figure 2.13 Delay/Queue Length Flowchart 

 

2.4 Testing  

2.4.1 Overview  

The output from the performance measure calculation tool was tested by directly 

comparing the measures produced by the tool with the hand calculated measures. All of the 

measures relied on the same VISSIM output files. The hand calculated measures, GTU, PCD, 
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and PPTC, were produced using the detector output files (.ldp) and signal changes output file 

(.lsa) from VISSIM. The delay was compared to the calculated delay from VISSIM. Each 

measure was tested for accuracy over five cycles. Each of the tested measures was an exact 

match with the exception of the delay and queue length measures. 

2.4.2 Purdue Coordination Diagram 

The part of the tool that produced the PCD was tested by comparing the list of arrivals that were 

output to the detector output files. A PCD assembled in Excel using the detector output files was 

created to compare as well. These PCD’s are shown below as Figure 2.14 and Figure 2.15. 

 

Figure 2.14 Hand Assembled PCD 
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Figure 2.15 Tool Generated PCD  

The arrivals are identical between the two methods.  

2.4.3 Green Time Utilization 

The GTU performance measurement creation was the most difficult to calculate. The 

complications during calculation were primarily caused by detectors being active when the phase 

began. When a detector activated and deactivated during the phase the time that it was active is 

added to the total active time and is easily accounted for. When a detector is already active, at the 

start of the phase, the program wouldn’t know it was active until the detector deactivated.  

The table below shows the GTU that was produced by the program for two phases. The 

column titled “GTU 1” is the calculated GTU for the first five cycles of phase 1 in intersection 1. 

The values in the column to its right, labeled “Calculated” contain the hand calculated values. 

These values were identical to the ones produced by the program. The column “GTU 6” and its 
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corresponding “Calculated” column were another test which included a phase with multiple 

lanes. The second test also produced identical results. 

Table 2.1 Comparison of Hand Calculated GTU to Tool-Calculated GTU 

Cycle GTU 1 Calculated  GTU 6 Calculated 

1 0.27 0.27  0.21 0.21 

2 0.33 0.33  0.32 0.32 

3 0.14 0.14  0.22 0.22 

4 0.34 0.34  0.24 0.24 

5 0.36 0.36  0.38 0.38 

2.4.4 Queue Length and Delay Estimation 

Along with the other measures, queue length can be estimated using high-resolution data. 

This measure requires both advanced and stop bar detectors that are sensitive enough to detect 

individual vehicles. The queue length estimation is based on an input output model which 

assumes that every vehicle is detected, both entering and exiting the system.  

To test the queue length estimation, VISSIM Data Collection Points (VDCP) were added 

to the system to act as the ground truth to check the controller detectors and the resulting queue 

length and delay measures. Unlike the controller detectors, these VDCPs are for collecting 

simulation data and not for signal actuation.  

During an hour long simulation, manual inspection found 15 detection errors in the 

controller detector data. The errors were caused by vehicles changing lanes over the advance 

detectors. These errors lead to a vehicle being counted twice as it enters the system. This creates 

a bias in the delay estimate, because vehicles are not double counted at the stop bar.  

Accuracy was determined by calculating the delay with both the VDCP and the controller 

detectors, with the VDCP delay acting as the ground truth. The results of the delay were assessed 
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through visual inspection of the delay curves (see Figure 2.16), which show that the delay was 

accurate during the beginning of the simulation. However, delay became increasingly inaccurate 

through accumulated errors from double counting at the entry detectors. Delay errors became 

apparent after five cycles. Figure 2.16, below, shows the increasing errors in estimation as 

simulation progressed. The initial high resolution data estimation is the line that continues to 

climb upward. In comparison, the ground truth calculation and the adjusted calculation, which is 

explained in the next paragraph, are steady near the 20 seconds/vehicle mark. Adjustments 

needed to be made to improve the calculations. 

 

Figure 2.16 Cyclic delay of the different methods 

Since the cause for the errors was known, steps were taken to remove these imperfections 

from the dataset and retest the method with filtered controller detector data. Although this 

filtering was manually implemented, it does illustrate the potential accuracy this approach has.  

A t-test determined the delay estimation method to be accurate when comparing the 

entire hour of data, resulting in a t-statistic of .096. Even with the statistical confirmation it 
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should be noted that the queue length estimation works most accurately with smaller datasets, 

especially when detectors are found to systematically count high or low. Figure 2.17 and Figure 

2.18 below show the resulting cumulative vehicle diagrams for the ground truth data and the 

fixed high-resolution data. It is clear that the calculation starts out working well but as the slight 

inaccuracies of high-resolution data continue the accuracy decreases. Even in a plot that only 

shows the first five minutes of the simulation, the high resolution estimations do not match the 

ground truth cumulative vehicles diagram. 

 

Figure 2.17 The ground truth calculation of the cumulative arrivals and departures for the first 300 seconds 

of the simulation 
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Figure 2.18 The high-resolution data calculation of the cumulative arrivals and departures for the first 300 

seconds of the simulation  

While the delay performance measure has potential, it needs improvement. Employing a 

double counting filtering algorithm would reduce delay calculation bias. In addition, instituting a 

detector bias measurement processes that assesses whether or not a bias exists would help as 

well. Bringing in other measures whose relation with delay is well known would make this last 

step possible. For example, knowing whether or not a queue existed at the end of a phase by way 

of variations in detector occupancy would eliminate additive count errors from one cycle to the 

next. 

2.4.5 Split Failure Analysis  

This is the most basic of the performance measures generated by the tool. The table 

below validates the results generated by the tool with hand checked phase terminations. Figure 
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2.19 below, shows the resulting chart from the validated tool results. The calculated measures 

were determined using the signal changes output file. 

Table 2.2 Hand Calculated and Program Results for Creating the Purdue Phase Termination Charts 

Calculated Results Program Results 

Time Stamp Phase Time Stamp Phase 

Gap-out Gap-out 

5.2 1 5.2 1 

109 1 109 1 

235.7 1 235.7 1 

Max-out Max-out 

74.4 1 74.4 1 

172 1 172 1 

Gap-out Gap-out 

23.7 6 23.7 6 

74.4 6 74.4 6 

140.8 6 140.8 6 

255.7 6 255.7 6 

Max-out Max-out 

203.6 6 203.6 6 

 

 

Figure 2.19 Purdue Phase Termination Chart 
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2.5 Conclusions 

This project has demonstrated and utilized the strengths of high resolution data. It has 

also shown that the data can be very limiting. The Purdue Coordination Diagram is very 

informative, because the arrivals were accurately counted using the advance detectors and the 

Green Time Utilization. Several other measures were shown with the Purdue Coordination 

Diagram, the percent green time, percent arrivals on green, and platoon ratio. The Phase 

Termination Chart was included in the project as well. Delay and Queue Length estimation were 

also tested, showing delay’s potential to be measured with high resolution data, but more 

detector error filtering is needed.  

A tool that encompassed all these performance measures into a single analysis package 

was created using Python 2.7. In addition to calculating these measures it could create high 

resolution tables in a database using VISSIM output files. This requires a little setup but is a 

valuable alternative to using field data or hardware in the loop simulation with controllers that 

are linked to a system that produces a high resolution database.  

The processes of emulating the high-resolution data and calculating the performance 

measures were described in detail with flow charts. Recommendations and instructions were 

included for future development of the tool. Finally the tool was tested by comparing the results 

it calculated with hand calculated measures and VISSIM’s calculated measures. 

By accomplishing the research objectives, researchers will be able to produce high-

resolution data easily and efficiently. This will help accelerate the development of improved 

performance measures, a valuable development given that this high resolution data is beginning 

to be collected by some state agencies. 
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CHAPTER 3.0  USING ORIGIN-DESTINATION CENTRALITY TO ESTIMATE 

DIRECTIONAL BICYCLE VOLUMES 

 

3.1 Introduction 

Traditional methods to estimate bicycle volumes can be categorized as multi-step travel 

demand models or as direct demand models (Suhrbier and Schwartz 1999). Models in the first 

group attempt to forecast an elaborate combination of travel choices across large transportation 

networks. For example, the ubiquitous “four step model” is a sophisticated attempt to estimate 

four complex aspects of travel behavior: trip generation, trip distribution, mode choice, and 

route choice. Trip generation tries to predict the number of trips originating from an entire 

analysis zone for a particular purpose and time of day, such as the morning work commute. Trip 

distribution is a prediction of the destination for each trip. Mode choice is an attempt to predict 

the mode of travel that will be used and route choice tries to predict the specific facilities (i.e. 

street segments, intersections, shared-use trails, etc.) that will be used to arrive at the destination. 

Liu et al. (2012) reviewed many of the shortcomings of using multi-step demand models 

to estimate bicycle volumes and offer various suggestions for future research. One major 

criticism is that in practice most multi-step demand models aggregate travel over large analysis 

zones, rather than modeling individual trips and trip-chains; for estimating car volumes, 

aggregate modeling is often acceptable, but for estimating bicycle travel this approach is not 

sufficiently fine grained. Consequently, considerable effort has sought to improve multi-step 

demand modeling with disaggregate, activity based techniques (Wang et al. 2011) Other efforts 

have sought to customize the 4-step model with additional steps related to bicycle travel, 

feedback loops, or more bicycle-specific calibration (Replogle et al. 1995; Schwartz et al. 1999; 
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Eash et al. 1999; Hudson et al. 2010). Despite the many advances, multi-step demand models 

continue to be data intensive, expensive, and complex.  

Direct demand models bypass the behavioral context of travel by simply estimating the 

expected volume on a particular bicycle facility as a function of the facility’s attributes. Linear 

regression is the most common form of direct demand modeling, such that  

 

                                                                                         (3.1) 

 

where the explanatory variables,        , represent characteristics of the bicycle facility and 

the regression coefficients            are derived from observed data. For example, Griswold 

et al. (2011) counted the total number of bicyclists passing through 81 intersections in Alameda 

County, CA and developed a linear regression model with 5 explanatory variables: (1) number of 

commercial properties within 0.1 miles, (2) the presence of bicycle markings on approach, (3) 

the natural log of network distance to UC Berkeley Campus, (4) the average slope of terrain 

within 0.5 miles, and (5) the connected-node ratio within 0.5 miles of the intersection. Their 

model predicted total bicycle counts passing through the intersections with an R2 of 0.60. Jones 

et al. looked at using more than 30 explanatory variables to predict total bicycle counts on off-

street bike paths. Their best model (R2 = 0.47) included 3 explanatory variables: (1) total footage 

of off-street paths within 0.5 mile, (2) employment density within 0.25 mile, and (3) population 

density within 0.25 mile.  

Direct demand models, including the two examples just cited, are usually designed to 

estimate total non-directional counts. In other words, they can estimate the number of bicyclists 
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entering an intersection, but not the actual turn movements or even the direction of travel. 

Another drawback of direct demand models is that often some or all the explanatory variables 

are locality-specific, such as distance to the local university or distance to a particular subway 

station, so the models are not transferable to other communities. Likewise, for some communities 

certain explanatory variables might exhibit very little variation across the whole community and 

therefore result in poor estimation power. For example, “population density within 0.25 mile” 

does not significantly vary from facility to facility for many communities, so it is a useless 

explanatory variable.  

On one hand, direct demand models are advantageous because they simplify the 

complexities of travel behavior, but on the other hand this makes it more difficult to attain a rich 

understanding of travel patterns. For example, multi-step demand models can predict not just 

total counts at an intersection, but also every expected turn movement through the intersection. 

This is because multi-step demand models rely on information about the entire street network 

and the interaction between origins and destinations.  

This paper introduces a new method to estimate bicycle volumes that combines the 

strengths of multi-step demand modeling and direct demand modeling. The method uses network 

analysis to quantify travel patterns between origins and destinations through a new metric that 

we call OD centrality. The metric is then used as an explanatory variable in a direct demand 

model which we programed as a tool for geographic information systems (GIS) software. The 

method is presented through a case study using data collected as part of the National Bicycle and 

Pedestrian Documentation Project (NBPDP); however, data collected through any manner, 

including automated counters, could be used (NBPDP 2008). 



 

 

45 

 

This paper is useful for practitioners looking for simple and ready to use tools to estimate 

bicycle volumes and beneficial for researchers studying how urban form influences bicycle 

travel. Researchers may find it useful to integrate aspects of the new method into traditional 

methods. 

3.2 Centrality 

In graph theory, the importance of a link or node in a network can be quantified through 

various measures of centrality. The most common forms of centrality are: closeness centrality, 

which measures how close a link is to all other links; degree centrality, which measures how 

many nodes are connected to a link; and betweenness centrality, which measures the proportion 

of shortest paths that pass through a link. There are many other forms of centrality, including 

alpha centrality, load centrality, stress centrality, straightness centrality, Katz centrality, and 

eigenvector centrality (Brandes 2008). 

Centrality measures can be formulated for links or for nodes. For example, stress 

centrality, which we modify in the next section, is formulated for link e in a network as  

 

                    ∑       

     

                                                                                                             

where  

      V = set of all nodes in the network, 

     σij = shortest path from node i to node j, and 
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           {
   if link   is used in    

   otherwise                     
. 

 

Shimbel (1953) introduced stress centrality in 1953 to analyze communication networks, 

but in the context of a transportation network, stress centrality represents the number of times a 

street would be used if someone were to travel from every node to every other node.  

Researchers have demonstrated the usefulness of the many different centrality metrics in 

a variety of transportation planning applications; for example, to improve airline networks (Liu 

et al. 2011), design public transportation systems (Derrible 2012), and characterize traffic 

analysis zones (Zhang et al. 2011). In the mid-1980s a group of architects and urban theorists 

developed a specialized approach to analyzing centrality called “space syntax” with the intent to 

quantify the connectivity of hallways and rooms in a building (Hillier & Hanson 1984; Jiang & 

Claramunt 2004). Space syntax was eventually extended to larger, outdoor urban environments. 

One space syntax measure called integration has shown high correlation with vehicle and 

pedestrian volumes (Hillier et al. 1993; Penn et al. 1998; Raford & Ragland 2004). Raford et al. 

(2007) used space syntax to explain how bicyclists choose different routes through London. 

McCahill and Garrick (2008) explored using space syntax in a direct demand model to estimate 

bicycle volumes. They calibrated the model with aggregate bicycle counts at 16 intersections in 

Cambridge, Massachusetts, but unfortunately concluded that, on its own, space syntax was not 

effective for explaining the observed volumes (R2 = 0.16).  
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3.3 Method 

3.3.1 OD Centrality 

We modify stress centrality in three ways to create a new metric, which we call origin-

destination (OD) centrality. First, we define    
  as the preferred bicycle path between locations i 

and j using current research on bicycle route choice. Second, we only consider a specific subset 

of origin-destination pairs that can be reasonably reached by bicycle. Third, we augment the 

calculation with origin and destination multipliers that represent a magnitude of “trip potential” 

between OD pairs. The new formulation for a link e in a network is  

 

                ∑    
    

               

                                                                                               

where 

   I  = subset of origins in the network, 

   J = subset of destinations in the network, 

    
  = preferred bicycle path from node i to node j, 

 Mi = multiplier for origin i,  

 Mi = multiplier for destination j, 

dij  = distance between origin i and destination j, and 

  δ  = reachable distance threshold for bicycles.  
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In the following sections, we describe these innovations and introduce the GIS tool we 

created to calculate OD centrality. We also explain how OD centrality can be used in a direct 

demand model to estimate and spatially interpolate bicycle volumes throughout a community. 

3.3.2 Preferred Bicycle Paths 

The preferred path between two points on a network can be determined in various ways, 

such as the fewest number of links, shortest geographic distance, or shortest travel time. A 

common approach is to define an impedance (or generalized cost) for every link and node, such 

that the “shortest” path is the path that minimizes total impedance (cost). Route choice 

algorithms, such as those used by Google and MapQuest, analyze the impedance of potential 

paths to identify the preferred path. If a bicyclist has complete information (i.e. is aware of the 

impedance for all route options, even subconsciously), then according to rationale choice theory, 

the bicyclist will choose the route with the lowest impedance (Stinson & Bhat 2003; Lee & El-

Geneidy 2011). 

In recent years, the ability to place GPS trackers on bicyclists has allowed researchers to 

observe the relative attractiveness of different facility types, or in other words, to quantify the 

impedance associated with different facility characteristics (Broach et al. 2012, Harvey et al. 

2008, Larsen & El-Geneidy 2011; Menghini et al. 2010) The main impedance factor for 

bicyclists is distance; for this reason it is common to quantify other characteristics in terms of 

added distance. For example, Broach et al. (2012) found that, for a commute trip, bicyclists are 

willing to travel about 4 tenths of a mile extra to avoid a one mile slope that is between 2% and 

4%, 1.2 miles extra to avoid a one mile slope that is between 4% and 6%, and 2.2 miles extra to 

avoid a one mile slope that is greater than 6%. 
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For the case study, we defined two types of impedance: link impedance for traversing a 

street segment and node impedance for passing through an intersection. Link impedance is based 

on the street segment’s length, friction, and slope. Friction represents the deterrence/attraction 

for bicyclists to use a particular street segment and can be determined according to various 

attributes, such as vehicle traffic volumes, presence of a bike lane, or beautiful vistas. In the case 

study, we used the Highway Capacity Manual’s bicycle level of service (BLOS) to define 

friction, f, (HCP 2010; Lowry et al. 2012; Callister & Lowry 2013) The BLOS calculation 

involves ten attributes, which include vehicle volumes, vehicle speeds, and shoulder width, to 

produce a letter grade A through F and a corresponding numeric score between 1.00 and 5.75. 

For slope impedance, we used the findings from Broach et al. (2012). We combined length, 

friction factor, and slope factor as follows: 

 

                                                                                                                                (3.4) 

with  

                                                                                                                                         (3.5) 

   {

     if slope                 
     if    slope     
     if    slope    
     if     slope             

                                                                                            (3.6) 

where 

      = link impedance (cost), 
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        = length for the street segment, 

       = friction factor for the street segment, 

        = slope factor for the street segment, and 

        = friction for the street segment. 

 

Node impedance is calculated based on turn angle (relative bearing, 0-180 degrees), the 

type of intersection control and the functional class of the cross street. Thus, for every turn 

movement k the calculation is:  

 

                                                                                                                                    (3.7) 

with 

   {

         if right-hand turn
        if left-hand turn  
                            

                                                                                            (3.8) 

where 

        = node impedance (cost) for turn movement k, 

           = turn impedance factor for turn movement k, 

                 = turn angle (relative bearing) for turn movement k, and 
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           = intersection control and cross street impedance factor (see  

Table 3.1). 

 

Table 3.1 Intersection Control and Cross Street Impedance Factor, Fc 

Intersection  
Control 

Cross-Street 

Local Collector 
Minor 

Arterial 
Primary 
Arterial 

No Control 20 40 90 120 
Stop Sign 25 20 50 80 

Signal 30 20 20 20 
Note: Factors are unitless. 

The node impedance factors are adapted from Broach et al. (2012). Their research did not 

report functional class of the cross-street, but rather the cross-street’s Annual Average Daily 

Traffic (AADT). Note that the factors for link impedance are multiplicative (Equation 3.4) and 

for node impedance the factors are additive (Equation 3.7). This is because the characteristics of 

a street segment act over a distance while the characteristics at an intersection act at a single 

point.  

3.3.3 Origin-Destination Pairs 

Two steps determine the origin-destination pairs for the analysis. First, the analyst must 

specify certain locations as “origins” and/or “destinations.” For the case study, since bicycle 

counts were observed in the morning and in the evening, we simply specified residential parcels 

as origins and non-residential parcels as destinations to analyze the morning data and vice-versa 

to analyze the evening data. Other, more sophisticated specifications could be explored. For 

example, some cursory investigation showed improved model fit for the evening analysis when 
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non-residential parcels were specified as origins and also as destinations. This might be 

explained by the fact that the morning commute is often more uniform—people travelling from 

home to work—while the evening commute is more diffuse—people not just travelling straight 

home, but to a myriad of destinations. An investigation of different OD specifications could be 

part of the calibration process, wherein the model is run and re-run to find the best model fit. For 

the case study, a straightforward specification was used for the purpose of simply introducing 

this new method. 

The second step to determine origin-destination pairs is achieved automatically by the 

GIS tool. The tool limits origin-destination pairs to those that can be reasonably reached by 

bicycle based on a “reachable distance threshold,” which is designated as δ in Equation 3.3. This 

parameter is included to recognize the reality that most people do not use their bicycle for long-

distance utilitarian travel (Landis 1996). The δ parameter could also be investigated by the 

analyst as a calibration parameter, but we chose to hardcode it into the GIS tool based on results 

from our sensitivity analysis and previous research about bicycle travel. Figure 3.1 shows the 

results from the sensitivity analysis. The horizontal axis represents different values of δ. High 

values of δ allow more origin-destination pairs, while low values of δ signify a tighter restriction 

on the pairs to be included in the calculation of OD centrality. Figure 3.1 shows that the best 

correlation occurs at about δ = 1.5 miles for the bicycle data and δ = 0.8 miles for the pedestrian 

data. This corresponds well with previous research suggesting most trips are no more than 1.5 

miles for bicyclists and 0.5 miles for pedestrians (Turner et al. 1997). 
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Figure 3.1 Correlation between OD centrality and observed volumes for different reachable distance thresholds 

 

3.3.4 OD Multipliers 

The other innovation we introduced into OD centrality is the inclusion of origin and 

destination multipliers, Mi and Mj, respectively. The multipliers represent relative “trip potential” 

leaving or going to each node. For example, a large shopping mall is more likely to attract trips 

than a small coffee shop; likewise, an apartment building is going to generate more trips than a 

single family home.  

The analyst who is calculating OD centrality needs to specify the multiplier associated 

with the origins and destinations. However, it is important to note that unlike trip generation in 

traditional multi-step demand models, the intent here is not to predict the number trips produced 

and attracted, but rather to merely specify the relative magnitude of trip potential across different 

locations. For the case study, the number of dwelling units was used as the multiplier for 

residential parcels and for all other land use types the multiplier was specified according to 
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square footage. Another approach might be to define the multipliers based on the ITE Trip 

Generation Manual (TGP 2012). 

3.3.5 GIS Toolbox 

A GIS toolbox was created to calculate OD centrality and execute a direct demand 

model. The tools were written in modifiable open-source python code for ArcGIS® 10.1. The 

centrality calculation is based on Brandes’s (2001) algorithm. Figure 3.2 shows the graphical 

user interface for the tool to estimate and spatially interpolate bicycle volumes. Other tools in the 

toolbox are for data preparation purposes. Each tool prompts the user for input data and the 

desired directory for output. The user can access help documentation that explains the required 

input by clicking the “Tool Help” button. The tool shown in Figure 3.1 requires four input files: 

Observed Count Data – This is a folder of spreadsheet files for each intersection. The 

format is similar to the guidelines in the NBPD.  

Origins – This is a point or polygon shapefile representing origins, such as a land use 

parcel file. The user is also prompted to specify the origin multiplier attribute field. 

Destinations – This is a point or polygon shapefile representing destinations. This could 

be the same parcel file used for the origins, perhaps with different destination multipliers. 

Bikeway Network – This is a polyline shapefile representing streets and shared-use 

paths. Most communities have a “street center line file” that can be used, but if not, ESRI 

provides a free street file for all of North America. The file must exhibit correct topology. 

The user is also prompted to specify the impedance field associated with the network 

(which can be calculated using a different tool in the toolbox). 
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Figure 3.1 Graphical user interface for the GIS tool to estimate bicycle volumes 

 

Once the required input is provided, the user runs the tool by clicking “Ok”. The tool 

calculates OD centrality, calibrates a regression model, and uses this regression model to 

estimate bicycle volumes throughout the network. The user can choose to include additional 

explanatory variables in the regression model (see Figure 3.1). The output includes a text file 

with a summary of the regression statistics and a polyline shapefile with predicted bicycle 

volumes for the entire network. For the case study community the execution time on a standard, 

workstation-class Lenovo laptop is about 7 minutes.  
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3.4 Analysis and Results 

3.4.1 Case Study Data 

The National Bicycle and Pedestrian Documentation Project is an increasingly popular 

grass-roots effort to collect data in communities around the United States (NBPDP 2013) Often 

the work is accomplished by citizen-volunteers who stand on an assigned street corner counting 

bicyclists and pedestrians for a two-hour period in the morning and evening. The City of 

Moscow, Idaho (population 25,000) has conducted counts each fall for the past three years. The 

city has high bicycle ridership because it is home to the University of Idaho and is located nine 

miles away from the City of Pullman, Washington (population 32,000) the home of Washington 

State University. Moscow’s fall 2012 data were used for the case study.  

The 14 intersections that were observed are located throughout the city as shown in 

Figure 3.1. The volunteers observed every thru and turn movement for the intersection, tallying 

the counts for fifteen minute intervals from 7:00 to 9:00 AM and 4:00 to 6:00 PM. With twelve 

movements at a standard four legged intersection and six movements at a three legged T-

intersection, a total of 162 movements were observed.  
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Figure 3.1 Intersection count locations 

3.4.2 Model Calibration and Validation 

The data were randomly split into two sub-samples; 90% for calibration, and 10% for 

validation. Various regression techniques that are common for direct demand modeling were 

investigated, including ordinary least squares regression, log-linear regression, Poisson 

regression, negative binomial regression, and zero-inflated negative binomial regression. 

Ordinary least squares regression produced the best model fit based on within-sample 

(calibration) and out-of-sample (validation) R2.   

Error! Reference source not found. shows the coefficients and statistics for the 

morning and evening models using conventional stress centrality and OD centrality as the sole 

explanatory variable (in practice, additional explanatory variables could be used, but were 

ignored here to highlight the predictive power of OD centrality). Conventional stress centrality is 

not statistically significant and does not produce a useful estimation model. OD centrality, on the 
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other hand, is statistically significant for the AM and PM models and exhibits good R2 values, 

suggesting OD centrality provides strong explanatory and predictive power. The best model was 

for the PM counts which explained 61% of the variability in the calibration dataset and 73% of 

the variation in the validation set. Presumably, these models could be significantly improved 

with additional explanatory variables.  

Table 3.1 Estimation Coefficients and Model Statistics 

 Stress Centrality 
Model  OD Centrality 

Model 
Model Variable AM PM  AM PM 

Constant 1.97 ** 2.54**  1.54** 2.13** 
Stress Centrality 0.11 0.17*  - - 
OD Centrality - -  0.69** 0.63** 
Calibration R-

squareda 
0.04 0.10  0.45 0.61 

Validation R-
squaredb 

0.08 0.07  0.58 0.73 

Note: Dependent variable is one hour peak bicycle count observed in the morning (AM) and evening (PM). 
*Significant at 95% (p<0.05); **significant at 99% (p<0.01). 

a Within-sample goodness-of-fit for a random 90% of observed data, n = 147. 
b Out-of-sample goodness-of-fit for a random 10% of observed data, n = 16. 

 

Figure 3.1 shows the difference between stress centrality and OD centrality across the 

case study community. Dark street segments signify higher centrality, or in other words, more 

incidence of being on a shortest path. This figure illustrates how the modifications of stress 

centrality produced better values. First, the figure shows improvement from using bicycle-

specific impedances. This can be seen by the straightness of the paths in Figure 3.4b compared to 

the indirect, stair-step paths in Figure 3.1a. Furthermore, for stress centrality many of the shortest 

paths include busy streets and steep hills. Second, the figure illustrates improvement from 

incorporating origin and destination multipliers. Note in Figure 3.1b, high values of OD 
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centrality are generally located toward the southwest, which is expected because this is where the 

university is located.  

 

 

(a) 

 

(b) 

Figure 3.1 Comparison of: (a) stress centrality and (b) OD centrality 

Figure 3.2 shows bicycle volume estimates for the whole city. This is the output of the 

GIS tool. Figure 3.2b provides detail for a selected intersection where counts were actually 

observed. In general, the difference between observed and estimated volumes is fairly small and 

magnitudes correspond very well. Engineers and planners could use maps like Figure 3.2 in a 

variety of ways, including prioritizing capital investments and analyzing risk exposure. 

Furthermore, practitioners could use the tool for scenario planning by first calibrating the model 

under current conditions and then running it again under different conditions. For example, if a 

community is proposing to build a new residential subdivision, then the tool could be used to 
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predict how this would change bicycle volumes throughout the community. Likewise, the tool 

could be used to investigate the change in travel patterns from improving network connectivity 

by constructing new shared-use pathways or painting new bike lanes. These types of applications 

would not be easily accomplished through a traditional direct demand model. 
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(a) 

 

 

 

(b) 

Figure 3.2 Estimated one hour peak bicycle volumes for: (a) the entire community and (b) a selected intersection 

 

3.5 Conclusion 

This paper presents a new method to estimate bicycle volumes that is advantageous over 

traditional multi-step demand models and direct demand models. Multi-step demand models are 

data intensive and require specialized skills and software. The new approach is easy to use and 

only requires a street network, digital elevation map, residential and non-residential parcels, and 

counts at select locations, all of which are readily available for most communities. This new 

approach integrates these data, thereby facilitating analysis of urban form and bicycle travel. 

Direct demand models are also easy to use and straight forward, but do not adequately consider 
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network characteristics and the important spatial relationship between origins and destinations. 

Consequently, traditional direct demand models cannot easily model detailed information, such 

as directional volumes for all turn movements at an intersection. The new approach’s advantages 

provide the opportunity for engineers and planners to use the new method for many important 

applications.  

The method is based on a new metric called OD centrality. Future work could investigate 

how to improve the metric. For example, different origin and destination multipliers could be 

examined, perhaps from the ITE Trip Generation Manual (Turner et al. 1997) Another possible 

improvement could be to use a “distance decay function” rather than a fixed reachable distance 

threshold for δ (see Equation 3.3) (Iacono et al. 2010). Future research could develop guidelines 

for the calibration process and other best practices, including investigating additional explanatory 

variables that would work well alongside OD centrality.  
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CHAPTER 4.0 PEDESTRIAN LIVABILITY AND MICROSOFT’S KINECT 

 

4.1 Introduction 

In recent years, there has been increasing interest in active forms of transportation from a 

public health perspective. With a growing body of evidence supporting the health benefits of 

walking and biking for transportation (Pucher et al. 2010), urban planners and public officials are 

increasingly interested in the relationship between rates of participation in active transportation 

and the design of neighborhoods and other public spaces. In addition, due in part to the observed 

correlation between participation and access to walking and bicycling infrastructure (Dill 2009; 

Buehler & Pucher 2012), there is a trend toward increased public investment in new and existing 

facilities. As in all forms of transportation infrastructure, a great deal of pedestrian and bicycle 

traffic data are needed to inform the planning, design, and management of such facilities. In 

addition, from an academic research perspective, pedestrian data are indispensable for studies 

including analysis and modeling of pedestrian behavior and movement patterns, traffic safety, 

and signal timing. 

Despite the importance of accurate pedestrian data, most data collection has relied on 

labor-intensive manual counting. In the case of large and widespread pedestrian data collection 

efforts, manual methods are expensive and often impractical. Therefore, automatic detection and 

tracking of pedestrians is of significance to both engineers and researchers.   

Over the past decade, a number of technologies have been developed and applied to 

various pedestrian detection applications. Currently, the most commonly employed sensors for 

pedestrian detection are imaging sensors in various configurations using visible light and infrared 
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(IR) radiation, as well as the time-of-flight based sensors such as RADAR and LASER scanners 

(Gadhi & Trivedi 2007). Imaging sensors can capture a high-resolution view of the scene with 

very rich information, but extracting information involves a substantial amount of processing. In 

addition, one of the most challenging issues for imaging-based approaches is occlusion, where a 

pedestrian is partially obscured by another pedestrian or an environmental feature. Although a 

number of image processing techniques have been developed to solve this problem, the 

performance of most existing detectors degrades quickly as the number of pedestrians and 

corresponding rate of occlusion increases. Occlusion is less of an issue for time-of-flight 

scanners because they are based on depth information, but resolution is often limited. In this 

sense, these two types of sensors are complementary, and their fusion is expected to result in 

more robust detection.  

Microsoft’s Kinect device with 3D sensing capabilities provides us a new way to easily 

fuse the 2D image information and depth information for pedestrian detection. In this paper, we 

aim to utilize Kinect to develop a low cost solution for occlusion robust pedestrian detection in 

crowded scenes. The paper contains the following contributions: 1) Utilizing the RGB-D image 

from Microsoft Kinect, we present an efficient pedestrian detection approach for crowded scenes 

where occlusion occurs frequently. 2) More specifically, by fusing the pedestrian contour regions 

extracted from the RGB image with the depth information, we develop a pedestrian extraction 

algorithm. As our results demonstrate, this fusion presents a novel way to make pedestrian 

detection robust to occlusion. 3) We design a pedestrian tracking and counting algorithm based 

on template matching. 
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The remainder of this paper is structured as follows: Section 4.2 summarizes a literature 

review of Kinect based pedestrian detection approaches, Section 4.3 describes our proposed 

approach in detail, Experimental results are introduced in Section 4.4, and Section 4.5 concludes 

the study. 

4.2 Literature Review 

Since it was first introduced in November of 2010, Kinect has generated a great deal of 

research interest particularly in the Computer Graphics and Computer Vision communities as a 

low cost 3D sensor. It has been the subject of considerable research in a number of fields, 

including robotics, medical imaging, and natural human-computer interaction (Stowers et al. 

2011; Alnowami et al. 2012; Boulos et al. 2011). Among these recent research efforts, many 

have focused on human detection for gaming or other purposes. Previous work on Kinect-based 

pedestrian detection can be generally classified into two categories: depth based and RGB-D 

based. 

4.2.1 Depth Based Human Detection 

Xia et al. (2011) proposed a model based human detection approach using depth 

information. It detects humans using a 2-D head contour model and a 3-D head surface model, 

and segment a human from his/her surroundings to extract the whole contours of the figure. It 

was reported that a detection accuracy of 98% was achieved in their test cases. However the 

frame achieved in this study was only 0.4s/frame which is hard for real-time applications. 

Furthermore, it failed to detect a human when his/her head is occluded, which is often the case in 

crowded scenes. 
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Hsieh et al. (2012) presented a people counting system with Kinect. They first apply 

morphological processing to the depth image to find the regions of interest (ROI), then determine 

the targets from the ROI and count the pedestrian number. It was reported that a counting 

accuracy of almost 100% was achieved in their tested case, but no details were released on how 

to deal with occlusion in their paper. In addition, the algorithm did not perform well when 

background still objects such as tables, shelves and pillars also appeared in depth images which 

occur in most real-world cases.  

Charreyron et al. (2013) proposed a pedestrian data collecting system using Kinect. They 

used the Kinect SDK skeleton tracking information to track pedestrians and get volumes and 

walking speeds. The system has a pedestrian volume accuracy of 92% in low to moderate traffic 

conditions. However, the system cannot deal with occlusion due to the limitation of the Kinect 

SDK middle-ware. 

Wu et al. (2011) presented a feature descriptor, Histogram of Depth Difference (HDD), 

for detecting pedestrian in depth images. The HDD feature descriptor can describe the depth 

variance in a local region in depth image. Though it was reported that the detection accuracy was 

about 96% for single pedestrian detection, it cannot effectively deal with occlusion. 

Won et al. (2013) proposed a pedestrian detection algorithm on labeled depth data. It 

computes feature responses for head and legs of human body using depth and label data, and 

detects pedestrians by removing edges and partitioning a bipartite graph of head and leg response 

blobs using prior knowledge about human body. The reported detection rate was only 68.31%, 

and the detector fails when severe occlusion occurs. 



 

 

68 

 

4.2.2 RGB-D Image Based Pedestrian Detection 

Luber et al. (2011) combined a multi-cue person detector for RGB-D data with an on-line 

detector to detect and track pedestrians. The two detectors were integrated into a decision 

framework with a multi-hypothesis tracker that controls on-line learning through a track 

interpretation feedback. For on-line learning, they took a boosting approach using three types of 

RGB-D features and a confidence maximization search in 3D space.  

Spinello et al. (Spinello & Arras 2011) presented a people detection approach using 

RGB-D data. They designed a Histogram of Oriented Depths (HOD) method to detect people in 

dense depth data, and then proposed Combo-HOD, a RGB-D detector that probabilistically 

combines HOD and HOG to further detect pedestrians. While the approach is effective in scene 

with slight occlusion, its performance degrades increasingly in scenarios with severe occlusion.  

Seera et al. (2012) used three Kinects mounted on the ceiling of a hallway to record 

pedestrian trajectories. They mapped the depth information from each Kinect into a common 

world coordinate system using a rigid transformation, and then grouped depth information from a 

single Kinect in the world coordinate system into individual pedestrian based on hierarchical 

clustering. There was no need to deal with occlusions because the data was collected from a top-

down perspective. Although this approach works well, it is not feasible for many real world 

pedestrian detection scenarios such as outdoors or in areas with particularly low ceilings.  

Bosso et al. (2013) proposed a multi-person tracking algorithm for mobile platforms 

equipped with a RGB-D sensor. Their approach features a point cloud depth-based clustering, an 

HOG-like classification to initialize a pedestrian tracker and classifier with online learning to 

manage the person ID matching. It was reported that the algorithm proved to correctly track 96% 
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of pedestrians even in case of temporary occlusion. However, it fails when occlusions exist from 

pedestrians entering the scene to leaving it, which occur frequently in a crowded scene.  

Salas et al. (2011) presented a strategy that combines color and depth images to detect 

people in indoor environments. The similarity of image appearance and closeness in 3D position 

over time yield weights on the edges of a directed graph they partitioned into “tracklets”. Each 

“tracklet” was assigned the highest score that a Histograms-of-Oriented Gradients (HOG) person 

detector yielded. High-score tracklets were deemed to correspond to people. Like other HOG 

based methods, this approach is only feasible in non-occlusion or slight occlusion cases. 

It is clear from the discussions above that while much work has gone into Kinect-based 

pedestrian detection in recent years, most has only focused on detecting pedestrian in simple 

scene with slight occlusion or no occlusion. Most current work has some limitations for crowded 

scenes, especially in resolving the occlusion issue. 

4.3 Data 

We evaluate our method using sequences of RGB and depth images produced by Kinect 

in three scenarios. In the first scenario, we recorded a sequence in our lab with at least five 

pedestrians present simultaneously in the scene with tables, chairs, shelves, computers, pillars, 

etc. The second scenario is outdoors on a sunny day, where there are at most five pedestrians 

simultaneously. The third is also an outdoor scene but on a cloudy day, where at most nine 

pedestrians are present simultaneously in the detection range. 

All the pedestrians in the three scenarios have a variety of poses, and they have frequent 

interactions with others or the surrounding objects. There are approximately 9000 frames in each 
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test database and the resolutions of both RGB and depths image are 640×480 at a frame rate of 

30fps. This amounts to about 5 minutes of video for each scenario. 

4.4 Methodology 

The pedestrian detection method proposed in this paper contains four principle steps. The 

first step is to acquire both the RGB image and Depth image through Microsoft Kinect device. 

The second step is to extract the pedestrian contours from the RGB image by using traditional 

image processing techniques and map depth image coordinates to RGB image coordinates 

utilizing the API function provided by Kinect for Windows SDK v1.6. The third step is to detect 

pedestrians based on the extracted contours and the 3D information. This is done by developing a 
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Figure 4.1 Flow chart of the proposed method 
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region-cluttering algorithm which can easily and efficiently deal with the occlusion issue. The 

last step is to track and count pedestrians. Figure 4.1 illustrates a simplified flow chart of the 

proposed method. Its details are described step-by-step as follows.  

4.4.1 Microsoft Kinect 

Essentially, Kinect is a motion sensing input device marketed by Microsoft for the Xbox 

360 video game console . This device has an RGB camera, an infrared (IR) emitter and an IR 

Depth camera, which make it capable of capturing a color image and depth of each pixel in the 

scene. These data contain visual and geometric information of the scene. The two images are 

complementary and provide us with a way to perform tasks that would be difficult when 2D 

imagery is used alone. Both the depth and RGB image have a resolution of 640x480 at 30fps, 

which is ideal for real-time application. 

4.4.2 Pedestrian Contour Extraction from RGB Images 

As illustrated in Figure 4.1, it is a fundamental step to extract the pedestrian contours 

from RGB video sequences streamed from Kinect. To achieve this, real-time segmentation of 

moving pedestrian regions in the RGB image must be accomplished. Background subtraction is a 

simple matter of identifying the background image and subtracting it from the current image to 

obtain the moving regions. This approach is by far the most popular, as it is natural and provides 

a strong cue for moving objects, thus effectively reducing the area of interest. 

In background subtraction, the first step is to choose a suitable background model which 

can effectively deal with the dynamic background. After comparing it with other commonly used 

background models such as running average and frame difference, we selected the model 

developed by Zivkovic el al. (2004) to acquire the background in our approach. 

http://en.wikipedia.org/wiki/Motion_sensing
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Video_game_console
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Once the background is obtained, it is stored and subtracted from each incoming frame to 

get the foreground. Then thresholding with a threshold     is applied to the foreground to create 

a binary image. That is, for a given frame  , the binary image’s pixel value at location          is 

calculated as follows:       

                                                   

                                               {
                              

                              
                          (4.1)                                 

where         ,          and          are the pixel values at coordinate       on the foreground 

binary image, current frame   , and background image, respectively;     is the threshold. 

 

After the foreground binary image       is obtained, there still exist some speckles caused 

by noise, or vacancy and fractional false regions while the foreground and background are of 

similar color. To improve the foreground quality, we adopt a morphological reconstruction filter 

(19) as the post-processing procedure, defined as: 

 

              ̃                                                           (4.2) 

where       is the final refined binary image,       is the ‘mask’,    is a structure element with 

size of     pixels, and  ̃    is defined as: 

 ̃                                                                          (4.3) 

where   denotes the     structuring element with its origin at the center. 
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Based on the above steps, an improved binary image       is obtained, which needs 

further processing to extract the pedestrian contours. In our approach, pedestrian contours were 

obtained from a binary image       using a simple approximation method which has been 

implemented as a standard method of the image class (Image.FindContours ()) in OpenCV 2.4. 

Meanwhile, the small contours whose perimeters are less than a threshold           are filtered 

out. The remaining ones are the extracted pedestrian contours to be used for extracting pedestrian 

with depth information. 

4.4.3 Conversion from Depth Space to RGB Space 

Even though we obtain the pedestrian contours from RGB image and the depth 

information, we cannot directly use them to extract pedestrian. Because RGB and depth images 

come from two different cameras with different fields of view, pixels in the two images do not 

always line up exactly.  

For this reason, lining up data is an essential prerequisite to acquiring the 3D information 

of the pedestrian contours. Fortunately, Kinect for Windows SDK v1.6 provides an API function 

that enables us to achieve this complex task easily. It implements a mapping of depth coordinates 

to RGB coordinates. The API function we used is CoordinateMapper.MapDepth 

FrameToColorFrame. By calling this function, we can obtain the 3D information of the 

pedestrian contours. 
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4.4.4 Pedestrian Extraction 

 

From steps discussed above, we extract the pedestrian contours from the RGB image and 

acquire the 3D information of each pixel in the contours. However, each pedestrian contour may 

contain one pedestrian or more due to the possible occlusions which often exist in real word 

scenes. For traditional image processing approaches, a complex occlusion reasoning algorithm is 

required to deal with the issues caused by occlusion such as merging, splitting, etc. However, it 

Times-out-of-region=0;   /* a variable to record the times a pixel not belonging to any existed seed region */ 

For each (pedestrians’ contour in current frame) 

Get current contour’s bounding-rectangle; 

For each (line    in the bounding-rectangle from top to bottom) 

    For each (column    of the bounding-rectangle from left to right) 

        If (pixel      ) is out of the contour) 

            Continue; /*continue to judge next pixel */       

        End if 

        If (pixel       .depth is not available) 

            Continue; /*continue to judge next pixel */       

        End if 

        If (seed-list.counts==0) /* the first time to encounter a pedestrian in the contour, treated as a seed */ 

           Add pixel       .depth to the seed- list;  

           Continue; /*continue to judge next pixel */       

        Else 

            For each (seed in current seed- list)  

                If (         ==1) /*     ) belongs to the current seed’s region */   

                    Calculate           ; 

                    Break;   /*continue to judge next pixel */       

                Else 

                    If (seed is the last one of the current seed-list) 

                        If (++times-out-of-region<5) 

                            Break; /*continue to judge next pixel */       

                        End if 

                        Add pixel       .depth to the seed- list; /* a new seed is found, and add it to the seed-list */ 

                            Times-out-of-region=0; 

                       Break;    

                End if 

            End for 

        End if 

    End for  

    End for 

End for 

Table 4.1 Pseudo-code of Pedestrian Extraction Algorithm 
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is still a great challenge for traditional 2D RGB image approaches if objects are occluded the 

entire time they are present in the scene. 

By utilizing the 3D information of pedestrian contours we acquired, the issues related to 

occlusions may be easily and efficiently dealt with. We assume that in nearly every instance of 

occlusion, two or more occluded objects must have a different depth relative to the camera. 

Based on this, we develop a pedestrian extraction algorithm which is similar to the region growth 

algorithm (20) in concept but quite different in implementation.  

Our pedestrian extraction algorithm scans each contour regardless of whether it contains 

one pedestrian or more. It is assumed that the depth values of the adjacent pixels vary gradually 

across a region occupied a single pedestrian, so that only an abrupt change in depth within a 

pedestrian contour will be identified as the start of a new region. It should be noted that depth 

can vary considerably from one edge of a pedestrian region to the other, due to the installation 

angle of the Kinect device. 

The algorithm runs by searching seeds of different regions in the current pedestrian 

contour and judging which region a pixel belongs to. To remove the interference of the noise in 

depth data, a new region is judged to be effective only if five subsequent pixels do not match the 

depth value of any existing region. The last of the five unmatched pixels is the seed for the newly 

established region. Each region is treated as a pedestrian, and its position is marked by the 

position of its seed.  

To judge whether a pixel         belongs to a region    with a seed        , we define a 

criteria function as follows: 
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  (       )  {
                              

           
                                                    (4.4) 

where                and    are the depth value of the pixel         and the threshold 

respectively;           denotes the mean depth of all the pixels in region  , and defined as: 

                                                  
 

 
∑                   

                                         (4.5) 

where   (       )   , pixel         belongs to region   , otherwise the opposite.   

The details of the pedestrian extraction algorithm are described in Error! Not a valid bookmark 

self-reference.. 
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4.4.5 Pedestrian Tracking and Counting  

Once the pedestrians are extracted, they have to be tracked from frame to frame to get the 

pedestrians volumes. To accomplish this, several parameters must be kept for each pedestrian: 

3D position, ID tag, and untracked time.  

The key to tracking pedestrians is to identify their presence in the current frame and each 

successive frame. In our proposed method, this is done by establishing a tracking template and 

comparing the parameters of the pedestrians in the current frame with those in the tracking 

template at a small predefined tracking range   , then finding the minimum cost match. For each 

If (template. Count==0) /* create the template */ 

For each (pedestrian in current frame) 

    If (pedestrian.depth within   ) 

        Add the current pedestrian to template; 

        Initiate its untracked times to 0; 

        ++pedestrian Counts; 

    End if 

    End for 

Else 

For each (pedestrian in current frame) 

    If (pedestrian.depth within   ) 

        Calculate          ; 
        If (          <  ) /* Pedestrian tracked, update the template */ 

            Update the template using    ; 

            Update its untracked times to 0; 

        Else /* a new pedestrian appear, add it to the template */ 

            ++pedestrian Counts; 

            Add the current pedestrian to template; 

            Initiate its untracked times to 0; 

        End if 

    End if 

End for 

End if 

For each (pedestrian in template) 

If (++its untracked times==2) /* a tracked pedestrian disappeared for 2 times, 

remove it from template */ 
    Remove it from template; 

End if 

End for 

Table 4.1 Pseudo-codes of Pedestrian Tracking and Counting Algorithm 
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pedestrian with the minimum cost match, we assume that there is a threshold radius confining the 

range in which it should appear in the next frame. Thus, if the minimum cost is within that 

threshold radius, the corresponding pedestrian continues to be tracked and the matching one in 

the template is updated. Otherwise, it will be treated as an untracked pedestrian and removed 

from template if the untracked time gets to a given value. With the depth information as the 

tracking range    , the 3D Euclidean distance is used as the cost. So the cost of two potentially 

matching pedestrians                and     (        ) is calculated as follows: 

 

            √                                                    (4.6)                     

where               ,    (        ) are the pedestrian in current frame and one in tracking 

template respectively;   and   are the numbers of pedestrians in the current frame and the 

matching template respectively. The minimum cost           for pedestrian               in 

current frame is defined as: 

                             (       )                                                      (4.7) 

 

Once the minimum cost match for a current pedestrian is found to be within the threshold 

radius   , it is considered to be the same pedestrian as it progresses from frame to frame. The 

detail of the pedestrian tracking and counting algorithm is described in Table 4.2. 
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4.5 Experiment 

For implementation of our proposed approach, we used visual studio 2010, C# 4.0, .NET 

framework 4.0, Kinect for windows SDK v1.6, as well as Emgu CV 2.4 which is the wrapper of 

OpenCV under the .NET platform. OpenCV (Open Source Computer Vision Library) was 

initially introduced by Intel and released to the public at the IEEE Conference on Computer 

Vision and Pattern Recognition in 2000. This library is implemented in C/C++. 

The hardware used in our experiment is Microsoft Kinect and a desktop computer with an 

Intel(R) Core(TM) i5-2400 3.1GHz CPU and 4GB RAM. Both RGB and depth images by Kinect 

are 640x480 resolution.  

4.5.1 Experiment results 

Experiments were conducted for all the three scenarios, and examples of successfully 

detecting and tracking pedestrians in the crowded scenes based on consecutive frames are 

demonstrated in Figure 4., Figure 4. and Figure 4.4. From Figure 4., we can see that the 

pedestrians were still detected and tracked even though severe occlusions occurred frequently in 

this scenario. In addition, our approach can also successfully detect pedestrians in scenes with a 

cluttered background where other still objects such as tables, computer, shelves, pillars etc. are 

present, which is a great challenge for other depth-based detection approach such as (Hsieh et al. 

2012). It should be noted that, in Figure 4., the pedestrian behind the pillar in (a) and the last 

pedestrian in (b) were not detected just because they were out of range and their depth 

information was not available. 

Figure 4. and Figure 4.4 show the experiment results in outdoor environment. In Figure 

4.3 (a), (b), and (c), the farthest pedestrian in the white shirt cannot be detected for the same 
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reason; i.e. his depth was not available at that distance. However, other pedestrians can be 

successfully detected and tracked once their depth information is available.  
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While in most cases the proposed approach in this paper can successfully detect and track 

pedestrians in crowded scene, missing detections occur in some situations where two or more 

pedestrians walk so closely that they have almost the same depth relative to the Kinect. As 

indicated in Figure 4.4, one of the four pedestrians was not detected in scenario 3. In fact, the 

undetected pedestrian and the adjacent detected one have nearly equivalent average depths of 

    

    
Frame 3891                      (b) Frame 4089                      (c) Frame 4134                     (d) Frame 5316    

 

     

     
(a) Frame 1719                      (b) Frame 1761                      (c) Frame 1791                     (d) Frame 2309    

 

Figure 4.2 Examples of successful detecting and tracking pedestrians for scenario 1 (Yellow solid circle locating one 
pedestrian), RGB image on top while corresponding depth image on bottom 

Figure 4.3 Examples of successful detecting and tracking pedestrians for scenario 2 (Yellow solid circle locating 
one pedestrian), RGB image on top while corresponding depth image on bottom 
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8879mm relative to Kinect. According to our pedestrian extraction algorithm described in 

section 4.4, they were clustered to one region which resulted in the missing detection. Though 

missing detection exists in this case, the missing pedestrian could be tracked and counted once it 

is detected again. It should be noted that in Figure 4.5, others behind these four pedestrians are 

not detected just because they were out of the detection range at that moment which can be easily 

seen from the depth image. 

From the experimental results illustrated in Figure 4.-Figure 4.4, we can definitely 

conclude that in most cases, our proposed approach performs reasonably well for detecting and 

tracking pedestrians in crowded scenes with cluttering backgrounds, even though severe 

occlusions occur frequently.  

    

   

(a) Frame 3841                      (b) Frame 3861                      (c) Frame 3902                     (d) Frame 3937    

 

 
Figure 4.1 Examples of successful detecting and tracking pedestrians for scenario 3 (Yellow solid circle locating 

one pedestrian), RGB image on top while corresponding depth image on bottom 
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It was also found that though Kinect was initially designed for indoor applications, it 

performs very well in outdoor environments. In our studied cases, scenario 2 is on a sunny day 

while scenario 3 is on a cloudy day. A pedestrian with a depth of at least 10m can be reliably 

detected in scenario 3, and at least 7m far away from Kinect in scenario 2. Both of these are 

beyond the reliable depth range of 4m reported by Microsoft. 

4.5.2 Counting Accuracy and Real- time Performance 

Table 4.1 summarizes the resulting counts and accuracies of the approach proposed in 

this paper under various scenarios. The automatic counts were generated by the tracking 

approach developed in this paper. Pedestrians were also manually counted as ground truth data. 

The results show that the indoor scenario has higher accuracy, but in general the results remain 

reasonably accurate. 

Table 4.1 Summary of Counting Test Results 

Scenario 
Test 
length 

Manual 
counts 

Automatic 
counts 

Under 
counting 

Over 
counting 

Accuracy 
(%) 

1 5 min 56 59 0 3 94.7 
2 5 min 60 56 4 0 93.3 
3 5 min 58 54 4 0 93.1 

 
 Figure 4.2 Example of missing detection (Yellow solid circle locating one pedestrian), RGB image on the left while 

corresponding depth image on right 
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Detection errors resulted in some over counting and under counting. The primary reason 

for over counting lies in the incomplete pedestrian contour formed due to vacancy and fractional 

false regions in places where the foreground and background are similar in color, which 

separates one pedestrian contour into two or more. Under counting results from a failure to detect 

one or more pedestrians when they have almost the same depth relative to Kinect, as indicated in 

Figure 4.5. 

Real-time performance is essential for almost all the real world pedestrian detection 

system. Our proposed approach has an average running time of 50ms per frame in all the three 

tested scenarios, i.e. 20 fps for Kinect images with 640x480 resolution. This means it can be 

applied to scenarios where real time performance is required. 

4.6 Conclusion 

By utilizing Microsoft’s Kinect device with 3D sensing capabilities, a low cost solution 

for occlusion robust pedestrian detection in crowded scenes was proposed and tested. The 

proposed approach fused the information extracted from RGB images with that from depth 

images to efficiently detect pedestrian in crowded scenes where occlusion occurs frequently, 

which is very challenging for traditional image based approaches. Three crowded pedestrian 

scenarios from indoor and outdoor environments were used to test the proposed approach, and 

the results are very promising both in terms of accuracy and real time performance. This 

demonstrates that the low cost Kinect is quite feasible in real-world pedestrian detection for 

crowded scenes.  

The approach proposed in this paper could be effectively used in a broad range of 

applications including but not limited to: 
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Management of large pedestrian infrastructures such as public transport, railway stations, 

airports, stadiums, shop center etc. Pedestrian detection is required to quantify and monitor the 

demand for the infrastructure in order to correspondingly adjust supply.  

 Onboard passenger volume estimation for public transit such as buses, light rail, ships, 

etc. 

 Pedestrian data collection for academic research on pedestrian behavior and movement 

patterns, pedestrian traffic safety, etc. 

 Pedestrian data collection for intersection geometric design, signal timings, etc. 

 Other pedestrian surveillance applications related to security and safety. 

While promising results were achieved, the approach proposed in this paper has a 

limitation in that missed detections occur especially when two or more pedestrians walk closely 

together such that they have almost the same depth relative to the Kinect device. What’s more, 

pedestrian walking speeds and trajectories were not addressed in this paper, though they could be 

easily acquired from the proposed approach. Further enhancements in the detection and tracking 

algorithm will definitely help improve accuracy of the proposed approach. 
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CHAPTER 5.0 BLUETOOTH DATA COLLECTION SYSTEM FOR PLANNING AND 

ARTERIAL MANAGEMENT 

 

5.1 Introduction 

This chapter documents the research and development of an inexpensive portable 

wireless roadside data collection system. This system is comprised of the roadside data collection 

units (DCUs), and a web-based software application that is used to process the collected data.  

The system developed utilizes Bluetooth technology as the wireless technology platform 

due to the widespread use of Bluetooth-enabled devices in vehicles, and builds off of results and 

knowledge gained from prior research projects (Porter et al. 2011; Kim et al. 2012). These 

projects focused on the development and implementation of a permanently installed Bluetooth-

based wireless travel time data collection system for arterials. In this project a portable wireless 

roadside data collection system intended for short-term data collection purposes is designed, 

researched, and developed. The portable roadside DCUs can work as a system or in isolation 

depending on the needs of the application. Applications include: 

 Intersection performance 

 Origin-Destination data collection 

 Travel time data collection. 

The objectives of this part of the project are: 

1. Utilize prior research experience to develop an inexpensive, easily deployed portable 

system for wireless Bluetooth-based automatic collection of vehicle movement data.  

2. Use this prototype wireless data collection system to collect Origin-Destination data for 

traffic planning models.  
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3. Apply the system at an intersection to monitor intersection performance. 

4. Evaluate the use of the proposed system to collect travel time data needed for project 

level analysis to monitor, evaluate, and maximize the performance of advanced traffic 

signal systems; and compare the performance of arterials.  

The remainder of this chapter will begin with a literature review and background 

information on the data collected using Bluetooth wireless technology. This information is 

presented to facilitate better understanding of the data collection system operation and the 

research and development conducted. After the background information the project objectives 

will define report sections where the work and results related to that objective are presented.  

5.2 Literature Review and Background Information 

5.2.1 Performance Data with Bluetooth Sensors 

Most of the applications of Bluetooth-based DCUs to transportation have been in the area 

of travel time data collection. In addition to Wasson et al. (2008), other examples of such 

research are Malinovskiy et al. (2010), Puckett and Vickich (2010), Quayle et al. (2010), Quayle 

and Koonce (2010), and Hagani et al. (2010). One exception is the study performed by Tsubota 

et al. (2011), where the “duration” (the length of time the same MAC address was seen by a 

sensor) and travel time data obtained from a system of Bluetooth DCUs installed on a main 

arterial in Brisbane, Australia, was analyzed. Scatter plots of duration (at the downstream 

detector) versus travel times between DCUs did not show a strong relationship between duration 

and travel times. The researchers stated that the lack of a strong relationship between duration 

and travel times was due to uncontrollable environmental factors. Finally, it was demonstrated 

through simulation that the relationship between duration and travel times is linear in 
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uncongested conditions, but becomes bimodal as congestion increases. However, no specific 

intersection performance measures are computed. 

5.2.2 Data Description 

This section presents background information on the data collected by Bluetooth–based 

wireless data collection units (DCUs) and how it is utilized. The objective of data collection by a 

set of DCUs is to estimate when a vehicle containing a discoverable Bluetooth device just passes 

each DCU. This is referred to as point detection and is depicted in Figure 5.1. If this can be done 

accurately for a series of DCUs on a specific road segment, then a number of performance 

measures can be estimated. 

 
Figure 5.1 Point detection refers to estimating when a vehicle containing a discoverable Bluetooth device just 

passes the DCU marked by the vertical line across the road 

Bluetooth-based DCUs repeatedly conduct an “inquiry” procedure to identify any 

Bluetooth devices that are within the unit’s antenna coverage area. Bluetooth devices within the 
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DCU coverage area will respond to this inquiry with a data packet that contains a media access 

control (MAC) address, which is used as an identifier for the vehicle containing the device. 

Because the antenna coverage area of a DCU can cover several hundred feet (or more) of the 

road being monitored, and because multiple vehicles may travel on the road over the same time 

period, several features of the data collected by a single DCU are:  

 There may be multiple MAC addresses detected over a fixed time period. 

 A single MAC address may be detected multiple times as the vehicle travels past the 

DCU. The multiple detections are referred to as a group. 

 The number of times a single MAC address is detected may vary for the different 

MAC addresses detected. 

 Different MAC addresses may have the same time stamp (i.e., date and time). 

For the portable data collection system developed, each DCU will have one or more data 

files that contain all detected MAC address records stored in a comma separated text file. No 

data filtering or data processing will be conducted on the DCU. Figure 5.2shows a sample MAC 

address record. 

 
 

 
Figure 5.2 A sample MAC address record stored on a DCU 

In Figure 5.2, RSSI is the received signal strength indicator, which is a measure of the 

detection strength. The RSSI has been used in past work to utilize a single DCU for point 

1F:16:76:C3,2013-04-29 09:57:32.265782,-66,0:1:95:17:C9:C5

Detected MAC Address Date and Time RSSI DCU MAC Address
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detection. More information on the use of RSSI within a single DCU, and more detailed 

Bluetooth data collection background information can be found in Kim et al. (2012). 

5.3 Portable Collection System Design 

This section documents the final design of the portable data collection system design, 

beginning with a summary description of the system and its operation. This will be followed by 

descriptions of individual system components, new data processing web application developed 

for specific applications of the system, and system cost.  

5.3.1 System Description 

The portable Bluetooth-based data collection system provides a means to automatically 

collect vehicle movement data between points on a road segment defined by the location of 

individual DCUs. The system consists of multiple battery-powered DCUs and their packaging, 

and a web-based software application for data processing. A user of the system will deploy the 

DCUs on a temporary basis for a particular application of interest, and the total period of data 

collection will dictate the need for battery changes. After deployment, the user will collect the 

DCUs and download data from the DCUs to a USB jump drive. The raw data files can then be 

transferred to a personal computer. The user will access the web-based data processing 

application, upload the data files, and proceed with the appropriate data processing and analysis 

option. Results can be printed and/or copied to spreadsheets. Figure 5.1 shows a hypothetical 

deployment of four DCUs to collect data to estimate intersection performance. In Figure 5.1, the 

DCUs are packaged within traffic drums. 
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Figure 5.1 System deployment for intersection performance estimation 

There are two types of DCUs: a coordinator DCU, and a router DCU. The use of a 

coordinator DCU depends on whether the specific application requires time synchronization 

between the DCUs. The application depicted in Figure 5.1 and other applications where vehicle 

movement data is of interest will require time synchronization. Periodically, all DCUs will 

update their time to match the coordinator DCU. For such applications, a single coordinator 

DCU is used, and the DCUs must be close enough to another DCU (within several hundred feet) 

to communicate with it. The DCUs communicate using a Zigbee radio and the system of 

deployed DCUs will constitute a “mesh network,” which means that a router DCU that cannot 

communicate directly with the coordinator DCU can do so through other router DCUs. 

In other applications such as origin-destination data collection, time synchronization is 

not needed since the primary interest is in vehicle trip counts between various origins and 

destinations. Time synchronization is also not needed for temporary travel time data collection 

over road segments of approximately one half mile in length or greater. 

The system was developed to be as user-friendly as possible and a “kit” of DCUs can be 

deployed by following a simple start-up procedure. The start-up procedure will vary depending 
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on the data collection application. Establishing DCU operation time settings and data download 

are accomplished by simply plugging a USB jump drive into a DCU.  

5.3.2 Data Collection Unit Hardware and Software 

The complete data collection unit consists of the following three main components: 

1. Data collection microcontroller unit in an enclosure with an external Bluetooth adapter, 

micro-SD memory card, an integrated Zigbee radio, and an antenna for the Zigbee radio 

mounted to the enclosure. 

2. An external directional antenna and antenna cable for the Bluetooth adapter. 

3. An external rechargeable battery and battery cable. 

In addition to the main DCU components, a GPS module that is only necessary at start-up 

to establish the time is also a part of the system. Since the GPS module is only used at start-up 

one module can be used with multiple DCUs. Figure 5.1 below shows the microcontroller unit 

with the Bluetooth adapter, Zigbee radio, and Zigbee antenna mounted to the opened enclosure. 

The components in Figure 5.1 normally stay together (except for the Zigbee antenna), and are 

matched with an external Bluetooth antenna, Zigbee antenna, and battery as needed.  
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Figure 5.1 Microcontroller unit portion of the DCU 
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Figure 5.2 External Bluetooth antenna and cable battery 

 

 
Figure 5.3 Battery and GPS module 
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The components in Figure 5.2and Figure 5.3 are paired with a microcontroller unit as 

needed, and the GPS module is only needed when the system is started. Thus one GPS module 

can support multiple system deployments. 

The specific component model numbers are shown in Error! Reference source not found..  

 
Table 5.1 DCU Component List 

Component Manufacturer Model Number 

Microcontroller board Olimex Ltd. iMX233-OLINUXINO-MINI 
Bluetooth adapter Parani Parani-UD100 

Memory card Sandisk 2GB MicroSD memory Card 
Zigbee radio module Digi XBee XB24-Z7SIT-004 

Antenna for Bluetooth adapter HyperGain HG2408P 
Antenna for Zigbee radio Taoglas GW.71.5153 

External DCU battery Turcom Ultra Capacity 33600mAh 
Portable Power Bank Charger 

 
There are two types of DCUs:  

1. Coordinator DCU. The coordinator sends the time to other DCUs for the purposes of 

time synchronization. If the DCUs deployed are to be used in a system with time 

synchronization, then the GPS module is only used with the start-up of the coordinator 

DCU. 

2. Router DCUs synchronize time with the coordinator DCU, and also send data to the 

coordinator. They also serve as nodes in a mesh network if a router DCU cannot 

communicate directly with the coordinator DCU. 

Both types of DCUs can be operated in two modes:  

1. System mode where time synchronization to a single coordinator DCU is executed. 

2. Stand-alone mode where the Zigbee radio is not operated and the DCU detects and stores 

MAC addresses in isolation (e.g., as is the case in for origin-destination data collection). 
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In this case each DCU must be started using a GPS module to establish the correct date 

and time. 

The operational mode is selected by the start-up procedure completed. The software for 

operating the DCU which includes the operating system, start-up scripts, and python code source 

code is stored on a micro-SD card that is inserted into the DCU and accessed when the DCU is 

started. The main specifications of the software are: 

 Operating system – Arch Linux. 

 Python source code with the PyBluez and PySerial libraries for operating the Bluetooth 

adapter and Zigbee radio. 

The main functions implemented in the start-up script, which are a series of Linux commands, 

are: 

 Detection of the presence of a USB flash drive. If present, MAC address data files will be 

downloaded (moved) from the DCU to the USB drive, and text files (with DCU settings) 

will be copied from the USB drive to the DCU. 

 Detection of the presence of a USB GPS receiver. If present the date and time on the 

DCU will be set from the date and time obtained through the GPS receiver. 

 Running the DCU in the proper mode. 

 Control the on/off running status of the Python code. 

The main functions of the Python code are: 

 Execution and control of the Bluetooth inquiry procedure and the storing of detected 

MAC addresses. 

 Controlling communication between the DCUs using the Zigbee radios. 
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5.3.3 Web-Based Software Application for Data Processing 

To process the data collected by the portable data collection system, a web-based—

currently hosted on an OSU server—application has been developed. The URL for the 

application is http://research.engr.oregonstate.edu/btdataanalysis/logIn.php. 

The application has been designed with three main data processing and analysis 

procedures for the following applications: 

1. Origin-Destination data collection, 

2. Travel time data collection, 

3. Vehicle movement and road segment performance estimation (in progress). 

The latter application includes various types of road segments, but was developed with 

intersection performance as a primary use. 

The user of the application will normally execute the following steps after accessing the 

application. 

 Choose the appropriate data processing and analysis procedure for the application, 

 Upload raw data files obtained from the DCUs, 

 Enter parameters for the analysis such as the location of the DCUs, the MAC address of 

the DCUs, the maximum allowed travel time between locations, etc. 

 Conduct the analysis, view the results, and copy the results from the application directly 

into a spreadsheet. 

 Close the application. 
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No data is saved on the server, so if the user closes the application raw data uploads will be 

required if the analysis is to be repeated. Figure 5.1 shows a screen shot of the origin-destination 

data processing screen after files have been uploaded and the analysis parameters entered. 

 
 
 

 

Figure 5.1 Web application screen shot showing origin-destination data entry 

 

 
Figure 5.2 shows a screen shot of the origin-destination data analysis screen after the analysis has 

been completed. 
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Figure 5.2 Web application screen shot showing origin-destination data analysis 
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5.3.4 System Cost and Packaging 

The packaging developed for the system consists of a traffic drum with a painted external 

Bluetooth antenna. The microcontroller unit, battery, and cables are mounted inside the drum 

with zippered pouches. 

Figure 5.1 shows a DCU deployed for origin-destination data collection with the 

Bluetooth antenna oriented perpendicular to the direction of traffic. 

 

 

Figure 5.1 DCU deployed on I-5 for origin-destination data collection 

 



 

 

101 

 

Costs for individual components are shown in Table 5.1. The costs in Table 5.1 do not reflect 

volume discounts and are rounded up to the nearest dollar. For antennas volume discounts can be 

up to 40% less costly, but are less for other components. 

Table 5.1 DCU Components – Approximate Pricing 

Component Manufacturer Unit Cost 

Microcontroller board Olimex Ltd. $47 
Bluetooth adapter Parani $35 

Memory card Sandisk $6 
Zigbee radio module Digi $40 

Realtime clock module Olimex Ltd. $7 
Microcontroller enclosure NA $8 

Microcontroller Unit Total  $143 

Bluetooth antenna and cable HyperGain $32 
Antenna for Zigbee radio Taoglas $10 

External DCU battery Turcom $120 

 
The Bluetooth and Zigbee antennas and the battery are intended to be purchased 

separately and to be paired with microcontroller units as needed. These particular components all 

have large volume discounts.  

5.4 Origin-Destination Study Data Collection Test 

Six DCUs were deployed to collect origin-destination data for a planning model of the 

Corvallis-Albany-Lebanon area. Table 5.1 is a list of the locations where vehicle counts and 

vehicle trip counts are to be recorded. The highlighted rows show the four locations where DCUs 

were deployed. Count ID locations 97 and 105 were on interstate highway I-5 and had two units 

deployed at each location. Due to the width of the median, one DCU was placed on the 

northbound side and another DCU was placed on the southbound side. Figure 5.1 is a map 

showing the numbered data collection locations. 
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Table 5.1 Data Collection Locations for Origin-Destination Data 

Count 
ID Intersection/Location City 

9 
On Jefferson Hwy Hwy 164 (OR164) and west of 
Mill St. in Jefferson Jefferson 

95 Sodaville-Waterloo Dr & Hwy 016 (US20) South of Lebanon and West of the City of Waterloo 

96 Berlin Rd & Waterloo Rd South of Lebanon and East of the City of Waterloo 

97 I5 North of Dever Rd Interchange.png Albany 

98 Hwy 226 East of (Hwy20) Santiam Hwy SE East City of Albany 

99 Brewster Rd East of Berlin Rd. Lebanon 

100 I5-Exit 228 south of Corvallis Lebanon Hwy Albany 

101 Hwy 99E South of Bell Plain Dr.png South of City of Tangent 

102 99W Pacific Hwy South of Smith Loop-.png South City of Corvallis 

103 BT-CountID103-Hwy 34 and Decker Rd-.png South west of City of Philomath 

104 Corvallis Newport Hwy and Hwy 34 West City of Philomath 

105 99W Pacific Hwy North of Camp Adair Rd North of the City of Adair Village 

 

 

Figure 5.1 Data collection locations in the Corvallis, Albany, Lebanon area 

 

Corvallis

Philomath

Lebanon
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The DCUs were continuously operated from approximately 11am, Monday, April 29, 2013 to 

3pm, Friday, May 3, 2013. Battery units were changed with completely charged batteries every 

24 hours. A single DCU at count ID location 97 (southbound side) was stolen after one day of 

deployment. Table 5.2 shows the exact deployment time periods. 

 
Table 5.2 DCU Deployment Periods for Origin-Destination Data Collection 

Count 
ID Start Date and Time End Date and Time 

95 2013-04-29 11:30:51 2013-05-03 14:27:45 

97 
NB Unit: 2013-04-29 10:40:45 
SB Unit: 2013-04-29 10:51:49 

NB Unit: 2013-05-03 15:08:52 
SB Unit: Missing 

100 
NB Unit: 2013-04-29 10:23:27 
SB Unit: 2013-04-29 09:57:32 

NB Unit: 2013-05-03 14:54:25 
SB Unit: 2013-05-03 14:27:45 

104 2013-04-29 12:18:13 2013-05-03 11:57:37 

 

The web-based application described in section 5.3.3 was used to process the data 

collected by the DCUs. Table 5.3 shows the travel time maximum values used between the DCU 

locations when processing the data. Any MAC address “matches” between two locations with a 

time difference greater than the value in Table 5.3 were not counted. This prevents the counting 

of matches caused by vehicle detections on different days. The parameters in Table 5.3 are easy 

to change and are shown as symmetric, but can be entered as non-symmetric times. 

Table 5.3 Maximum Travel Time used for Origin-Destination Data Processing 

Origin- Dest ID 97 ID100 ID 95 ID 104 

ID 97 * 20 min 40 min 40 min 

ID 100 20 min * 60 min 60 min 

ID 95 40 min 60 min * 80 min 

ID104 40 min 60 min 80 min * 

 
Table 5.4 through Table 5.7 are the four tables produced as output from the web-based data 
processing application.  
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Table 5.4 Trip Counts 

Origin- Dest ID 97 ID100 ID 95 ID 104 

ID 97 * 5539 17 49 

ID 100 4932 * 79 104 

ID 95 7 131 * 15 

ID104 41 90 26 * 
 

 
Table 5.5 Average Travel Times for the Trips in Table 5.2 (minutes) 

Origin- Dest ID 97 ID100 ID 95 ID 104 

ID 97 * 12.24 26.65 28.29 

ID 100 12.34 * 34.16 39.11 

ID 95 27.15 36.71 * 51.24 

ID104 27.17 38.96 53.53 * 

 
 

Table 5.6 Total MAC Address Counts 

ID 97 ID100 ID 95 ID 104 

16499 19896 2627 1973 

 
 

Table 5.7 Total Unique MAC Address Counts 

ID 97 ID100 ID 95 ID 104 

10027 11478 1013 902 

 
In this test study, two DCUs were placed at each I-5 data collection location due to the 

width of the highway. This was done to examine if a DCU located on one side (e.g., southbound) 

was missing a large number of detections for vehicles traveling on the other side of the highway 

(e.g., northbound vehicles). At count ID location 100 (I-5 and Highway 34) there were 10,027 

unique MAC addresses detected over the study period. The DCU on the southbound side 

detected 8,596 unique MAC addresses, and the DCU on the northbound side detected 9,190 

unique MAC addresses. This indicates that a large number of detections were missed by both 

DCUs. The recommendation that follows is to use one DCU on each side of the road for 

deployments on wide roads such as I-5. 
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5.4.1 Estimation of Total Trip Counts 

Because not all vehicles contain discoverable Bluetooth devices, the trip counts collected 

using the portable DCUs represent a fraction of the total trip count. Assuming that the percentage 

of vehicles containing discoverable Bluetooth devices is constant over time and different 

geographic areas, a “multiplier” can be used with the trip counts collected to estimate total trip 

counts. Tests were conducted to estimate the value of this multiplier. The first test estimated the 

fraction of traffic volume detected by the portable DCU, and the second test estimated the 

percentage of “trips” where the same discoverable Bluetooth device is detected by two different 

DCUs positioned at two locations along a trip route. Figure 5.1 shows the location of a single 

DCU (adjacent to highway 34 in Corvallis, Oregon) that was utilized to estimate the fraction of 

vehicles detected by the DCU. 

 

Figure 5.1 Data collection location used to estimate the vehicle fraction detected 
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The DCU was run for one hour, and the total number of vehicles travelling on highway 

34 over this same hour (in both travel directions) was counted and recorded. 134 different MAC 

addresses were detected. These MAC addresses are assumed to be associated with vehicles since 

no address generated group sizes that indicated otherwise. 2045 vehicles were counted over this 

same period so that 134÷2045 = 6.55% of the vehicles were detected.  

The second test was conducted on an approximately one mile round trip route on the 

Oregon State University campus. On this route, two DCUs were located approximately 0.5 miles 

apart. A single test run consisted of vehicle with a discoverable Bluetooth being driven past both 

DCUs. After each test run, the vehicle was driven outside of the DCU coverage area and the 

Bluetooth device in the vehicle was turned off. After a two minute wait the Bluetooth device was 

restarted and the next test run was conducted. 20 test runs were completed, and the vehicle was 

detected at both DCUs in 19 of these test runs. 

Combining the results of these tests, it is estimated that on average 6.2% of the vehicle 

trips are recorded by the portable DCUs, which implies that trip counts should be multiplied by 

16.1 to obtain an estimate of total trip counts. This is consistent with the travel time data 

collection sampling rate reported in Kim et al. (2012), which was computed from a larger sample 

of data. It is also consistent with the results obtained from the intersection performance 

measurement test documented in section 5.5. 

5.4.2 Conclusions  

The data collection potential offered by the portable DCUs is supported by the test 

conducted. The Oregon Department of Transportation Traffic Planning and Analysis Unit 

(TPAU) also hired a consultant to collect count data at the locations shown in Figure 5.1. This 
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consultant was not able to collect counts at all locations due to problems with the pneumatic tube 

counters. Trip count data was unavailable due to both cost and feasibility. After the conclusion of 

this test TPAU requested a larger scale data collection study in the city of Newport, Oregon. 

Twenty-six DCUs were deployed in two different months to collect trip count and travel time 

data for three consecutive days (Wednesday to Friday). This study was completed successfully 

and provided a much less expensive data collection alternative. 

Prior research (Kim et al., 2012) has shown that the travel time samples collected by 

similar DCUs are very accurate, and that a reasonable multiplier for trip counts is 16.1. This 

multiplier value was also verified in tests conducted as part of this project. 

5.5 Intersection Performance Test 

This section presents results from the application of the Bluetooth-based data collection 

system to collect vehicle movement data for vehicles traveling through an intersection. Vehicle 

movement data are the travel times (short in duration) between the DCUs, which are placed at 

known locations along the road with specific distances between each DCU. The travel time data 

samples collected at the intersection also include the time that it takes for a vehicle to interact 

with the control mechanism at the intersection. The test was conducted at an intersection with 

large amounts of pedestrian and cyclist traffic relative to vehicle traffic. The test location was at 

the intersection of NW Monroe Ave and NW Kings Blvd near the Oregon State University 

campus in Corvallis, Oregon (Figure 5.1). The test was completed on a Friday, during noon rush 

hour (from 11:00 am to 12:00 pm). This three-way stop-controlled intersection has several 

businesses in the vicinity and experiences high/medium levels of traffic in different modes, 

including passenger vehicles, buses, pedestrians and bicyclists. The frequent occurrence of 
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different travel modes introduces a very high level of complexity to the system since active 

Bluetooth devices are present in all travel modes. This environment represents one of the more 

complicated environments where such a system may be deployed. 

 

Figure 5.1 Intersection utilized for the data collection test 

 
The goal of this test was to compare the time duration that vehicles spend at the 

intersection obtained from the wireless data collection system to the same data obtained 

manually. For the purpose of this experiment, ground-truth intersection time duration data was 

obtained by video recording the intersection. The next section provides a summary of the test 

setup. 

5.5.1 Intersection Test Setup 

The overall setup configuration for this test is presented in Figure 5.1. Three DCUs were 

utilized in this test and they were located so that the beginning, stop, and the end points of the 

functional area of the intersection could be monitored for eastbound traffic. MAC address data 
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was collected for one hour. Two high definition (HD) and high-speed cameras were utilized to 

record traffic at the DCU locations. The high-speed feature allowed for the recording of up to 60 

frames per second, which made it possible to track moving objects with very high accuracy. The 

video recorded by the cameras was used for validation purposes and made it possible to see 

exactly when a detected vehicle just passed a DCU.  

 
Figure 5.1 Test setup for intersection performance data collection test 

5.5.2 Test Results  

A total of 54 unique MAC addresses were detected by all three DCUs during the one-

hour data collection period. By reviewing the video data from both cameras, a total of 25 unique 

MAC addresses were matched to specific vehicles (or a platoon of vehicles). In cases when a 

platoon of vehicles passed the DCU locations, it was not clear exactly which individual vehicle 

contained the active Bluetooth device. However, since the accuracy assessment is based on 

measured travel time between reference points (i.e., DCU locations) this did not affect the test 

results. Four hundred vehicles travelled past all three DCUs (from video review) during the one-
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hour data collection period. This means that the installed DCU system was able to capture travel 

times for approximately 6.25% of the total traffic. Of the 25 vehicles detected, the travel times 

recorded by the DCUs were the same as those calculated from the video in 14 cases. In the other 

11 cases, a maximum error of 6 seconds was recorded with an average error of 1.14 seconds. The 

summary of the results is presented in Table 5.1. 
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Table 5.1 DCU to DCU Travel Time Accuracy Results 

 

MAC Travel Time From DCUs 
(sec) 

Travel Time From Video 
(sec) 

Travel Time Error 
(sec) 

Address 
DCU1 

– 
DCU2 

DCU2 
– 

DCU3 

DCU1 
 – 

DCU2 

DCU2 
– 

DCU3 

DCU1 
– 

DCU2 

DCU2 
– 

DCU3 
1 1C:A1:2F:47 1 7 1 7 0 0 
2 18:A3:6B:03 N/A 15 N/A 15   0 
3 7E:AD:FB:B8 10 6 10 12 0 6 
4 D1:68:B6:6C 5 13 5 13 0 0 
5 43:7F:EA:02 16 9 16 15 0 6 
6 6C:A7:3F:7A 10 5 12 5 2 0 
7 6C:A7:3F:7A N/A 5 N/A 9   4 
8 7E:74:28:B0 5 4 5 4 0 0 
9 9F:B7:14:E6 4 7 4 7 0 0 

10 FE:73:4A:5C       
11 7E:25:51:47 N/A 13 N/A 13   0 
12 AE:6D:FA:3B 5 7 5 7 0 0 
13 58:0E:9E:36 5 9 10 4 5 5 
14 4B:DE:10:B9 12 6 12 6 0 0 
15 16:67:00:E0 11 5 11 8 0 3 
16 1C:14:19:BF       
17 68:96:34:C0 6 10 6 10 0 0 
18 7E:5D:3E:85 16 4 16 4 0 0 
19 1C:A1:A7:36       
20 3D:1F:94:A4 9 5 9 5 0 0 
21 3D:1F:94:A4 N/A 2 N/A 2   0 
22 0C:5A:ED:DD 16 5 16 5 0 0 
23 BE:6B:ED:CD 7 4 7 4 0 0 
24 BE:46:1D:E4       
25 3E:EC:AF:75 14 7 14 7 0 0 

 
Average Travel Time 0.41 1.14 

Max (seconds) 5 6 
 

In Table 5.1, the cells with “N/A” indicate that there was no record from that road 

segment for a particular vehicle (identified by the detected MAC address). The particular vehicle 

may not have passed all three DCUs, and/or was not detected by a DCU. For four MAC 
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addresses in Table 5.1 (10, 16, 19, and 24) all fields have been left blank. In these cases, the 

MAC address could not be paired to a vehicle from the video. 

For this study, the functional area of the intersection can be defined as the length of the 

road between DCU 1 (150ft upstream of the stop bar) and DCU 3 (50ft downstream of the stop 

bar). Within this length of the road, vehicles approaching the intersection on eastbound NW 

Monroe Avenue interact with the traffic control device (a stop sign in this test). The average time 

it takes a vehicle to travel between DCU 1 and DCU 3 can be used as an intersection 

performance measure. It can be compared to the travel time at the posted speed limit. 17 of the 

25 vehicles in Table 5.1 drove eastbound past all three DCUs. The average travel time from 

DCU 1 to DCU 3 obtained from the wireless data collection system is 16.5 seconds. The average 

time obtained from video recordings is 18.2 seconds, which is a 1.7 second difference. At the 25 

MPH speed limit a vehicle traveling from DCU 1 to DCU 3 would take 5.45 seconds, thus the 

estimated delay due to the eastbound traffic control device is 11.05 seconds. 

5.5.3 Conclusions 

The results of the intersection test show that the portable DCUs have the potential to 

accurately monitor the performance of an intersection. Utilizing more than three DCUs would 

allow more detailed estimates of vehicle trajectories through the intersection. This is currently 

being researched as part of an Oregon Department of Transportation sponsored research project. 

5.6 Traffic Signal Timing Evaluation 

Three DCUs were deployed along Highway 99W in Sherwood, Oregon to test their use in 

travel time data collection to evaluate signal timing changes. The primary consideration was 

northbound travel along Highway between the DCU locations shown in Figure 5.1. DCU number 
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1 is the farthest south, and DCU number 3 is the farthest north. The DCU locations were 

determined by the Oregon Department of Transportation who are responsible for the signal 

operation along Highway 99W. Travel time data between the DCUs was collected for two 

separate time periods between which a signal timing change was to be implemented. The data 

collection periods were September 17, 2013 (00:00) to September 19, 2013 (23:59), and October 

1, 2013 (00:00) to October 3, 2013 (23:59). Both data collection time periods were from Tuesday 

through Thursday. 

The travel time data collection summary for both time weeks is shown in Table 5.1. 

Although the DCUs were only deployed on the east side of Highway 99W to collect northbound 

travel times, the DCUs were able to collect a number of southbound travel times, which are also 

shown in Table 5.1. Table 5.2 and Table 5.3 present the same summary information for the 

morning and evening rush hour periods. 
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Figure 5.1 DCU deployment locations (yellow pins) along Highway 99W in Sherwood, Oregon 
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Table 5.1 Travel Time Data Collection Summary for Highway 99W Signal Timing Evaluation 

 
 

 

Table 5.2 Travel Time Data Collection Summary for Highway 99W, 6AM - 8AM 

 
 

September 17, 2013 (00:00) to September 19, 2013 (23:59) October 1, 2013 (00:00) to October 3, 2013 (23:59)

Number of trips between DCUs Number of trips between DCUs

1 2 3 1 2 3

1 - 3097 1590 1 - 2623 1296

2 1922 - 1742 2 953 - 1483

3 1360 1145 - 3 605 990 -

Average Travel Time Between DCUs (Minutes) Average Travel Time Between DCUs (Minutes)

1 2 3 1 2 3

1 - 1.09 3.33 1 - 1.1 3.41

2 0.99 - 2.21 2 0.93 - 2.17

3 4.08 2.91 - 3 3.9 2.81 -

Total Number of Vehicles Detected at each DCU Total Number of Vehicles Detected at each DCU

1 2 3 1 2 3

7193 6815 6143 4412 5945 5769

Total number of unique vehicles detected at each DCU* Total number of unique vehicles detected at each DCU

1 2 5 1 2 3

3340 3367 3068 2515 2987 2795

*The same MAC address detected on different days is only counted once.

Sept. 17, 2013 (06:00-08:00) to Sept. 19, 2013 (06:00-08:00) Oct. 1, 2013 (06:00-08:00) to Oct. 3, 2013 (06:00-08:00)

Number of trips between DCUs Number of trips between DCUs

1 2 3 1 2 3

1 - 501 273 1 - 471 276

2 143 - 312 2 62 - 325

3 69 67 - 3 27 62 -

Average Travel Time Between DCUs (Minutes) Average Travel Time Between DCUs (Minutes)

1 2 3 1 2 3

1 - 1.28 3.5 1 - 1.25 3.38

2 1.03 - 2.25 2 0.89 - 2.04

3 3.74 2.41 - 3 3.33 2.41 -

Total Number of Vehicles Detected at each DCU Total Number of Vehicles Detected at each DCU

1 2 3 1 2 3

872 882 694 633 814 716

Total number of unique vehicles detected at each DCU* Total number of unique vehicles detected at each DCU

1 2 5 1 2 3

527 562 442 419 510 446

*The same MAC address detected on different days is only counted once.
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Table 5.3 Travel Time Data Collection Summary for Highway 99W, 4PM – 7PM 

 
 

5.6.1 Conclusions 

 
The results of the intersection test show that the portable DCUs have the potential to 

collect travel time data that can be used to evaluate different traffic system changes. In the test 

performed the travel time data is being used to evaluate signal timing changes. The data 

collection was automatic and thus required manual setup and takedown, and a single battery 

change to ensure continuous data collection over the desired 72 hour period.  

5.7 Dedicated Short Range Communication 

Dedicated short-range communication (DSRC) is a wireless technology which is 

designed to support a variety of applications based on vehicular communication (USDOT, 2006). 

The word “Dedicated” in DSRC refers to the fact that the U.S. Federal Communications 

Sept. 17, 2013 (16:00-19:00) to Sept.19, 2013 (16:00-19:00) Oct. 1, 2013 (16:00-19:00) to Oct. 3, 2013 (16:00-19:00)

Number of trips between DCUs Number of trips between DCUs

1 2 3 1 2 3

1 - 531 242 1 - 467 203

2 414 - 275 2 231 - 218

3 329 295 - 3 164 256 -

Average Travel Time Between DCUs (Minutes) Average Travel Time Between DCUs (Minutes)

1 2 3 1 2 3

1 - 1.12 3.17 1 - 1.22 3.76

2 1.05 - 2.03 2 0.98 - 2.42

3 4.39 2.95 - 3 4.37 3.24 -

Total Number of Vehicles Detected at each DCU Total Number of Vehicles Detected at each DCU

1 2 3 1 2 3

1348 1419 1339 888 1179 1260

Total number of unique vehicles detected at each DCU* Total number of unique vehicles detected at each DCU

1 2 5 1 2 3

1016 1023 961 716 911 920

*The same MAC address detected on different days is only counted once.
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Commission has allocated 75 MHz of licensed spectrum in the 5.9 GHz band for DSRC 

communication (FCC 1998, 2003). 

The primary motivation for deploying DSRC is to enable collision prevention 

applications. Collision prevention applications depend on frequent data exchanges among 

vehicles, and between vehicles and roadside infrastructure. However, DSRC can be used for 

many other applications beyond collision avoidance. Most of these involve communication to 

and from road side units (RSUs). For example, DSRC can be used to assist navigation, make 

electronic payments (e.g., tolls, parking, fuel), improve fuel efficiency, gather traffic probe data, 

and disseminate traffic updates (Kenney 2011). 

The objective in this project was to investigate the potential of using DSRC technology to 

support the automatic collection of arterial operations performance data by serving as the main 

platform to support point detection, and vehicle re-identification data collection methods. For the 

specific purposes of this project, this potential was judged from two perspectives: technology 

readiness and equipment availability and economic feasibility. The conclusions reached are 

presented in the following sections. 

5.7.1 Technology Readiness 

Table 5.1 shows the most relevant specifications of DSRC in six categories: standard(s), 

operating frequency, application, range, data rates and latency. Three common wireless 

technologies also used in vehicular applications (i.e., WiFi, Bluetooth, and ZigBee) are also 

shown to provide a reference for comparison. 
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Table 5.1 Most Relevant Specifications of DSRC and Other Wireless Technologies 

 DSRC WiFi Bluetooth ZigBee 

Standard(s) 

IEEE 802.11p (WAVE) – 
PHY & MAC 

IEEE 1609 (middle of 
protocol stack) 

SAE J2735 (message set 
dictionary) 

IEEE 802.11 IEEE 802.15.1 IEEE 802.15.4 

Operating 

Frequency 
5.9 GHz 2.45 GHz 2.45 GHz 

2.45 GHz (Global) 
915 MHz 

(Americas) 
868 MHz (Europe) 

Application 

Vehicular communications: 
Vehicle-to-vehicle (V@V) 
Vehicle-to-Infrastructure 

(V2I) 

Wireless version of a 
common wired 

Ethernet network 
(WLAN) 

Exchanging 
data over short 

distances 
(WPAN) 

Low data rate, 
long battery life, 

and secure 
networking 

Range 100 ~ 1000 m 100 m (outdoors) 
20 m (indoors) 

Class 1 ~ 100 
m 

Class 2 ~ 10 m 
Class 3 ~ 5 m 

10 – 75 m 
Up to 1500 m 
(ZigBee PRO) 

Data Rates 6 to 27 Mbps 1 to 866.7 Mbps 0.7 – 2.1 Mbps 
20 kbps 
40 kbps 
250 kbps 

Latency 200  >20 msec ~ 100 msec 30 msec or less 
 

 

DSRC has a maximum range of 1000 meters within the current standards. Under most 

operating conditions, DSRC will be limited to less than 200 meters. This limitation is well-suited 

to most vehicular applications, especially those involving vehicle re-identification, since the 

infrastructure where the roadside readers would be installed are generally within these kinds of 

ranges. DSRC offers the capability of broadcast messages. This is a significant advantage over 

point-to-point wireless communications (e.g., cellular) for vehicle re-identification applications 

since roadside readers can communicate with multiple vehicles simultaneously in an attempt to 

capture identification and signal strength data (USDOT 2005). One of the most significant 

potential advantages of DSRC technology is its capability for very low latency communications. 
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Latencies in the 200 sec range seem to be possible with DSRC, and many of the vehicle re-

identification applications will certainly benefit from this feature. 

DSRC is a technology that is definitely ready to support vehicle re-identification 

applications. If utilized in a similar fashion as Bluetooth, extracting vehicle identification and 

signal strength data would be accomplished with the use of the message set dictionary defined in 

the SAE J2735 standard. 

5.7.2 Equipment Availability and Economic Feasibility 

To assess equipment availability and economic feasibility, an Internet search was 

performed to search for DSRC-compliant hardware development platforms that could be used to 

manufacture data collection units. Also, two vendors that offer DSRC system solutions were 

contacted and provided an informal quote. 

The Internet search revealed that single board computers (SBC) compatible with the 

DSRC technology standard are not currently available in the marketplace. Reasons for this 

unavailability are that widespread DSRC deployments are still to occur. Therefore, the market 

for these devices does not exist. Given the unavailability of commercial-off-the-shelf (COTS) 

components to build custom data collection units, the DSRC system vendors Denso and Savari 

Networks were contacted next. 

Denso offers a DSRC solution referred to as V2X. Roadside units cost approximately 

$2,000 and on-board units cost approximately $1,000 each. No specifications about the 

equipment were available at the time of contact. The lead time for equipment delivery was 

estimated to be 6 months (Berg 2012). 



 

 

120 

 

Savari Networks offers a DSRC technology solution referred to as MobiWAVE™, which 

encompasses a family of products with several on board equipment (OBE), including the Vehicle 

Awareness Device (VAD), the Automotive Safety Device (ASD), and the Modular 

Communications Platform (MCP), as well as a Software Development Kit (SDK) (Savari 2013). 

As an example, the unit cost for the ASD platform is $4,000 and the RSU platform is $10,000. 

The SDK to develop applications for the ASD/RSU platform costs $25,000 (Ravi 2103). The 

lead time for equipment delivery was estimated to be 4 months. 

Based on the information gathered via the Internet and provided by Denso and Savari 

Networks, it is clear that the costs involved with procuring a DSRC platform are extremely 

prohibitive. As applications of this technology become more widespread and market penetration 

improves, it is anticipated that the hardware and software costs of this technology will become 

more reasonable. 
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CHAPTER 6.0 EFFECTIVE TURNING MOVEMENT VOLUME ESTIMATION FOR 

INTERSECTION ANALYSIS USING GAUSS-JORDAN ELIMINATION 

 

6.1 Introduction 

Engineers need intersection traffic supply and demand information to design and operate 

traffic systems, and turning movement volumes are a key aspect of traffic demand. Knowledge 

of turning movement volumes facilitates better decisions. As a result, engineers need access to 

more economical turning movement counts acquired at more locations and with greater 

frequency. This paper presents a method that solves for turning movement volumes using Gauss-

Jordan elimination row operations (e.g., row swapping, multiplying rows by non-zero constants, 

and adding a factor of one row to another row). The input data are phase status, lane-by-lane 

detector counts, and limited exit detector counts. It evaluates existing intersection detector 

locations for their combined suitability to estimate turning movements and selects detection 

plans that minimize data requirements. The method accommodates varying lane configurations, 

varying detector locations, and includes or excludes phase status. Because the method is founded 

on direct implementation of basic matrix analysis row operations, the solution process is easy to 

implement.  

The paper first gives a background and then in the methodology section it provides a 

detailed description of the turning movement calculation algorithm, involving an example 

intersection. Then the paper discusses how the methodology determines feasible intersection 

configurations with and without phase information and how to choose new detector placements. 

Then validation and error sensitivity test results are presented. Finally, the paper gives 

conclusions and recommendations for future research. 
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6.2 Background 

Traffic detectors have a variety of applications. Local intersection control is the most 

predominant, where the intersection detectors communicate vehicle presence to the traffic 

controller, which then changes its state to accommodate newly arrived vehicles. System 

detection is another application, where mid-block detectors collect data that, together with 

intersection detectors, informs performance measures and/or system traffic control strategies. In 

recent years, technology advances expanded system detection capabilities to include vehicle 

tracking either in the form of magnetic vehicle reidentification, probe vehicle tracking, or video 

vehicle tracking. Unfortunately, these advances have not succeeded in economically acquiring 

turning movement volume data. One reason for this shortcoming is reidentification and probe 

vehicle technologies both can only sample a portion of vehicles. In addition, high capital costs 

limit the application of all of these technology advances, forcing the large majority of 

intersection analysis to rely on labor-intensive manually collected turning movement count data. 

While turning movement count data collection using automated means is still not widely 

available, it is still useful to clarify the availability of detection that would prove useful for 

calculating turning movement counts. Many previous turning movement estimation efforts 

utilized lane-by-lane entry and exit counts and this paper depends on these data as well (Davis et. 

al. 1995; Nihan et. al. 1989; Dixon et. al. 2007). Stop bar entry counts can be lane-by-lane. 

However, it should be noted that detection standards tend to vary from agency to agency, but it is 

safe to say that stop bar detection is fairly common at signalized intersections. Lane-by-lane 

detection is less common, but desirable for more accurate detection and signal operations (Yuan, 
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Y. et. al. 2013). Exit detectors are much less common and are primarily used for system 

detection purposes, not for local intersection control. 

The proposed method possesses several advantageous attributes, which are listed below, 

and the following literature review discusses previous methods relevant to each of them. 

 Analysis scope,  

 Detector location,  

 Use of detector and phase status event data,  

 Input data, and 

 Estimate mathematical form. 

6.2.1 Analysis Scope 

Different methods for estimating turning movements require different analysis scopes and 

these can be categorized by generalized network approaches and intersection input-output 

approaches. Some methods use general network topological relationships between detector 

points and turning movements and these are defined by vehicle paths through a network. These 

vehicle paths help correlate changes in volume collected at a specific location to changes in 

turning movement volumes at other locations. As a result, detector locations can vary and are not 

limited by requiring complete instrumentation at all exit and entry lanes for a given intersection. 

However, these methods are complicated by their need to employ detection at key locations 

throughout the broader network in order to maximize information regarding each of the unknown 

turning movement volumes. In addition, these methods rely on mathematical solutions that are 

not generally used in engineering practice and require simplifying assumptions, such as 

possessing reliable vehicle paths, prior knowledge of origin-destination volumes, or extensive 
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detection requirements. Furthermore, although these methods provide valuable data for planning 

level applications, they lack the accuracy that operations and design decisions require (Chen et. 

al. 2012; Nakatsuji et. al. 2004; Lan et. al. 1999).  

In comparison, intersection input – output methodologies are significantly simpler. 

Generally, these methods require detection data on all lanes entering and exiting an intersection 

and have a much more limited analysis scope. Because of the limited scope, these methods can 

be more reliable and executed with more common modeling and statistical techniques that rely 

on vehicle count multi-sampling or time-series analysis (Davis et. al. 1995; Nihan et. al. 1989; 

Cremer et. al. 1987; Martin 1997; Yi et. al. 2010; Tian et. al. 2004; Dixon et al. 2007).  

6.2.2 Detector Location 

Detector location is important for turning movement volume estimation and is key for 

determining which solution approach to take. Two basic strategies are taken for detector 

location. Entering – Exiting detection focuses on one intersection, where all entering and exiting 

traffic are observed by locating detectors on each entering and exiting lane. General network 

detection relaxes the detection requirement by enlarging its scope to include more than one 

intersection. Although the general network strategy does not require detection on all entering and 

exiting lanes, it does require detection at locations such that all path flows contributing to the 

turning movements are observed.  

Entering – exiting detection strategies only require the analyst to specify the required 

turning movements to estimate (Nihan et al. 1989; Cremer et al. 1987). Others developed 

methods that worked with this same detection strategy, while allowing for incomplete counts 

(Davis et. al. 1995).  
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In contrast, the general network strategy requires the analyst to describe the surrounding 

network, the detector locations, network street characteristics (i.e., lengths, speeds, etc.), origins 

and destinations, and a means to relate traffic traveling between a given origin and destination to 

traffic counts at detector locations (Chen et al. 2012; Nakatsuji et al. 2004; Lan et al. 1999).  

6.2.3 Use of detector and phase status event data 

Research has shown that a vehicle’s turn movement can be inferred if intersection 

detectors are situated at entrances and exits such that they allow accurate time correlation 

between vehicles arriving at an entrance detector and vehicles arriving at an exit detector. List et 

al. showed this was the case for roundabouts and was able to achieve very accurate results using 

travel time estimates between entrances and exits (List et al. 2006). Signalized intersections were 

analyzed in similar fashion, where phase status events were used to correlate entrance and exit 

events (Tian et al. 2004; Yi et al. 2010). 

6.2.4 Input data 

All turning movement volume estimation methodologies required different detector 

aggregations. Most methods require vehicle detection aggregated into volumes. Only those 

methods that base their turning movement estimation on the connection of individual detection 

events require disaggregate detection data (List et al. 2006; Tian et al. 2004; Yi et al. 2010).  

Path-based methods require vehicle path information, defining the set of links vehicles 

will use to travel from an origin to a destination. For a small linear network, there is only one 

possible path for each origin-destination pair and the relationship between a detector’s counts 

and path flows is clear. However, as the network size increases, two complexities arise. The 



 

 

127 

 

number of possible paths increases and the relationship of a detector’s counts during one interval 

to path flows during another interval changes as a function of travel time. 

6.2.5 Estimate process 

Because of the range of characteristics defining methods proposed in the literature, this 

discussion refers to each of these proposed methods as estimation processes. Consequently, a 

process is defined by its mathematical approach and its underlying requirements regarding input 

data.  

Previous processes use a variety of mathematical techniques to estimate turning 

movement counts for small areas for which most of the trip length is outside the area of interest. 

Cascetta et al. (1988) identified three categories: maximum likelihood estimators, Generalized 

least squares estimators, and Bayesian estimators. Two more categories exist: recursive 

estimators (Cremer 1987; Nihan 1987; Okutani 1987; Chang 1994; Ashok 1996; Dixon 2002) 

and heuristic estimators (Nakatsuji et. al. 2004; List et. al. 2006). All of the estimators in each of 

these categories utilize a procedure to optimize an objective function that includes minimizing 

the difference between the estimated link volumes and the observed link volumes. Regression is 

the simplest of these estimators (Robillard et. al. 1975), but none estimate volumes for 

conventional intersections by simply manipulating and solving simultaneous equations.  

Processes using raw individual vehicle detections, tally individual turning movements, 

depending on the pair of entrance and exit detections that the process deems most likely (List et. 

al. 2006). However, all processes using aggregated input data estimate turning movement 

volume in an aggregate form.  
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Some processes assume fewer independent detectors than the number of unknown 

turning movements and require detector data from more than one interval to use regression 

(Nihan et. al. 1989; Gajewski et. al. 2002). These processes produce estimates that are averages 

for the input data intervals. Other process employ recursive estimation techniques, where a prior 

solution is updated with each time interval’s data (Cremer 1987; Nihan 1989).  

The regression and recursive methods have been used for cases as small as estimating 

turning movements for one intersection to estimating origin-destination volumes for general 

networks. In general, more sophisticated methods primarily address a general network analysis 

scope (Lan 1997; Nakatsuji 2004; Chen 2012). 

6.2.6 Summary  

Turning movement estimation methods usually have extensive input data requirements, 

employ a sophisticated estimation process, and have insufficient accuracy for design or 

operations. This paper proposes a method that assumes the possibility of lane-by-lane detection 

at intersection entrances and exits, but minimizes the detection requirements leading to an 

economical estimation process. In so doing, the method achieves accuracy that is directly 

controlled by the user by way of detection accuracy. If the detector data are very accurate and the 

detector locations yield independent equations equal in number to the number of unknowns then 

the turning movement volume estimation problem can be accurately solved. 

6.3 Methodology 

This method uses lane-by-lane vehicle counts and intersection geometry to create a 

matrix of detectors versus turning movements to solve for turning movement counts. If phase 

information is available then this method can separate the turning movements and counts into 
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concurrency groups. In concept, a concurrency group is a mechanism to group phases and the 

counts of their corresponding turning movements into portions of the cycle during which they 

can occur. Counts included in a given concurrency group occur from the time the first phase in 

the group is active until the end of the all-red interval for the last phase served in the group. For 

example, an eight phase intersection conveniently arranges into two concurrency groups defined 

by the barriers contained in a ring-barrier diagram (group 1: NBL, SBT, SBL, NBT; group 2: 

EBL, WBT, WBL, EBT). During a group’s portion of the cycle, detectors will record volumes 

resulting from movements executed during its corresponding phases, including right-turn-on-red 

movements. This results in two sets of counts for the detectors, one for each concurrency group. 

More than two concurrency groups may improve solution feasibility and this method allows the 

user to define the number of concurrency groups. 

The method relies on an important distinction between a turn movement and a Lane 

Specific Movement (LSM). A LSM specifically defines a turn by the entrance lane of an 

approach and the exit lane of an exit. For example, a through movement served by two lanes 

would include two LSMs, one from the inside lane at the approach to the inside lane at the exit 

and the other LSM from the outside lane at the approach to the outside lane at the exit. A turn 

movement is the aggregation of the corresponding LSMs (e.g., Left turn, Through, and Right). 

Turning movement counts for each concurrency group are solved separately and the 

results summed across groups to produce a final result of overall estimated turning movement 

counts. The phase information can reduce the number of detectors needed to solve some 

intersections and may be necessary to solve others. There are some intersections that this method 

cannot solve even with phase information; however they are not the norm. 
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This method can work with unsignalized intersections as well. Because there is no signal, 

it is treated the same as a signalized intersection without phase information. Most unsignalized 

intersections have too few turn pockets to be solved. However, some will be feasible, especially 

three legged intersections. 

This method requires detectors obtaining vehicle counts on many of the lanes, but usually 

not all. The section, Identifying Solvable Intersection Configurations and New Detector 

Placement, describes a method for determining the most strategic set of detector locations. 

6.3.1 Overall Method Description 

Figure 6.1 contains information for an example application of the proposed method. On 

the top right, a figure illustrates all possible lane-by-lane detector locations, accompanied by lane 

numbers. On the top left, two elements of information are given in a table. The first element 

establishes the concurrency groups into which phases are grouped. Second, below the 

concurrency grouping, are the counts for each lane that has a detector. In this example, lane four 

and six do not have detectors. On the bottom right, turning movements and LSMs are defined in 

terms of their exit and entrance lanes. 

Note that the proposed method allows many different detection options to suit varying 

intersection configurations. This simplified intersection configuration and detection layout was 

intentionally chosen to allow a demonstration of key aspects of the proposed method. 
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Detector Counts 

 

 
Concurrenc
y group 1 

 Concurrency 
group 2 

 
Lanes with 
Detectors 

 
   

 

   

        

    
1 45 5 
2 90 30 
3 90 0 
5 3 12 

7 32 3  

8 33 2  
Lane Specific Movement Definitions 

LSM  

Entrance 
Lane 

Exit 
Lane 

Movement 
ID 

1 4 EBT 
1 7 EBR 
1 8 EBR 
3 7 WBL 
3 8 WBL 

3 2 WBT 
5 4 NBR 
6 2 NBL 

 

 
Figure 6.1 Intersection Concurrency Groups, Counts, Lane Numbering, and Lane Specific Movement Definitions 

The following describes the 12-step process to estimate turn movements using the 

intersection shown in Figure 6.1 as an example to illustrate key points. 

Step 1: Calculate the turning movement counts occurring during the green time of one 

concurrency group at a time. Each detector needs to have counts for each concurrency group (see 

Figure 6.1). If this phase information is not known and only total detector counts are known, 

treat the intersection as if it had only one concurrency group. This step results in detector counts 

aggregated by concurrency group. 

North 
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Step 2: Associate detectors with LSMs for all concurrency groups. As defined previously, an 

LSM is defined by the entrance lane, the exit lane, and the movement ID. The LSM for the 

example problem are shown in Figure 6.1, bottom right. The example presented in this paper 

works under the assumption that right turns and left turns may cross the detectors in either lane 7 

or 8. In addition, right turns are allowed on red. 

Step 3: Create a list of all possible Exit Detector Combinations (EDC). An EDC is a group of 

two or more exit lanes with detectors on the same intersection leg. The EDC will be the same for 

each concurrency group. There is only one possible exit detector combination for the example 

intersection, which is 7/8. However, a three lane exit would have three possible combinations 

and result in three EDCs. Moreover, each intersection leg with multiple exit detectors will 

contribute more EDC to this list. Each EDC represents an equation, an alternative to its 

corresponding individual detector equations. Opting for an EDC alternative may be necessary for 

a feasible solution.  

Step 4: Select a concurrency group. This step begins the loop through the concurrency groups, 

repeating Steps 4 through 12. 

Step 5: Create the “a0” matrix for the concurrency group selected in Step 4 that has a row for 

each individual detector, a row for each EDC in the EDC list, and a column for each LSM 

contributing to the concurrency group’s counts. Even though the current execution of this step is 

for concurrency group 1, the “a0” matrices for both concurrency groups are given in Figure 6.2 

for the sake of discussion.  
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For concurrency group 1, refer to the table on the left. Notice that the no NBT 

movements can occur during concurrency group 1. Consequently, it is not included in the 

concurrency group 1 “a0” matrix. The table on the right is the concurrency group 2 “a0” matrix 

and will be used in the next loop, when solving for the turning movement volumes occurring 

during the second concurrency group. For the second concurrency group, only the EBR 

movement is included from the eastbound and westbound approaches.  

The table cells of 1’s and 0’s represent detector/movement combinations. If a movement 

crosses a detector then the corresponding cell contains a “1”, otherwise it contains a “0”. The 

EDC rows follow the detector rows. In this case, there is only one, the combination of detectors 7 

and 8. In the case of the EDC rows, each cell represents an EDC/movement combination, which 

should contain a “1”if the movement crosses any of the detectors contained in the EDC. In this 

example, the row for the EDC element of 7/8 will be one if a movement crosses detector 7 or 8 

and a “0” otherwise (see Figure 6.2). Only the coefficients and counts comprise an “a0” matrix, 

the rest of the rows and columns are for row and column labeling purposes. 

 

Figure 6.2 Example Matrix “a0” (first concurrency group and second concurrency group) 
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Step 6: Given the list of EDCs from Step 5, create all possible unique combinations of the EDCs 

and arrange them in order of increasing complexity. The discussion refers to each combination of 

EDC as an EDC set. Intersections with three lane approaches or several multi-lane approaches 

will have several EDCs in the EDC list (established in Step 3) and these can be arranged into 

unique EDC sets listed in order of increasing complexity.  

Step 7: For the concurrency group selected in Step 4, this step manages looping through different 

EDC sets. The algorithm attempts to solve for the turning movement volumes beginning with the 

first EDC set and stops when a solution is found. It is important to list the smallest EDC sets 

first, so that the simplest solutions are attempted first. For the given example, two sets of EDCs 

would be possible: none and 7/8.  

 

 

 

 

a) “a” matrix for the EDC set of “none” b) “a” matrix for the EDC set of “7/8” 

Figure 6.3 Group 1 “a” matrices 
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Step 8: Create the “a” matrix, given the EDC set selected in Step 7, which will have the same 

columns as matrix “a0” but will only contain a subset of the rows. In Step 7, the algorithm 

started with the simplest set of EDCs, which is “none”. As shown in  

 

 

 

c) “a” matrix for the EDC set of “none” d) “a” matrix for the EDC set of “7/8” 
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Figure 6.3, the “a” matrix only includes rows corresponding to detectors 1, 2, 3, 5, 7, and 8, 

excluding any EDCs. The “a” matrix represents a system of equations. In this case, there are six 

equations, where the Group 1 counts constitute the equation solutions and the cells to the right of 

the count contain the equation coefficients for the unknown LSM counts. There are seven 

unknowns, so it is not possible to solve for all LSMs, because there are more unknowns than 

there are equations. It is important to proceed to Step 9 to address this issue. 

Step 9: Delete all but one of any columns that have the same value in every row of the 

coefficients matrix and contribute to the same turning movement. Then check that the number of 

equations equals the number of unknowns. After this step, there should be no two columns that 

are identical, which is equivalent to eliminating redundant variables. For the “a” matrix using the 

EDC set of “none”, no columns can be deleted (see Figure 6.3a). Consequently, there are six 

equations and seven unknowns, so the current “a” matrix is not feasible and the algorithm returns 

to Step 7 to select the next EDC set of “7/8”. 

The algorithm then proceeds to Step 8 to create the next “a” matrix with the “7/8” EDC 

set. Step 8 then excludes the rows for detectors 7 and 8 (see Figure 6.3b). Excluding these 

equations created two sets of columns that are identical. The two EBR columns are identical and 

so are the WBL columns. These duplicate columns correspond to variables that became 

redundant by adding the equation for EDC “7/8” and excluding the equations for detectors 7 and 

8. This step (Step 9) removes one of each of the duplicate columns, creating a system of five 

equations and five unknowns (see Figure 6.4a). Step 10 will determine if these equations are 

independent and yield a feasible solution.  
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Step 10: Use Gauss-Jordan elimination row operations to simplify matrix “a” coefficients to 

achieve an identity matrix and the turning movement count solutions (see Figure 6.4b). The 

value in the “Group 1 Counts” column is the solution for the turning movement in the column 

that contains a 1 in the value’s same row. For example, the value “25” is the solution for the EBT 

corresponding to the LSM going from detector 1 to 4. The Gauss-Jordan process was augmented 

to delete all zero rows, ensure the fewest row operations, and minimize the variance in the 

turning movement count errors. The appendix “Simplifying the Matrix” explains this in more 

detail. If the matrix can be simplified to a feasible solution, then this step results in an identity 

matrix. 

If the “a” matrix can’t be simplified then the current EDC set does not work. If another 

EDC set exists then the process loops back to Step 7 to select the next EDC set to evaluate its 

feasibility. 

  

a) Reduced “a” matrix from Step 7 b) Simplified matrix and solution from Step 8  

Figure 6.4 Matrix input to Step 8 from Step 7 and Matrix resulting from Step 8 

Because it was possible to simplify matrix “a”, the given detector configuration can be 

solved for all of the turning movements and Step 11 should be next. However, if Step 10 failed 

(matrix “a” was unable to be simplified) then the process returns to Step 7 to select the next EDC 

set in the list. 
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Step 11: If none of the EDC sets from Step 3b result in feasible solutions then the given detector 

configuration cannot be used to calculate turning movement counts. See the following section for 

more on determining where to place detectors. 

Step 12: If more concurrency groups remain then return to Step 4 to select the next one. This step 

maintains running sums for each turning movement. Results from the first concurrency group are 

the first to contribute to these sums. Because there is one more concurrency group in this 

example, this method loops back to step 4, to repeat the process for the next concurrency group. 

After completing the steps for the second concurrency group in this example, the 

resulting turning movement count estimates are complete and they are given in Table 6.1. 

Table 6.1 Turn Movement Estimates for Concurrency Groups 1 and 2 

 
Concurrency Group 

Counts 
 

Movement
s Group 1 Group 2 Total 

NBR 15 5 20 

NBT 15 0 15 

NBL 10 0 10 

WBR 5 10 15 

WBT 0 20 20 

WBL 0 25 25 

EBR 5 25 30 

EBT 0 25 25 

EBL 0 20 20 

SBR 10 5 15 

SBT 10 0 10 

SBL 15 0 15 

 

This method uses Gauss-Jordan elimination to solve a system of equations for the LSM 

counts. An equation is written for each detector saying that the number of vehicles that crossed 
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the detector equals the sum of the vehicles from each LSM that passes over the detector. The 

equations for each of the detectors are combined into a matrix built in this method (Matrix “a”). 

Then row operations are used to solve for the LSM counts. Maintaining the direct use of row 

operations to solve the problem, instead of matrix analysis functions, provides two benefits 

stemming from the interjection of different detection options. One benefit is being able to solve 

for the turning movement volumes relying on the fewest detectors. Another benefit is finding the 

detection layout with the fewest detectors that would result in a solution. 

The two additional actions that need additional explanation are the deletion of one of two 

identical columns of the matrix and the use of the EDC list. By deleting an identical column, the 

process changes the solution space to solve for the sum of two LSM counts that are for the same 

turn movement, rather than individually. For example, refer to the WBL turn movement of the 

intersection shown in Figure 6.1. Aggregating exit detectors 7 and 8 removes the need to solve 

for the counts for LSMs 3 to 7 and 3 to 8 separately, because both LSMs complete the count of 

the westbound left turn. Instead, all that is needed to find the total westbound left turns is to 

know the sum 3 to 7 and 3 to 8. This is because if detectors 7 and 8 were aggregated then the two 

LSMs would have the same coefficients in every equation. So, they can be factored together, 

thus allowing solving for the sum of the two LSMs (e.g., 2a+2b=4=>2(a+b)=4=>a+b=2). To 

factor the two movements together, the algorithm would delete one of the two LSM columns (3 

to 7 or 3 to 8), and the remaining column would represent the sum of the two LSMs (e.g., 3 to 

7/8) (see Figure 6.4b). 

The purpose of an EDC is to aggregate detectors on the same exit into one effective 

detector. Detector aggregation results in LSMs with identical columns in the matrix. 
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Subsequently, through column deletion, the method reduces unknowns, increasing turn 

movement solution feasibility. However, the following conditions must be observed for detector 

aggregation at a specific exit to increase solution feasibility.  

 First, there needs to be more than one exit detector at the exit.  

 Second, two or more turn movements must cross the exit detectors.  

 Third, each turn movement crossing one of the exit detectors being aggregated must have 

two or more LSMs.  

 Fourth, for two or more of these turn movements, the LSMs must share the same entrance 

detector or not have an entrance detector.  

For situations satisfying these four conditions, aggregating the exit detectors makes the 

LSM columns identical for a given turn movement, allowing one column to be deleted. So, by 

aggregating the two exit detectors, the matrix loses one row for each detector that will be 

aggregated and gains a row for the aggregated detector. Overall, this reduces the number of 

equations by one. However, if the above four criteria are met then aggregating detectors will 

eliminate at least two columns, one for each turning movement entering the intersection from a 

single lane and that crosses the aggregated detector. In this way, the algorithm increases 

intersection feasibility through detector aggregation.  

In order to ensure that no opportunity is missed to make an otherwise unsolvable 

intersection solvable, every combination of multiple exit detectors for the same travel direction is 

compiled, creating the EDC list. Then every combination of elements of the EDC list (EDC sets) 

is tried until a solution is found, to see if any combination of exit detectors will allow the matrix 

to be solved. 
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6.3.2 Identifying Solvable Intersection Configurations and New Detector Placements 

Many different counting scenarios exist for existing intersections. It is not possible to 

enumerate all intersection configurations and their corresponding feasible counting scenarios.  

Table 6. shows the detector locations for five different example intersections. These 

examples are based on existing intersection configurations in Moscow, Idaho. The first two 

intersections can be solved with no phase information (i.e. one concurrency group) or with phase 

information (two concurrency groups). Intersections C and D can only be solved if phase 

information is available. Intersection E cannot be solved even with phase information. Each 

intersection is shown with the minimum number of exit detectors needed to solve for the turning 

movement counts (assuming that all entrance lanes have detectors). 

Table 6.2 Turn Movement Count Feasibility Examples – Minimum Detection 

Intersection 

Minimum Detection 

Diagram Possible Phase Grouping 

Solvable 

with 

phase 

data 

Solvable 

without 

phase 

data 

A  

 

Yes Yes 

B 

  

Yes Yes 
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C 

  
Yes No 

D 

  

Yes No 

E 

  

No No 

Note: RTOR are also accommodated, but are not explicitly shown in the concurrency grouping diagrams.   

As a rule of thumb, intersections without phase information that fit one of the following 

descriptions are feasible.  

 two one-way roads.  

 a two-way street and a one-way street with at least one turn pocket. 

 two two-way streets are frequently feasible if they have at least 5 turn pockets.  

Signalized intersections that don’t fit the above should be checked to see if they can be solved 

with phase information. 

The street network for Moscow, Idaho was examined to see the frequency with which the 

proposed method can yield a feasible solution. Of the 17 signalized intersections, 11 are feasible 

without phase information and 4 additional ones are feasible with phase information. On the 

other hand, of the 548 unsignalized intersections, only 27 are feasible. 
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The twelve steps described previously can be used to identify new detector placement in 

order to make an existing configuration solvable. This is done by starting the twelve steps with 

the existing configuration and iterating through different configurations until a solution is found. 

Based on the analysis of Moscow, Idaho intersections, typically only one additional detector is 

needed for signalized intersections and two for unsignalized intersections. 

6.3.3 Method Validation 

The proposed method’s capability to produce accurate results was determined using field 

data with randomly generated error. The validation used data from two sources. One consisted of 

data manually extracted from video recorded at the signalized intersection of State Highway 8 

and Farm in Moscow, Idaho. The second was taken from previous research (Smaglik 2007; 

MioVision 2013). For all three intersections, two types of data were collected, where one was 

spot counts at the stop bar and spot counts at the exit lanes. Another was turn movement counts 

(the ground truth data). Errors were randomly generated for the stop bar and exit count data to 

create detection errors according to ranges documented in previous research (Smaglik, 2007). 
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The proposed method was applied to each intersection in three ways: one without phase 

information, the second with phase information and no detection errors, and the third with phase 

information and with detection errors. If the intersection configuration and given phase 

information afforded a feasible solution, eleven trials were run. The first trial used the true 

detector counts and the remaining ten trials had random errors applied to the detector counts, 

with random errors varying within the ranges shown in the list below (Smaglik, 2007). 

 Left turn lane detectors: 0.5% to 13.7% 

 Through lane detectors: 4.4% to 23.3% 

 Right turn lane detectors: 1.1% to 6.1% 

The validation test results are given in Table 6.. As expected, for all three intersections, the 

trial run with no detection error, estimated the turn movement counts exactly, regardless of phase 

information. Naturally, Table 6. also shows that detection errors propagate through to the final 

estimates.  

Table 6. summarizes the results for situations with detection error, with and without 

phase information. Overall, the proposed method estimates turn counts with Mean Absolute 

Percent Error (MAPE) in the approximate range of 9% to 13.6%, which is quite promising. 

Finally, the overall Mean Percent Error (MPE) is positive, in the range of 9% to 13%, indicating 

that the estimates are biased high. This bias occurred because the error ranges of the detectors 

were all positive, resulting in detectors that over counted. 

In addition to increasing solution feasibility, including phase information also reduced the 

errors, as is evidenced by the validation data. As is shown Table 6., the MAPE changed by -
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0.9%, 0.3%, and -1.4%, for the three intersections, respectively, indicating that, in addition to 

increasing feasibility, adding phase information possibly increases accuracy. 

Table 6.3 Validation Test Results 

Intersection 
Error 

Measures 

W/o Phase 
Information; 
No detection 

error 

With Phase 
Information; 
No detection 

error 

W/o phase 
Information; 

With 
detection 

error 

With phase 
Information; 

With 
detection 

error 
SH 8 and 

Farm 
MPE  0 0 13.0% 12.7% 

MAPE 0 0 13.6% 12.7% 
MioVision, 

2013 
MPE  0 0 11.1% 11.4% 

MAPE 0 0 11.1% 11.4% 
Smaglik, 

2007 
MPE  0 0 9.8% 9.0% 

MAPE 0 0 10.4% 9.0% 

6.3.4 Conclusions and Recommendations 

The proposed method employs widely known Gaussian Elimination operations to search 

for detection arrangements and solve for turn movement volumes. Validation tests found that the 

method, while sensitive to detection errors, yields reasonable solutions that can be very accurate. 

In addition, the method can estimate turning movement volumes for most signalized 

intersections and some unsignalized intersections. 

Several important distinctions characterize this method and they are as follows: 

1. Solves quickly through Gauss-Jordan elimination, 

2. Provides for lane-by-lane detection, 

3. Integrates phase information, 

4. Considers lane-specific movement as unknowns, 

5. Leverages a straight forward procedure for aggregating exit detectors, 

6. Simultaneously determines a minimum detection scenario, and 
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7. Selects detection to minimize estimate variance. 

Future research should focus on two areas. One area is applying the methodology to 

freeway and urban street facilities. The second area is reducing error sensitivity by detection 

error filtering and integrating information from multiple time intervals by averaging or simple 

linear regression. 
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APPENDIX 
Appendix 3.1 GIS Tools 

1 Map Count Data Help File 

Title: 1 Map Count Data 

Summary: This tool is used to map observed count data into a polyline shapefile and a point 

shapefile. First, it maps the turning movement volumes by drawing turning movement polylines 

around each observed intersection and mapping the counts to the correct turning movement. 

Second, it maps the total intersection volumes as a point file, where it creates a new point for 

each observed intersection. 

Syntax: MapCountDataiCount (Input__Folder_of_excel_files, AM_PM, Year, Time_Period, 

Output__Turn_Movement_Shapefile, Output__Intersection_Points, 

Map_to_Augmented_Network, Input_Network, Output_Network)  

Parameter Explanation Data Type 

Input__Folder_of_excel_files Dialog Reference 
This is a folder containing a series of files 
that represent count data at different 
observed locations. The count data need to 
be contained in an Excel file containing 
the iCount Data Entry Form in order for 
this tool to correctly parse the count data. 
There is no python reference for this 
parameter. 

Folder 

AM_PM Dialog Reference 
This input is a filter that determines what 
time of day you want to map the observed 
count data for. 
AM refers to mapping the counts observed 
during morning time period. 
PM refers to mapping the counts observed 
during evening time period. 
Both refers to mapping the counts 
observed during the morning and evening 

String 
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time periods. 
There is no python reference for this 
parameter. 

Year Dialog Reference 
This input is a filter that determines what 
year you want to map the observed count 
data for. 
2011 refers to mapping count data 
collected during 2011. 
2012 refers to mapping count data 
collected during 2012. 
Both refers to mapping count data 
collected during 2011 and 2012. 
There is no python reference for this 
parameter. 

String 

Time_Period Dialog Reference 
This input is a filter that determines what 
analysis period you want to map the 
observed count data for. 
15 minute peak refers to mapping the peak 
15 minute bicycle volume for each 
individual turning movement at each 
intersection. 
1 hour peak refers to mapping the peak 1 
hour bicycle volume for each individual 
turning movement at each intersection. 
2 hour total refers to mapping the total 
bicycle volumes that were observed for 
either the AM or PM count periods. 
There is no python reference for this 
parameter. 

String 

Output__Turn_Movement_Shapefile Dialog Reference 
The turning movement output feature class 
to be created. This feature class includes 
individual turning movement counts 
mapped to the individual turning 
movement polylines drawn around each 
observed intersection. 
There is no python reference for this 
parameter. 

Feature Class 

Output__Intersection_Points Dialog Reference 
The intersection points output feature class 

Feature Class 
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to be created. This feature class includes 
total intersection volumes mapped to a 
single point for each observed intersection. 
There is no python reference for this 
parameter. 

Map_to_Augmented_Network Dialog Reference 
This input determines if the count data 
will be mapped to the bikeways network 
or not. 
Yes means the count data will be mapped 
to the bikeways network. 
No means the count data will not be 
mapped to the bikeways network 
There is no python reference for this 
parameter. 

String 

Input_Network (Optional)  Dialog Reference 
If 'Map to Augmented Network' is set to 
yes then this input provides the bikeways 
network polyline shapefile for the count 
data to be mapped to. 
There is no python reference for this 
parameter. 

Feature 
Layer 

Output_Network (Optional)  Dialog Reference 
The output bikeways network feature class 
to be created. This feature class includes 
the filtered observed counts for each 
turning movement of each observed 
location. 
There is no python reference for this 
parameter. 

Feature Class 
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Appendix 3.2 Define Bicycle Impedance Help File 

Title: 2 Define Bicycle Impedance 

Summary: This tool is used to define the impedances of each element of a bikeways network. 

The calculation is based on the input fields the user selects and is calibrated to represent 

impedances that effect a bicyclist's route choice. 

Higher values make a link less attractive. For example, the impedance might be length. As 

another example, the impedance might be length * (slope factor), and this would increase the 

impedance for the link. 

Syntax: DefineImpedance (Input__Network, Slope_Field, Friction_Field, 

Output_Impedance_Field_Name, Output_Network)  

Parameter Explanation Data Type 

Input__Network Dialog Reference 
This is the input bikeways network feature 
class. This feature class is a polyline 
shapefile that represents the streets and 
shared-us paths that permit bicycle travel. 

Feature Layer 

Slope_Field (Optional)  Dialog Reference 
This field should provide the slope for every 
link. 
A link with a higher slope value will be 
more difficult for a bicyclist to traverse and 
thus increase the impedance of the link. 

Field 

Friction_Field (Optional)  Dialog Reference 
This field should provide the friction for 
every link. 
Friction could be anything from vehicle 
volumes to BLOS to the speed limit of the 
link. The friction field is representative of a 
link characteristic that might cause a 
bicyclist to choose a different route. For 
example, if BLOS is selected then a BLOS 
score of 1 (BLOS = A) would not increase 
the impedance of the link, but a BLOS score 

Field 
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of 4 (BLOS = D) would increase the 
impedance of the link. 

Output_Impedance_Field_Name Dialog Reference 
This is the name of the impedance field to be 
created. This name will be referenced in the 
Estimate Bicycle Volumes tool to assist in 
determining the shortest path between an 
origin and destination. 

String 

Output_Network Dialog Reference 
The output feature class to be created. This 
feature class inlcudes the impedance values 
for each street segment and shared-use path 
in the bikeways network. 

Feature Class 
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Appendix 3.3 Estimate Bicycle Volumes Help File 

Title: 3 Estimate Bicycle Volumes 

Summary: This tool is used to estimate bicycle volumes throughout a network from observed 

count data at sample locations. The calculation is based on the number of times a link in the 

network is used as the shortest path between user-supplied origins and destinations. The origins 

and destinations can be given "weight" multipliers as needed.  

Illustration 
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Usage: There is no usage for this tool. 

Syntax: EstimateBicycleVolumes (Input_1__Count_Data, Input_2__Origins, 

Origins_Multiplier_Field, Input_3__Destinations, Destinations_Multipler_Field, 

Input_4__Bikeway_Network, Impedance_Field, Additional_Explanatory_Variables, 

Output__Estimated_Volumes)  

Parameter Explanation Data Type 

Input_1__Count_Data Dialog Reference 
This is a folder containing a series of files 
that represent count data at different 
observed locations. The count data need to 
be contained in an Excel file containing the 
iCount Data Entry Form in order for this 
tool to correctly parse the count data. 
There is no python reference for this 
parameter. 

Folder 

Input_2__Origins Dialog Reference 
This is a feature layer represented by a 
polygon shapefile consisting of parcels to 
be used as trip origins. This shapefile must 
contain parcels as well as parcel area or the 
number dwelling units per parcel 
depending on if the origins are made up of 
non-residential or residential parcels, 
respectively. 
There is no python reference for this 
parameter. 

Feature Layer 

Origins_Multiplier_Field 
(Optional)  

Dialog Reference 
The attribute field used to weight the 
orgins. For example, number of dwelling 
units or square footage or trip production 
rate. 
There is no python reference for this 
parameter. 

Field 

Input_3__Destinations Dialog Reference 
This is a feature layer represented by a 
polygon shapefile consisting of parcels to 
be used as trip destinations. This shapefile 

Feature Layer 
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must contain parcels as well as parcel area 
or the number dwelling units per parcel 
depending on if the origins are made up of 
non-residential or residential parcels, 
respectively. 
There is no python reference for this 
parameter. 

Destinations_Multipler_Field 
(Optional)  

Dialog Reference 
The attribute field used to weight the 
destinations. For example, number of 
employees or square footage or trip 
attraction rate. 
There is no python reference for this 
parameter. 

Field 

Input_4__Bikeway_Network Dialog Reference 
This input provides the bikeways network 
polyline shapefile for the count data to be 
mapped to. This file must containt street 
center lines and shared-use paths. 
There is no python reference for this 
parameter. 

Feature Layer 

Impedance_Field Dialog Reference 
This field should provide the impedance 
(also called travel cost) for every link.  
Higher values make a link less attractive. 
For example, the impedance might be link 
length. As another example, the impedance 
might be travel time = length/speed limit.  
The values must be greater than 0. (Note: 
give a huge value to a link that you want to 
keep in the network, but should not be used 
for travel, for example, a bike path 
restricted from car travel). 
There is no python reference for this 
parameter. 

Field 

Additional_Explanatory_Variables 
(Optional)  

Dialog Reference 
All attribute fields to be used as 
explanatory variables during the regression 
process. For example, centrality and/or 
functional classification. 
There is no python reference for this 
parameter. 

Multiple 
Value 
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Output__Estimated_Volumes Dialog Reference 
The output feature class to be created. This 
feature class includes estimated volumes 
for each street segment in the network. 
There is no python reference for this 
parameter. 

Shapefile 

 

Appendix 3.4 Pedestrian Model Fit Analysis 

The NBPD data collected by the city for the iCount survey had both bicycle and 

pedestrian turning movement counts, and a model for pedestrians was developed in addition to 

the bicycle models. The pedestrian analysis included fitting regression models to the AM and 

PM time periods for the 2011, 2012, and a combination of 2011 and 2012 observed count data.  

There were three primary differences between the bicycle and pedestrian models. First, 

the reachable target threshold distance was set to 0.9 because this provided the highest 

correlation between OD centrality and the observed counts, this analysis is shown in Figure 3.1 

in Section 3.3.3. Second, the impedance used for the shortest path algorithm was distance; this is 

because a pedestrian route choice model was not formulated for this research. Finally, the third 

main difference was that the pedestrian model was analyzed for directional movements as well as 

gate counts. Each typical intersection consisted of eight gate counts including an entrance and 

exit gate count for each approach. To determine the gate counts, the observed movement counts 

corresponding to each gate location were summed, i.e. the south bound exit gate consisted of the 

SBT, EBR and WBL movement counts. 

These models were fit using two different sets of trip multipliers. The first set of trip 

multipliers was the same as the trip multipliers used for the bicycle models. The second set of 

trip multipliers was based on the ITE Trip Generation Manual. The results of these analyses are 

shown below in Table A1 and Table A2. 
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TABLE A1 Pedestrian Model Fit Results: ITE Trip Generation Multipliers 

  

Directional 
Counts Gate Counts 

  
 
 

 
 

  

R2 
(y) 

R2 
LN(y) 

R2 
(y) 

R2 
LN(y) 

2011 AM 0.08 0.14 0.14 0.16 
PM 0.28 0.21 0.37 0.36 

2012 AM 0.15 0.14 0.22 0.24 
PM 0.19 0.13 0.36 0.29 

Both 
Years 

AM 0.09 0.14 0.15 0.18 
PM 0.26 0.18 0.36 0.29 

Note: R2 (y) is the R-Squared value for the untransformed dependent variable. R2 LN(y) is the R-Squared value of 
the natural log transformed dependent variable.  

Note: Impedance = Distance, δ = 0.9 miles, Multipliers: ITE Trip Generation Manual 

TABLE A2 Pedestrian Model Fit Results: OD Multipliers from Section 2 

  

Directional 
Counts Gate Counts 

  
 
 

 
 

  

R2 
(y) 

R2 
LN(y) 

R2 
(y) 

R2 
LN(y) 

2011 AM 0.17 0.16 0.34 0.21 
PM 0.34 0.26 0.47 0.40 

2012 AM 0.20 0.16 0.32 0.28 
PM 0.32 0.17 0.40 0.23 

Both 
Years 

AM 0.17 0.16 0.34 0.21 
PM 0.31 0.18 0.47 0.28 

Note: R2 (y) is the R-Squared value for the untransformed dependent variable. R2 LN(y) is the R-Squared value of 
the natural log transformed dependent variable.  

Note: Impedance = Distance, δ = 0.9 miles, Multipliers: Residential = Dwelling Units and Non-Residential = 
Modified Area. 

The results shown in Table A1 and Table A2 show poor model fits for the pedestrian 

models explored. Future work could explore why these models did not perform as well as the 

bicycle models. This work could look into formulating a shortest path algorithm that better 
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represents impedances affecting pedestrian route choice, or the future work presented in Section 

3 could result in more acceptable model results. 

Appendix 6.1: Simplifying the “a0” Matrix 

Step 10 of the method requests that matrix “a” be simplified by Gauss-Jordan elimination 

row operations. There are various ways to do this. First, recognize that errors are present in 

detector counts. In addition, if the matrix has more rows than columns, then a solution may be 

attempted for different combinations of rows. As a result, because of count errors, each feasible 

combination will produce different estimates. The following is a method that will minimize the 

variance in the turn movement count errors. The method accomplishes this by minimizing the 

number of counts involved in estimating a turn movement count.  

This method uses the three elementary row operations to simplify the matrix coefficients: 

(1) swap rows, (2) multiply a row by a non-zero constant, and (3) add a factor of one row to 

another row.  

First, sort the rows in the “a0” matrix in ascending order by the number of nonzero 

coefficients they contain. This will allow the process to prioritize the use of rows that require the 

least number of alterations to simplify the matrix.  

Next, use row operations to achieve an identity matrix of the coefficients, thus solving for 

the turn movement counts. When pursuing row echelon form, lower rows are shifted down to 

maintain as much of the initial sorting as possible. In addition, each row containing only zero 

coefficients is deleted, leaving an identity matrix. 


