
PERFORMANCE MONITORING FOR SAFE AND

LIVABLE COMMUNITIES: FUSING DATA, TO

IMPROVE ARTERIAL OPERATIONS FOR ALL USERS

FINAL PROJECT REPORT

by

Michael Dixon, Michael Lowry,
and Randal Brunello
University of Idaho

Yinhai Wang

University of Washington

David Porter and David Kim
Oregon State University

for

Pacific Northwest Transportation Consortium (PacTrans)
USDOT University Transportation Center for Federal Region 10

University of Washington
More Hall 112, Box 352700

Seattle, WA 98195-2700

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the

facts and the accuracy of the information presented herein. This document is disseminated

under the sponsorship of the U.S. Department of Transportation’s University

Transportation Centers Program, in the interest of information exchange. The Pacific

Northwest Transportation Consortium and the U.S. Government assumes no liability for

the contents or use thereof.

 ii

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

2012-M-0005 01539974

4. Title and Subtitle 5. Report Date

Performance Monitoring for Safe and Livable Communities: Fusing Data, to Improve
Arterial Operations for All Users

October 8, 2014
6. Performing Organization Code

KLK843; 739436, N14-11
7. Author(s) 8. Performing Organization Report No.

Michael Dixon, Michael Lowry, Randal Brunello, Yinhai Wang, David Porter, David Kim

5-739436

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)

PacTrans
Pacific Northwest Transportation
Consortium, University Transportation
Center for Region 10
University of Washington More Hall 112
Seattle, WA 98195-2700

National Institute for Advanced
Transportation Technology
University of Idaho 875 Perimeter Dr. MS
0901, Moscow, ID 83844-0901

11. Contract or Grant No.

DTRT12-UTC10

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered

United States of America
Department of Transportation
Research and Innovative Technology Administration

Research 9/1/2012-9/30/2014
14. Sponsoring Agency Code

15. Supplementary Notes

Report uploaded at www.pacTrans.org
16. Abstract

Measuring or analyzing transportation system performance occupies a large transportation professional’s time. So, improving performance
measurement methods in terms of accuracy and cost are important contributions. This research documents development on five fronts for multi-modal
transportation system performance measurement. Researchers developed a performance measurement development tool that leverages the advent of
high resolution controller data. The research targets the use of high resolution controller data output from simulation to shorten the performance
measurement development cycle. On another front, researchers developed and tested a GIS tool to process sparse bicycle counts and estimate network
wide link bicycle counts, enabling transportation agencies to predict bike usage throughout the network. Additionally, researchers developed a
portable wireless Bluetooth data collection system that is much more cost effective for short-term studies than existing products on the
market. Pedestrian performance measurement is so elusive that obtaining counts is challenging. Researchers developed an application for an off-the-
shelf product to count pedestrians using the Microsoft Kinect video game sensor. Finally, researchers developed a method to estimate turning
movement counts for most signalized intersections and some unsignalized intersections from lane-by-lane counts. This last development leverages
common matrix analysis techniques to assess data collection plans for solution feasibility and provides a solution if it is feasible.

17. Key Words 18. Distribution Statement

Turn movement estimation, pedestrian count, bicycle count, Bluetooth, travel time
measurement, traffic signal system, performance measurement

No restrictions.

19. Security Classification (of this

report)

20. Security Classification (of this

page)

21. No. of Pages 22. Price

Unclassified. Unclassified. 165 NA

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

iii

Table of Contents

Executive Summary xi

CHAPTER 1.0 INTRODUCTION ... 2

CHAPTER 2.0 PERFORMANCE MEASURE CALCULATION USING HIGH-

RESOLUTION DATA.. 4

2.1 Introduction .. 4

2.1.1 Overview ... 4

2.2 Literature Review... 4

2.2.1 Introduction ... 4

2.2.2 Purdue Coordination Diagram .. 5

2.2.3 Purdue Split Analysis Chart .. 7

2.2.4 Green Time Utilization ... 8

2.2.5 Delay Measurement .. 10

2.3 Methodology .. 11

2.3.1 Introduction ... 11

2.3.2 High-Resolution Data Emulation .. 11

2.3.2.1 Interface ..12

2.3.2.2 Flow Chart Narration ..14
2.3.2.3 Coding Guidance for Anticipated Improvements17
2.3.2.4 Output from Other Micro-Simulation Software17
2.3.2.5 Incorporation of External Data ...17

2.3.3 Purdue Coordination Diagram .. 18

2.3.3.1 Introduction ...18
2.3.3.2 Interface ..18
2.3.3.3 Flow Chart Narration ..19
2.3.3.4 Coding Guidance for Anticipated Improvements22

2.3.3.4.1 Incorporating Upstream Intersection Detection for Arrival
Estimation ...22

2.3.3.5 Automating the Generation of Graphs in the Excel Output22

2.3.4 Green Time Utilization ... 23

2.3.4.1 Introduction ...23
2.3.4.2 Interface ..23
2.3.4.3 Flow Chart Narration ..24

2.3.5 Phase Termination Analysis ... 27

iv

2.3.5.1 Introduction ...27

2.3.5.2 Interface ..27
2.3.5.3 Flow Chart ..28

2.3.6 Delay/Queue Length ... 29

2.3.6.1 Introduction ...29
2.3.6.2 Interface ..30
2.3.6.3 Flow Chart Narration ..31

2.4 Testing.. 32

2.4.1 Overview ... 32

2.4.2 Purdue Coordination Diagram .. 33

2.4.3 Green Time Utilization ... 34

2.4.4 Queue Length and Delay Estimation .. 35

2.4.5 Split Failure Analysis .. 38

2.5 Conclusions .. 40

CHAPTER 3.0 USING ORIGIN-DESTINATION CENTRALITY TO ESTIMATE

DIRECTIONAL BICYCLE VOLUMES .. 42

3.1 Introduction .. 42

3.2 Centrality.. 45

3.3 Method ... 47

3.3.1 OD Centrality .. 47

3.3.2 Preferred Bicycle Paths ... 48

3.3.3 Origin-Destination Pairs ... 51

3.3.4 OD Multipliers .. 53

3.3.5 GIS Toolbox.. 54

3.4 Analysis and Results .. 56

3.4.1 Case Study Data .. 56

3.4.2 Model Calibration and Validation .. 57

3.5 Conclusion ... 61

CHAPTER 4.0 PEDESTRIAN LIVABILITY AND MICROSOFT’S KINECT 64

4.1 Introduction .. 64

4.2 Literature Review... 66

4.2.1 Depth Based Human Detection ... 66

4.2.2 RGB-D Image Based Pedestrian Detection .. 68

v

4.3 Data .. 69

4.4 Methodology .. 70

4.4.1 Microsoft Kinect ... 71

4.4.2 Pedestrian Contour Extraction from RGB Images.............................. 71

4.4.3 Conversion from Depth Space to RGB Space 73

4.4.4 Pedestrian Extraction .. 74

4.4.5 Pedestrian Tracking and Counting .. 77

4.5 Experiment ... 79

4.5.1 Experiment results .. 79

4.5.2 Counting Accuracy and Real- time Performance 83

4.6 Conclusion ... 84

CHAPTER 5.0 BLUETOOTH DATA COLLECTION SYSTEM FOR PLANNING AND

ARTERIAL MANAGEMENT ... 86

5.1 Introduction .. 86

5.2 Literature Review and Background Information ... 87

5.2.1 Performance Data with Bluetooth Sensors ... 87

5.2.2 Data Description ... 88

5.3 Portable Collection System Design ... 90

5.3.1 System Description ... 90

5.3.2 Data Collection Unit Hardware and Software 92

5.3.3 Web-Based Software Application for Data Processing 97

5.3.4 System Cost and Packaging .. 100

5.4 Origin-Destination Study Data Collection Test ... 101

5.4.1 Estimation of Total Trip Counts ... 105

5.4.2 Conclusions ... 106

5.5 Intersection Performance Test ... 107

5.5.1 Intersection Test Setup .. 108

5.5.2 Test Results ... 109

5.5.3 Conclusions ... 112

5.6 Traffic Signal Timing Evaluation .. 112

5.6.1 Conclusions ... 116

vi

5.7 Dedicated Short Range Communication .. 116

5.7.1 Technology Readiness .. 117

5.7.2 Equipment Availability and Economic Feasibility 119

CHAPTER 6.0 EFFECTIVE TURNING MOVEMENT VOLUME ESTIMATION

FOR INTERSECTION ANALYSIS USING GAUSS-JORDAN ELIMINATION . 122

6.1 Introduction .. 122

6.2 Background .. 123

6.2.1 Analysis Scope .. 124

6.2.2 Detector Location.. 125

6.2.3 Use of detector and phase status event data 126

6.2.4 Input data .. 126

6.2.5 Estimate process.. 127

6.2.6 Summary ... 128

6.3 Methodology .. 128

6.3.1 Overall Method Description ... 130

6.3.2 Identifying Solvable Intersection Configurations and New Detector
Placements ... 140

6.3.3 Method Validation .. 142

6.3.4 Conclusions and Recommendations ... 144

REFERENCES .. 146

APPENDIX .. 155

vii

List of Figures

Figure 2.1 Example of a Purdue Coordination Diagram (Brennan, 2011) 6
Figure 2.2 Purdue Phase Termination Chart (UDOT, 2013) .. 8
Figure 2.3 Green Occupancy Ratio and Split Failures (Smaglik, 2011) .. 9
Figure 2.4 Simulation to High Resolution Data Emulation .. 10
Figure 2.5 Simulation to High Resolution Data Emulation .. 13
Figure 2.6 Purdue Coordination Diagram Interface ... 19
Figure 2.7 Purdue Coordination Diagram Flowchart ... 21
Figure 2.8 Phase Termination Chart Interface .. 24
Figure 2.9 Green Time Utilization Flowchart... 26
Figure 2.10 Phase Termination Interface .. 27
Figure 2.11 Phase Termination Flowchart .. 29
Figure 2.12 Delay and Queue Estimation Interface .. 31
Figure 2.13 Delay/Queue length Flowchart .. 32
Figure 2.14 Hand Assembled PCD ... 32
Figure 2.15 Tool Generated PCD ... 33
Figure 2.16 Cyclic Delay of the different methods... 35
Figure 2.17 The ground truth calculation of the cumulative arrivals and departures for the first

300 seconds of the simulation ... 36
Figure 2.18 The high-resolutiondata calculation of the cumulative arrivals and departures for the

first 300 seconds of the simulation ... 37
Figure 2.19 Delay/Queue length Flowchart .. 38
Figure 3.1 Correlation between OD centrality and observed volumes for different reachable

distance thresholds .. 53
Figure 3.2 Graphical user interface for the GIS tool to estimate bicycle volumes 55
Figure 3.3 Intersection count locations ... 57
Figure 3.4 Comparison of: (a) stress centrality and (b) OD centrality ... 59
Figure 3.5 Estimated one hour peak bicycle volumes for: (a) the entire community and (b) a

selected intersection .. 61
Figure 4.1 Flow chart of the proposed method ... 70
Figure 4.2 Examples of successful detecting and tracking pedestrians for scenario 2 (Yellow

solid circle locating one pedestrian), RGB image on top while corresponding depth image
on bottom .. 81

Figure 4.3 Examples of successful detecting and tracking pedestrians for scenario 1 (Yellow
solid circle locating one pedestrian), RGB image on top while corresponding depth image
on bottom .. 81

Figure 4.4 Examples of successful detecting and tracking pedestrians for scenario 3 (Yellow
solid circle locating one pedestrian), RGB image on top while corresponding depth image
on bottom .. 82

viii

Figure 4.5 Example of missing detection (Yellow solid circle locating one pedestrian), RGB
image on the left while corresponding depth image on right .. 83

Figure 5.1 Point detection refers to estimating when a vehicle containing a discoverable
Bluetooth device just passes the DCU marked by the vertical line across the road 88

Figure 5.2 A sample MAC address record stored on a DCU.. 89
Figure 5.3 System deployment for intersection performance estimation 91
Figure 5.4 Microcontroller unit portion of the DCU .. 93
Figure 5.5 External Bluetooth antenna and cable battery ... 94
Figure 5.6 Battery and GPS module ... 94
Figure 5.7 Web application screen shot showing origin-destination data entry 98
Figure 5.8 Web application screen shot showing origin-destination data analysis 99
Figure 5.9 DCU deployed on I-5 for origin-destination data collection. 100
Figure 5.10 Data collection locations in the Corvallis, Albany, Lebanon area 102
Figure 5.11 Data collection location used to estimate the vehicle fraction detected. 105
Figure 5.12 Intersection utilized for the data collection test ... 108
Figure 5.13 Test setup for intersection performance data collection test 109
Figure 5.14 DCU deployment locations (yellow pins) along Highway 99W in Sherwood, Oregon

... 114
Figure 6.1 Intersection Concurrency Groups, Counts, Lane Numbering, and Lane Specific

Movement Definitions .. 131
Figure 6.2 Example Matrix “a0” (first concurrency group and second concurrency group). 133
Figure 6.3 Group 1 “a” matrices. .. 134
Figure 6.4 Matrix input to Step 8 from Step 7 and Matrix resulting from Step 8. 137

ix

List of Tables

Table 2.1 Comparison of Hand Calculated GTU to Tool Calculated GTU.................................. 32
Table 2.2 Hand Calculated and Program Results for Creating the Purdue Phase Termination

Charts. ... 36
Table 3.1 Intersection Control and Cross Street Impedance Factor, Fc .. 51

Table 3.2 Estimation Coefficients and Model Statistics ... 58

Table 4.1 Pseudo-code of Pedestrian Extraction Algorithm ... 74

Table 4.2 Pseudo-codes of Pedestrian Tracking and Counting Algorithm 77

Table 4.3 Summary of counting test results.. 83

Table 5.1 DCU Component List ... 95

Table 5.2 DCU Components – Approximate Pricing ... 101

Table 5.3 Data Collection Locations for Origin-Destination Data .. 102

Table 5.4 DCU Deployment Periods for Origin-Destination Data Collection 103

Table 5.5 Maximum Travel Time used for Origin-Destination Data Processing 103

Table 5.6 Trip Counts ... 104

Table 5.7 Average Travel Times for the Trips in Table 5.4 (minutes) 104

Table 5.8 Total MAC Address Counts ... 104

Table 5.9 Total Unique MAC Address Counts ... 104

Table 5.10 DCU to DCU Travel Time Accuracy Results .. 111

Table 5.11 Travel Time Data Collection Summary for Highway 99W Signal Timing Evaluation
... 115

Table 5.12 Travel Time Data Collection Summary for Highway 99W, 6AM - 8AM. 115

Table 5.13 Travel Time Data Collection Summary for Highway 99W, 4PM – 7PM. 116

Table 5.14 Most Relevant Specifications of DSRC and Other Wireless Technologies 118

Table 6.1 Turn movement estimates for Concurrency Groups 1 and 2. 138

Table 6.2 Turn Movement Count Feasibility Examples – Minimum Detection. 141

Table 6.3 Validation Test Results. .. 144

Executive Summary

x

This project seeks to investigate the developments of and the potential for different

methodologies for gathering arterial traffic performance data. In the effort to build more livable

communities, this data is essential, but gathering, organizing, and applying it has, historically,

been a difficult task. This report is organized around product areas, which are 1) an open-source

tool to monitor dynamic performance measures from high resolution traffic controller data, 2) a

practical and accurate tool for estimating bike volumes, 3) cost-effective pedestrian detection, 4)

inexpensive and quickly applied tools to extract probe vehicle data, and 5) a pragmatic approach

to accurately estimate signalized intersection turning movements. Each chapter of this report is

an autonomous effort in studying one of these areas in particular. This project developed

resources and performance measures to inform efforts to achieve the goals of safety and

efficiency to promote community livability.

Chapter 2 proposes a tool that facilitates future performance measurement research

related to traffic signal systems. The tool imports data from a simulation data source for

experimentation in varied ideal settings or from field traffic signal systems for more rigorous

application testing. Currently, imported traffic controller data are combined to produce dynamic

performance measures, including the Purdue Coordination Diagram (PCD), Green Time

Utilization (GTU), phase termination, and queue length/delay. These are integrated to be

visualized with the PCD acting as the background. Additional measures and tasks can be

supported by the tool’s data import and various database functions.

Chapter 3 uses origin-destination centrality to estimate directional bicycle volumes.

Limited input data, simple site specific calibration, trivial modeling requirements, and practical

accuracy make this method very attractive relative to proposed alternatives. In addition, this

xi

research provides the tools to import input data, process the data, estimate the bicycle volumes,

and visualize the results with add-on applications created for industry-standard off-the-shelf

software.

Chapter 4 proposes an efficient pedestrian detection method for crowded scenes by fusing

RGB and depth images from Microsoft’s ® Kinect. While traditional image-based pedestrian

detectors provide very rich information, their performance degrades quickly with increased

occlusion. The 3D sensing capabilities of Microsoft’s Kinect present a potential cost-effective

solution for occlusion-robust pedestrian detection. The results of the study demonstrate the

feasibility of using the low-cost Kinect device and a proposed detection method for real-world

pedestrian detection in crowded scenes.

Chapter 5 documents the research and development of an inexpensive portable wireless

roadside data collection system using probe vehicles, whose movements are monitored using

Bluetooth technology. The system addresses industry needs for low-cost portable traffic

monitoring and supports travel time, origin-destination, and delay performance measures. The

research also reviewed the potential of Dynamic Short Range Communications (DSRC) for to

accomplish the same tasks and found DSRC advantages include 1) low-latency communications,

2) broadcast messages, 3) greater communication range (+200 m), and 4) greater bandwidth.

Limited availability and expense of supporting hardware are major disadvantages of the system,

which will subside as technology adoption spreads.

Chapter 6 presents a method that solves for turning movement volumes using Gauss-

Jordan elimination row operations (e.g., row swapping, multiplying rows by non-zero constants,

and adding a factor of one row to another row). The input data are phase status, lane-by-lane

xii

detector counts, and limited exit detector counts. It evaluates existing intersection detector

locations for their combined suitability to estimate turning movements and selects detection

plans that minimize data requirements. The method accommodates varying lane configurations,

varying detector locations, and includes or excludes phase status. Because the method is founded

on direct implementation of basic matrix analysis row operations, the solution process is easy to

implement. Three data sets validate the method’s accuracy, with and without detection error,

showing the method can be sufficiently accurate for professional applications in planning,

design, and operations.

Arterial system performance measurement is important for assessing steps considered or

taken to accomplish goals directed toward greater community livability. Several tools and

methods were developed to collect data, import data, process data, and to estimate performance

measures. These tools were tested to prove their feasibility and each chapter provides an

insightful and detailed evaluation of these products.

1

2

CHAPTER 1.0 INTRODUCTION

The problem many transportation professionals face is measuring performance and

correcting poor performance to meet community goals. Measuring performance using existing

traffic data is natural. In fact, all performance measures either require traffic data or could greatly

benefit from it. Fortunately, these traffic data exist in key locations found in signalized arterial

networks. However, very little of these data are fully utilized to measure performance. This

project developed methods and technologies to gather data from multiple sources to enable a

more complete understanding of arterial traffic safety and arterial systems efficiency. This

understanding will strengthen steps that professionals take to improve service.

Historically, performance measurement was largely an off-line, labor intensive endeavor.

Gradually, this is changing to leverage widespread communication systems and technological

resources for sensing, data processing, and systems management. Transportation systems benefit

from these changes. For example, data from the large majority of signalized intersections are

available to measure performance. However, measures need to strongly support local intersection

and system level diagnostics to inform planning, design, and operational decisions that promote

livable communities by way of multimodal safety and efficiency improvements.

This project developed resources and performance measures to guide efforts to achieve

the goals of safety and efficiency to attain greater community livability. Specifically, this

project’s goals were to: 1) develop improved performance measurement for a diverse set of

transportation modes, 2) develop processes/tools needed to estimate performance measures, and

3) develop a foundation for researching secure control feedback for mode, safety, weather and

traffic condition sensitive response.

3

To achieve the above three objectives, the project team focused their efforts on product

research and development to foster technology transfer. In light of this product focus, this report

is organized around these product areas, which are 1) an accessible open-source tools to extract

dynamic performance measures from high resolution traffic controller databases, 2) a practical

and accurate tool for estimating bike volumes, 3) a cost-effective pedestrian detection

technology, 4) inexpensive and quickly applied tools to collect probe vehicle data, and 5) a

pragmatic method and tool for calculating intersection turning movement volumes. A chapter is

dedicated to each of these areas. Each chapter is autonomous, containing a literature review,

methodology, discussion of research, and findings and conclusions.

4

CHAPTER 2.0 PERFORMANCE MEASURE CALCULATION USING HIGH-

RESOLUTION DATA

2.1 Introduction

2.1.1 Overview

The purpose of this research project was to create a tool that could be used to facilitate

future research of traffic signal systems. The tool generates performance measures using high-

resolution data collected by traffic signal controllers. High-resolution data is a record of every

state change that occurred for a traffic controller. It usually consists of four fields for each state

change: the intersection number, the phase number, the time, and an event identifier. There are

all kinds of state changes that can be logged. This project however, is only interested with the

signal timing and detector activations and deactivations. The tool can also be expanded to use

multi-source data such as Bluetooth probe data or speed detection. Furthermore, this tool

facilitates the generation of new performance measures because it can generate high-resolution

data from traffic simulation software, such as VISSIM. The tool includes some performance

measures which can be improved by adjusting open-source code for the data processing

algorithms. Lastly, this tool can be expanded to experiment with the application of performance

measures for strategic decision making.

2.2 Literature Review

2.2.1 Introduction

The purpose of this literature review is to describe the common performance measures

that can be generated using high-resolution traffic controller data. The performance measures

5

discussed in this review were all included in the proposed tool. These measures and their

application continue to be improved and are recommended for future research. In conjunction

with one another, these measures can identify most operational problems at traffic signals as well

as help find a solution. As such, they are prime candidates in a prototype performance

monitoring tool.

2.2.2 Purdue Coordination Diagram

Darcy Bullock advanced the application of high-resolution performance measures by

developing the Purdue Coordination Diagram (PCD) (Brennan, 2011). This diagram is a chart

that displays arrivals in relation to the time in the cycle and the cycle in relation to the time of the

day. Only one phase is analyzed on a single diagram. Figure 2.1 below is an example of a PCD.

It is used to analyze the quality of coordination, among other system monitoring activities. Each

point on the diagram is a vehicle arriving at the intersection, ideally provided by lane-by-lane

advanced detectors. If a point lies above the green line, which is the beginning of green (BOG),

on the graph then the arrival occurred during green. The red line is the end of green (EOG). As a

result, a well-coordinated system shows vehicle arrivals as a dense cloud, predominantly above

the green line, as indicated by the “ii” note in Figure 2.1.

6

Figure 2.1 Example of a Purdue Coordination Diagram (Brennan, 2011)

The PCD does require significant attention to gather all of the important insights that may

not be obvious. Issues like queues extending over the advance detectors and the lack of

numerical quantification can make using the PCD challenging. For this reason Utah Department

of Transportation (UDOT) includes average performance measures for each time of day plan.

The percent arrival on green, percent green time, and platoon ratio give a numerical

quantification that is a good representation of one of their diagrams. The percent arrival on green

is calculated as the number of arrivals during the green time divided by the total arrivals during

that study period. Similarly the percent green time is simply the total green time divided by the

total time of the study period. The platoon ratio combines these two measures and is calculated

as the percent arrivals on green divided by the percent green time.

The PCD sheds light on a broad range of traffic operations problems, like queue spillback

or poorly timed offsets. At the same time, the PCD integrates well with more aggregate

measures. As a result, the proposed tool should include the PCD to help advance performance

7

measurement by generating multiple performance measures, while leveraging the PCD to see

individual vehicle operations.

2.2.3 Purdue Split Analysis Chart

The UDOT has implemented an extensive system that logs high resolution data for the

majority of the traffic signals on the state system (UDOT, 2013). Their system allows users to

view performance measures depending on the detection setup. For example if the intersection has

advance detectors, PCDs can be generated. Most high-resolution performance measures depend

on detectors. The Purdue Phase Termination Chart is the only measure that does not require

detector data. This chart, see Figure 2.1, shows the conditions that lead to the green ending. It

color codes max-outs, gap-outs, and force-offs. Then, comparing different phases, it can help

identify problems with split times and in some cases find malfunctioning detectors. For instance,

in Figure 2.1 Purdue Phase Termination Chart (UDOT, 2013)below, shows a plot created on

UDOT’s performance metrics website. The green dots are gap-outs, the blue dots are force-offs

and the red dots are max-outs. Since the max-outs are similarly colored to the pedestrian walk

markers, a group of max-outs has been circled in the figure. The orange dots that are just above

the phase are pedestrian walk indications. There are two coordinated periods, one in the AM and

the other in the PM. Because of the consistent force-off phase termination, it is clear that phases

2 and 6 are the major approach that is coordinated. During plans 1 and 13 where there is

coordination they are always forced off.

8

Figure 2.1 Purdue Phase Termination Chart (UDOT, 2013)

This measure is very simplistic but can still be very useful. For instance, in the case

shown above, if another measure identified a problem on the major corridor this diagram could

be consulted to compare the different phases. Due to the consistency of the minor phases gapping

out, this intersection may benefit from having its split times adjusted to better meet its demands.

Unfortunately, nothing concrete can be determined from this measure alone; it is simply a

companion to the other measures. Nevertheless, when this measure is considered in parallel with

other measures, it helps diagnose problems with signal timing plans and should be included in

the proposed tool.

2.2.4 Green Time Utilization

Green Time Utilization (GTU) is a simple performance measure which tells you the

percent of the green time that the stop bar detectors were active. This serves as a surrogate

9

measure for capacity utilization. However, this measure requires some calibration for proper use.

Calibration is necessary because the variety of detection types, accuracy, and sensitivity affect

the GTU significantly. However, even after being calibrated it still does not have a significant

correlation with delay. A study found that GTU had an r2 of .513 when correlated to delay,

(Smaglik, 2011). It can be a good indicator of the performance even though it is not very precise.

In their study, when the GTU was greater than 95%, half of the cycles were split failures,

meaning the queues failed to clear during the green time (see Figure 2.1). Note that, in Figure

2.1, Smaglik used the term green occupancy ratio (GOR) instead of GTU.

Figure 2.1 Green Occupancy Ratio and Split Failures (Smaglik, 2011)

This performance measure is germane to traffic signal systems operation and, as

illustrated above, is a simple indicator of impending problems and imbalances in phase services.

As a result, GTU is a strong candidate for inclusion in the proposed tool.

10

2.2.5 Delay Measurement

UDOT also did a study on estimating delay (Saito, 2011). It used loop detector data to

estimate delay and travel times using stop bar data from the intersection in question and the

upstream intersection. The estimated travel time would determine matches between upstream and

downstream detector hits. The dataset was trimmed to not include vehicles that were already in

the system at the start of the analysis or still in the system at the end of the analysis. They also

had to account for vehicles exiting and entering mid segment. This problem led to the creation of

two methods. The first method had detectors on the mid segment driveways so that the vehicles

that exited and entered could be accounted for. The other method did not have these mid segment

detectors. Currently, the second method is the only one that might be viable for use in the

proposed tool, until a feature for midblock detection is added. Once the vehicles entering and

exiting mid-stream have been removed from the analysis, the process checks to make sure that

all the data points from the upstream detectors have matches with data points from the

downstream detectors. Then the average travel time is calculated. First, the sum of the upstream

detector hit times is subtracted from the sum of the downstream detector hit times. That value is

then divided by the total number of vehicles. The average delay time is then defined as the

difference between the average travel time and the free flow travel time (driving the speed limit).

The results of this study seemed mixed with errors in delay less than 5 seconds per vehicle for

most cases and the percent error varied from 30 to 40 percent. The test conditions were not

sufficiently varied to generally conclude the method’s value. However, longer distances will

likely require more complex considerations of driver behavior to successfully match a vehicle’s

upstream and downstream detections. These complications arise from more midblock traffic and

larger travel time variations.

11

The proposed tool should include delay as a performance measure. However, to minimize

complications, the distance between entrance and exit detectors should be much shorter than

what was used in UDOT’s test, at approximately 400 feet.

2.3 Methodology

2.3.1 Introduction

The system for generating performance measures requires two parts. The first part is

comprised of three different elements: a database that contains the high resolution data, a

database table that contains the maximum green times, and a tool for converting VISSIM 5

outputs to a high resolution database (VISSIM is a traffic microsimulation software developed

by PTV group). The database used in this project was Microsoft SQL Server. The other part is

the suite of python programs, called the Performance Measurement Research Suite. There are a

total of seven files that make up the suite, but only two of the files need to be run or edited to use

the program: the file that produces the graphical user interface (GUI) and the file that controls

the default information. In order to run the different performance measure programs all that must

be done is open the GUI program. In order to change the default information the python file

named “CustomDefaults.py” must be edited.

2.3.2 High-Resolution Data Emulation

This high-resolution data emulation program, or emulator, converts VISSIM 5 output

files to basic eventcode style high resolution data. High resolution data are a record of every

change of state. It includes the time stamp of the state change, the eventcode to identify the state

that is changing, the intersection identifier, and the phase identifier. These eventcodes are

extracted from the detector output files (.ldp) and the signal output file (.lsa). The (.ldp) files

12

must be formatted in a specific format so that the time in seconds of the simulation is the first

column followed by an empty column and then followed by the corresponding detectors which

are also separated by an empty column. Any traffic controller in VISSIM 5, including hardware

in the loop, is acceptable, so long as the (.ldp) and (.lsa) files exist in the VISSIM simulation

configuration.

2.3.2.1 Interface

The input fields for running the emulator can all be customized using the

CustomDefaults.py. After customizing, the emulator GUI starts by requesting a unique table

name, so that a table will be created holding the output data in the same format that high

resolution data would be collected in Centracs. The next item to select is a valid VISSIM 5 (.inp)

filename for a simulation by browsing or entering in the path and filename. All (.ldp) and the

(.lsa) files will need to reside in the same directory in order to be found at this time as this is

where they are output by default from VISSIM 5. Additional (.kfg) files are also needed to

determine the correct detector name that corresponds with the data in the (.ldp) output file. The

program will allow for any number of signal intersections and detectors to be used as long as

there is an appropriate (.ldp) and (.kfg) file created based on the (.inp) file selected.

13

Figure 2.4 Simulation to High-Resolution Data Emulator

There are two buttons that follow the entry fields. The first button is a “Browse” button

for selecting and collecting the simulation output data. First, the detector data are collected in the

order of the intersections entered into the input field. Following the detector data’s collection, the

phase changes are collected. These files are then each entered into a table in the database. The

“Output to Database” button runs the analysis and conversion of the output files to high

resolution data. The detector data are output by VISSIM every time step. Therefore, it must be

simplified down to detector activation and deactivation times. The phase changes are already

output by VISSIM in the form of state changes. Only the format must be changed to fit the event

code style. Also, the green times are checked with the maximum green to determine the reason

for phase termination. The maximum green times are retrieved from a table in the database. The

table is formatted to have 3 fields, the intersection, phase, and maximum green. These fields

were integers in the example but could be any numerical datatype that is needed. Each file is

analyzed and entered into a string. This string is then entered into the database. Since the order of

14

the data produced by this program is not chronological, all queries to this table need to include an

“ORDER BY TimeStmp”.

2.3.2.2 Flow Chart Narration

There are two levels of flow charts (see Figure 2.5). The first level introduces each

function in the program. The second level explains each step through the program’s functions.

Each of the functions has its own smaller flow chart since they do not need to be run in order,

although it is recommended.

This program has three sections of code. The first section of code generates the graphical

user interface. This consists of two entry fields and two buttons as well as an area at the bottom

for messages for the user if input needs to be corrected or an error occurs. The first entry is the

name of the database table that will have all data from the VISSIM 5 simulation entered into it.

If the table already exists the program will ask for a new table name. The second entry field is

for the VISSIM 5 (.inp) configuration file that will tell the program what VISSIM (.ldp) and

(.kfg) files exist so that the program can insert all available data into the table that will be

created. The entry must be a full path to the (.inp) file, a button with three periods is next to this

entry field so a user can browse to the file if they do not know the full path. If the file does not

exist the program will not run. The last button labeled “Output to Database” will start the

processing based off of the (.inp) file selected. If there are any errors, this will be reported in the

message area at the bottom.

15

Figure 2.5 Simulation to High-Resolution Data Emulator

16

The second section of code is activated when the button with the three periods is pressed.

This will open a window to browse to an (.inp) file. This section ties in with the third, since the

third section will validate that this file is the correct file type.

The third section is where the processing of the (.inp) file occurs. The first process that

occurs is that the (.lsa) file will be looked for, and once found it will be processed so that each

line is examined for changes in the signal values. The (.lsa) data will give information of when

the light status changes and at what time so this can be entered into the table in the appropriate

formatted state-change events. In addition to the file being processed for the data that is there,

any phase state change to amber will result in determining if the change was due to a max-

out/force-off or a gap-out. The data is saved into a python list until the end of the file. Once end

of file is reached, a bulk insert query is initiated so the data will be uploaded into the database

table.

After processing the (.lsa) file, the (.inp) file will allow the program to find all relevant

(.ldp) output files as well as their corresponding (.kfg) file. The (.kfg) file holds all the relevant

information about the detectors and how the (.ldp) file is to be formatted. Once the (.kfg) file for

the signal is processed, then the (.ldp) file is processed and it is made of 4 sections; the program

is only interested in the third and fourth section of the (.ldp) files. The third section will allow

the data in the (.kfg) file to be validated, so we know the data is formatted correctly. The fourth

section holds all the relevant detector state data. The program will process all lines in the fourth

section and based on the detector status being activated and will record this activated time in a

python dictionary for later lookup. If the time in the dictionary of the last activation is more than

one time step, then the program will append to a python list that the detector has changed status

17

indicating a deactivation at the previous recorded time plus one time step as well as an activation

at the current time. At the end of each (.ldp) file a bulk insert statement is made to insert all this

data into the database table.

2.3.2.3 Coding Guidance for Anticipated Improvements

Only VISSIM 5 files can be used at this time. Additional work is needed to incorporate

VISSIM 6 files.

2.3.2.4 Output from Other Micro-Simulation Software

Changes in output file format will be difficult to address without significant code

changes. If there are only minor changes, such as detector status changed to “true”/“false” or

“1”/“0” instead of “.”/“\” then the change will be simple. If the output files are in the form of

status changes already then it would likely be easiest to recode all the logic, only maintaining the

writing of events to the string. The “if” statements in the loop that analyzes the signal timing

output file will require adjustment. The string they check for is very specific, requiring the exact

number of advance and trailing spaces. One of three alternatives may be easiest: 1) write a

separate program that changes the output files to match what is required, 2) provide separate

logic for inputting data, depending on the source simulation, or 3) allow the user to define the

data delineation.

2.3.2.5 Incorporation of External Data

Including other forms of data, like Bluetooth probe detection or manually collected data,

is fairly simple. As long as you can produce an event code entry from external data, it is a simple

matter to add it to the database. If it will occur in every study it may be included in the current

functions. More likely however, this process would be added as a separate function that runs

upon button press. This would require the external data to be read into the program, either by

18

reading a text file, independently from any existing function in this program, or by inputting a

file into the database and reading it from there. Then the program would process the data and

append events to the same string that is produced by the emulator. This can be done entirely with

processes already developed within the program.

2.3.3 Purdue Coordination Diagram

2.3.3.1 Introduction

This program analyzes high resolution data and outputs an Excel file that contains data

organized into columns. This Excel file can easily be used to create a Purdue Coordination

Diagram, or PCD, using an Excel scatter plot. It also produces summary measures including:

percent time green, percent arrivals on green, and platoon ratio for each cycle and overall. These

cycle-by-cycle measures are plotted with the PCD.

2.3.3.2 Interface

This interface, seen below in Figure 2.6, is the base interface for most of the following

programs. It has 4 fields that collect information. As with all of the programs, the default values

for the graphical user interfaces (GUI) can be changed using the CustomDefaults.py file. The

first field is the intersection numbers separated by commas. The second field is the phase

numbers separated by commas. Only one phase number can be selected for each intersection

selected. However, the same intersection may be listed multiple times to include multiple phases

from one intersection and any number of intersection/phase pairs are acceptable. The detector

input field is slightly more complicated. The detectors for a given phase are separated by

commas. Then each phase’s group of detectors is separated from the other detectors by a

semicolon. The final entry is the database table name, where the data will be retrieved. At the

very bottom of the GUI, there is a button which will run the program once the four fields are

19

completed. This button will run the entire program from retrieving inputs to creating the excel

output file.

Figure 2.6 Purdue Coordination Diagram Interface

2.3.3.3 Flow Chart Narration

The Purdue Coordination Diagram program has two parts and these are illustrated in the

flow chart below, Figure 2.7. In the first part, it constructs the graphical user interface, seen in

steps 2.1 to 2.4 of the flow chart. The second part runs the analysis based on the information

entered into the graphical user interface, seen in steps 3.1 to 3.12 of the flow chart.

The user interface is described in detail above, so this discussion emphasizes the

calculation process, which begins by retrieving the information from the graphical user interface.

Then the process connects to a database and creates an excel workbook, steps 3.3 and 3.4. Once

this has been done, it loops through the intersection/phase combinations that were entered into

the graphical user interface. For each loop, the program uses the remaining input information to

construct three SQL queries, step 3.6. The queries retrieve all of the intersection green times, red

20

times, and detector activations for the given phase. These are stored in three separate lists. The

process organizes the data cycle-by-cycle by looping through the beginning-of-red time list. The

beginning-of-red time indicates the ending time of the current cycle for which detection data are

being organized. For each cycle’s red time, the program loops through the detector times,

searching for detections that occurred during the cycle. The loop through the detection times

stops when a detector time occurs after the beginning-of-red time. Each detector time is logged

as an arrival in the workbook. Next, after completing looping through the detector data the

program checks the green time list to see if the green time is the correct one. It does this check

by making sure that the green time occurred between the previous beginning-of-red time and the

current beginning-of-red time. It then logs the green time in the workbook for the current cycle

for which data are being organized. Once it is done looking at the detector times and green times,

it calculates the cycle’s performance measures. Percent arrivals on green, percent green time, and

the platoon ratio are the measures calculated. The program then moves to the next cycle’s red

time and repeats this process until there are no more red times. Once all the red times have been

completed, the program steps to the next intersection and repeats the process again. Last, the

program saves the workbook and it is ready to be used to create a PCD. All output excel files are

saved in the same directory as the python programs. The excel files are named as the

performance measure and datetime separated by an underscore. For example, the format,

PM_Month_Day_Hour_Year, results in a PCD_Jan_15_2_30.xlsx.

21

Figure 2.7 Purdue Coordination Diagram Flowchart

22

2.3.3.4 Coding Guidance for Anticipated Improvements

2.3.3.4.1 Incorporating Upstream Intersection Detection for Arrival Estimation

PCD-oriented information is most useful when detection occurs upstream of the subject

intersection’s queue. In many cases, there are no detectors at this strategic location. Using arrival

estimations from an upstream intersection is an easily implemented addition to the program.

There will need to be an addition to the GUI’s current entry fields, allowing the user to enter the

upstream intersection information, which is the intersection number and the phase numbers that

contribute to the subject intersection/phase arrivals. This program would then need to collect

departure data which will be processed to create the list of arrival times. For example, the

program would retrieve the departure times and add the travel time between intersections. The

travel time could be based on probe data or simply defined as the distance divided by the

estimated speed. The resulting values would be estimated arrival times. The program would then

need to refer to these estimated arrival time values instead of retrieving arrival times directly

from queried detector results.

2.3.3.5 Automating the Generation of Graphs in the Excel Output

Currently, the user needs to manually create the PCD diagram from the output data that

this program creates. The program can be modified to automate the generation of graphs in excel

using Visual Basic for Applications (VBA). The VBA program can either be run in excel after

the output file has been created or VBA can be executed by the python program after the

workbook has been saved.

23

2.3.4 Green Time Utilization

2.3.4.1 Introduction

This program analyzes high resolution data and outputs to an excel file that contains both

cyclic and overall performance measures. The primary performance measure calculated is the

Green Time Utilization. However, detector hits are also counted, which can be used to measure

the most basic performance measure, flow rates.

2.3.4.2 Interface

This interface, shown below in Figure 2.8, is very similar to the Purdue Coordination

Diagram’s interface. There are four entry fields: Signals, Phases, Detectors, and Table Name.

They work the same as the Purdue Coordination Diagram. The intersection field accepts comma-

delimited values. The Phases field requires the same number of entries as the intersections field.

The intersection and phase values are considered as pairs. For instance, the first intersection-

phase pair would be 1-2 and the second pair would be 1-6. The detectors field follows the same

rules as they have in the previous interface but the user should use a stop bar detectors if they are

available. For the best results, the Purdue Coordination Diagram program uses advance

detectors, while stop bar detectors would be best for the GTU measurement. The final entry is

the name of the high resolution data table. The “Run Calculations” button will run the

calculations and produce an excel file with the calculated GTU measures.

24

Figure 2.8 Green Time Utilization Chart Interface

2.3.4.3 Flow Chart Narration

This discussion provides an overview for the computer program that extracts GTU

information from high resolution controller data and uses the flowchart in Figure 2.9 for

illustration. The program starts by importing all the libraries required to function. These are all

included with the scripts. The graphical user interface is then constructed. There are 4 entry

fields and a button. The button “Run Calculations” executes this program’s only function. As

shown in steps 3.1 to 3.13, this function collects the data from the database, processes it, and

outputs the results into an Excel file.

The first step is to collect the information entered into the entry fields, step 3.1. Next it

enters a loop where it analyzes each intersection-phase pair. In the loop, it initializes the

temporary count and summation variables that will be used, step 3.5. Then it produces a query

that selects all detector activation and deactivation times along with the start of red and start of

green times. Each of these times also has a corresponding event. These values are arranged in

one list which is analyzed in the next steps, 3.8-3.10. Each loop processes one event. If the event

is a green light a few things are done. First the cycle counter is incremented up one. Then the

number of hits in the previous cycle is appended to a list where they are stored until the reporting

25

step. This is followed by the green light Boolean being set to true and the previous green time

being logged. Last the temporary variable that holds the previous detector activation is

overwritten with the start of green. This has to be done because the detector events are only

analyzed if the light is green. Therefore, if the detector activates during the red phase, which is

very likely, the program will recognize the detector as on immediately, at the same time as the

beginning of green. If the detector is not active when the light turns green then this temporary

variable will be overwritten with the actual activation time before the time the detector is on is

calculated. There are also a few steps that are taken if the event is a red light. First the green light

Boolean is set to false. Then, the green time is calculated and recorded, and if the detectors are

active the time it has been active is calculated and added to the sum. Similar to storing the start

of green in the temporary detector, the end of the green must turn off any detectors and log their

time towards the sum. When the event is not either of these two then the program checks to see if

the light is currently green. If it is green then it will process the events accordingly. This is done

because the program is not concerned with detector events while the light is red. The program

then loops through the detectors to see which detector had a state change. Each of the detectors’

states is stored in a list. If any detector is active, then the green is still being used and will be

counted towards the utilized part of the phase’s green time. When the phase’s detection status

changes states from off to on, the size of the gap is calculated and the activation is logged. When

the phase’s detection status changes from on to off the duration of the activation is calculated and

reported. Once all the events have been analyzed, the performance measures are calculated and

output to Excel.

26

Figure 2.9 Green Time Utilization Flowchart

27

2.3.5 Phase Termination Analysis

2.3.5.1 Introduction

This program looks at the end-of-green events and uses the event code to prepare an

excel file. The gap-outs are separated from the max-outs and force-offs and both can be easily

added to a graph for analysis.

2.3.5.2 Interface

The interface, shown below in Figure 2.10, is very similar to the GTU interface. It does

not, however, require detector inputs of any kind, because it only gathers reasons for phase

termination. Also the phase entry data are formatted similar to the detector input of the previous

program. There can be multiple phase entries for each intersection entry. Phase entries for the

same intersection are comma delimited and phase groups for each intersection are separated by a

semicolon, see Figure 2.11. For instance, to specify phase termination information for all eight

phases of Intersection 22, the following settings would be the entry for the phases:

2;1,2,3,4,5,6,7,8;2.

Figure 2.10 Phase Termination Interface

28

2.3.5.3 Flow Chart

This program has very simple calculations and, as shown in the flowchart used for

illustration, it is therefore significantly shorter than the others (see Figure 2.11). As with each of

the programs, the first task is to load the required libraries. Then the program constructs the

graphical user interface. When the “Run Program” button is pressed, the values of the entry

fields are retrieved and used to create two queries. The queries collect the end of green times and

gap-outs in one list and force-offs/max-outs in the other. For isolated intersection operations,

force-offs should be considered max-outs. The lists retrieved from the queries are written to an

Excel workbook storing the output data.

29

Figure 2.11 Phase Termination Flowchart

2.3.6 Delay/Queue Length

2.3.6.1 Introduction

This program estimates delay and queue length using high resolution data. The estimates

are calculated using arrival and departure counts based on detector activations. This program

requires lane–by-lane detection for both the arrival detection and the departure detection. Ideally,

arrival detection would be accomplished by advanced detectors located upstream of the queues

and departure detection would occur by stop bar detectors.

30

2.3.6.2 Interface

Similar to the previously discussed programs, this interface has entry fields for the

intersections, phases, arrival detectors, departure detectors, and the table name of the dataset (see

Figure 2.12 below). The first notable difference is that there are two sets of detector inputs. This

is because it is important to differentiate between the arrival detection and departure detection in

the analysis. The intersection field requires that the intersection values be separated by commas.

Similarly, the phase numbers must be separated by commas and must have the same number of

entries as intersections. The detectors are broken into groups by semicolons which each refer to a

phase. The detectors for a given phase are separated by commas and are separated from detectors

associated with other phases by a semi-colon. All of the information needed for delay at phase 2

of intersection 11 is indicated by dashed boxes in Figure 2.13. Queue length and delay could be

extracted for other phases of the same intersection by repeating the intersection number, adding a

different phase number, specifying the corresponding arrival and departure detector numbers.

31

Figure 2.12 Delay and Queue Estimation Interface

2.3.6.3 Flow Chart Narration

The flow chart for this program is shown below in Figure 2.13. This program begins by

loading the libraries it uses. Then it produces the graphical user interface. When the “Run

Program” button is pressed it executes the function. This function starts by retrieving the

information in the entry fields. Then it opens a connection to the database, opens a workbook

object, and begins looping through each of the intersection/phase combinations. For each

combination, it creates a worksheet, retrieves the red times, retrieves the arrival times, and

retrieves the departure times. Then it loops through each time step and checks for when different

events occur (beginning of red, arrivals, and departures occur). If the event is the beginning of

red then the queue length is recorded. If an arrival occurs then the queue is incremented up one.

If a departure occurs, the queue is decremented down one. For each time step, the time, queue,

and delay are recorded. Then the delay for the next time step is calculated. The loops are

complete after they have finished cycling through the lists.

32

Figure 2.13 Delay/Queue Length Flowchart

2.4 Testing

2.4.1 Overview

The output from the performance measure calculation tool was tested by directly

comparing the measures produced by the tool with the hand calculated measures. All of the

measures relied on the same VISSIM output files. The hand calculated measures, GTU, PCD,

33

and PPTC, were produced using the detector output files (.ldp) and signal changes output file

(.lsa) from VISSIM. The delay was compared to the calculated delay from VISSIM. Each

measure was tested for accuracy over five cycles. Each of the tested measures was an exact

match with the exception of the delay and queue length measures.

2.4.2 Purdue Coordination Diagram

The part of the tool that produced the PCD was tested by comparing the list of arrivals that were

output to the detector output files. A PCD assembled in Excel using the detector output files was

created to compare as well. These PCD’s are shown below as Figure 2.14 and Figure 2.15.

Figure 2.14 Hand Assembled PCD

34

Figure 2.15 Tool Generated PCD

The arrivals are identical between the two methods.

2.4.3 Green Time Utilization

The GTU performance measurement creation was the most difficult to calculate. The

complications during calculation were primarily caused by detectors being active when the phase

began. When a detector activated and deactivated during the phase the time that it was active is

added to the total active time and is easily accounted for. When a detector is already active, at the

start of the phase, the program wouldn’t know it was active until the detector deactivated.

The table below shows the GTU that was produced by the program for two phases. The

column titled “GTU 1” is the calculated GTU for the first five cycles of phase 1 in intersection 1.

The values in the column to its right, labeled “Calculated” contain the hand calculated values.

These values were identical to the ones produced by the program. The column “GTU 6” and its

35

corresponding “Calculated” column were another test which included a phase with multiple

lanes. The second test also produced identical results.

Table 2.1 Comparison of Hand Calculated GTU to Tool-Calculated GTU

Cycle GTU 1 Calculated GTU 6 Calculated

1 0.27 0.27 0.21 0.21

2 0.33 0.33 0.32 0.32

3 0.14 0.14 0.22 0.22

4 0.34 0.34 0.24 0.24

5 0.36 0.36 0.38 0.38

2.4.4 Queue Length and Delay Estimation

Along with the other measures, queue length can be estimated using high-resolution data.

This measure requires both advanced and stop bar detectors that are sensitive enough to detect

individual vehicles. The queue length estimation is based on an input output model which

assumes that every vehicle is detected, both entering and exiting the system.

To test the queue length estimation, VISSIM Data Collection Points (VDCP) were added

to the system to act as the ground truth to check the controller detectors and the resulting queue

length and delay measures. Unlike the controller detectors, these VDCPs are for collecting

simulation data and not for signal actuation.

During an hour long simulation, manual inspection found 15 detection errors in the

controller detector data. The errors were caused by vehicles changing lanes over the advance

detectors. These errors lead to a vehicle being counted twice as it enters the system. This creates

a bias in the delay estimate, because vehicles are not double counted at the stop bar.

Accuracy was determined by calculating the delay with both the VDCP and the controller

detectors, with the VDCP delay acting as the ground truth. The results of the delay were assessed

36

through visual inspection of the delay curves (see Figure 2.16), which show that the delay was

accurate during the beginning of the simulation. However, delay became increasingly inaccurate

through accumulated errors from double counting at the entry detectors. Delay errors became

apparent after five cycles. Figure 2.16, below, shows the increasing errors in estimation as

simulation progressed. The initial high resolution data estimation is the line that continues to

climb upward. In comparison, the ground truth calculation and the adjusted calculation, which is

explained in the next paragraph, are steady near the 20 seconds/vehicle mark. Adjustments

needed to be made to improve the calculations.

Figure 2.16 Cyclic delay of the different methods

Since the cause for the errors was known, steps were taken to remove these imperfections

from the dataset and retest the method with filtered controller detector data. Although this

filtering was manually implemented, it does illustrate the potential accuracy this approach has.

A t-test determined the delay estimation method to be accurate when comparing the

entire hour of data, resulting in a t-statistic of .096. Even with the statistical confirmation it

37

should be noted that the queue length estimation works most accurately with smaller datasets,

especially when detectors are found to systematically count high or low. Figure 2.17 and Figure

2.18 below show the resulting cumulative vehicle diagrams for the ground truth data and the

fixed high-resolution data. It is clear that the calculation starts out working well but as the slight

inaccuracies of high-resolution data continue the accuracy decreases. Even in a plot that only

shows the first five minutes of the simulation, the high resolution estimations do not match the

ground truth cumulative vehicles diagram.

Figure 2.17 The ground truth calculation of the cumulative arrivals and departures for the first 300 seconds

of the simulation

38

Figure 2.18 The high-resolution data calculation of the cumulative arrivals and departures for the first 300

seconds of the simulation

While the delay performance measure has potential, it needs improvement. Employing a

double counting filtering algorithm would reduce delay calculation bias. In addition, instituting a

detector bias measurement processes that assesses whether or not a bias exists would help as

well. Bringing in other measures whose relation with delay is well known would make this last

step possible. For example, knowing whether or not a queue existed at the end of a phase by way

of variations in detector occupancy would eliminate additive count errors from one cycle to the

next.

2.4.5 Split Failure Analysis

This is the most basic of the performance measures generated by the tool. The table

below validates the results generated by the tool with hand checked phase terminations. Figure

39

2.19 below, shows the resulting chart from the validated tool results. The calculated measures

were determined using the signal changes output file.

Table 2.2 Hand Calculated and Program Results for Creating the Purdue Phase Termination Charts

Calculated Results Program Results

Time Stamp Phase Time Stamp Phase

Gap-out Gap-out

5.2 1 5.2 1

109 1 109 1

235.7 1 235.7 1

Max-out Max-out

74.4 1 74.4 1

172 1 172 1

Gap-out Gap-out

23.7 6 23.7 6

74.4 6 74.4 6

140.8 6 140.8 6

255.7 6 255.7 6

Max-out Max-out

203.6 6 203.6 6

Figure 2.19 Purdue Phase Termination Chart

40

2.5 Conclusions

This project has demonstrated and utilized the strengths of high resolution data. It has

also shown that the data can be very limiting. The Purdue Coordination Diagram is very

informative, because the arrivals were accurately counted using the advance detectors and the

Green Time Utilization. Several other measures were shown with the Purdue Coordination

Diagram, the percent green time, percent arrivals on green, and platoon ratio. The Phase

Termination Chart was included in the project as well. Delay and Queue Length estimation were

also tested, showing delay’s potential to be measured with high resolution data, but more

detector error filtering is needed.

A tool that encompassed all these performance measures into a single analysis package

was created using Python 2.7. In addition to calculating these measures it could create high

resolution tables in a database using VISSIM output files. This requires a little setup but is a

valuable alternative to using field data or hardware in the loop simulation with controllers that

are linked to a system that produces a high resolution database.

The processes of emulating the high-resolution data and calculating the performance

measures were described in detail with flow charts. Recommendations and instructions were

included for future development of the tool. Finally the tool was tested by comparing the results

it calculated with hand calculated measures and VISSIM’s calculated measures.

By accomplishing the research objectives, researchers will be able to produce high-

resolution data easily and efficiently. This will help accelerate the development of improved

performance measures, a valuable development given that this high resolution data is beginning

to be collected by some state agencies.

41

42

CHAPTER 3.0 USING ORIGIN-DESTINATION CENTRALITY TO ESTIMATE

DIRECTIONAL BICYCLE VOLUMES

3.1 Introduction

Traditional methods to estimate bicycle volumes can be categorized as multi-step travel

demand models or as direct demand models (Suhrbier and Schwartz 1999). Models in the first

group attempt to forecast an elaborate combination of travel choices across large transportation

networks. For example, the ubiquitous “four step model” is a sophisticated attempt to estimate

four complex aspects of travel behavior: trip generation, trip distribution, mode choice, and

route choice. Trip generation tries to predict the number of trips originating from an entire

analysis zone for a particular purpose and time of day, such as the morning work commute. Trip

distribution is a prediction of the destination for each trip. Mode choice is an attempt to predict

the mode of travel that will be used and route choice tries to predict the specific facilities (i.e.

street segments, intersections, shared-use trails, etc.) that will be used to arrive at the destination.

Liu et al. (2012) reviewed many of the shortcomings of using multi-step demand models

to estimate bicycle volumes and offer various suggestions for future research. One major

criticism is that in practice most multi-step demand models aggregate travel over large analysis

zones, rather than modeling individual trips and trip-chains; for estimating car volumes,

aggregate modeling is often acceptable, but for estimating bicycle travel this approach is not

sufficiently fine grained. Consequently, considerable effort has sought to improve multi-step

demand modeling with disaggregate, activity based techniques (Wang et al. 2011) Other efforts

have sought to customize the 4-step model with additional steps related to bicycle travel,

feedback loops, or more bicycle-specific calibration (Replogle et al. 1995; Schwartz et al. 1999;

43

Eash et al. 1999; Hudson et al. 2010). Despite the many advances, multi-step demand models

continue to be data intensive, expensive, and complex.

Direct demand models bypass the behavioral context of travel by simply estimating the

expected volume on a particular bicycle facility as a function of the facility’s attributes. Linear

regression is the most common form of direct demand modeling, such that

 (3.1)

where the explanatory variables, , represent characteristics of the bicycle facility and

the regression coefficients are derived from observed data. For example, Griswold

et al. (2011) counted the total number of bicyclists passing through 81 intersections in Alameda

County, CA and developed a linear regression model with 5 explanatory variables: (1) number of

commercial properties within 0.1 miles, (2) the presence of bicycle markings on approach, (3)

the natural log of network distance to UC Berkeley Campus, (4) the average slope of terrain

within 0.5 miles, and (5) the connected-node ratio within 0.5 miles of the intersection. Their

model predicted total bicycle counts passing through the intersections with an R2 of 0.60. Jones

et al. looked at using more than 30 explanatory variables to predict total bicycle counts on off-

street bike paths. Their best model (R2 = 0.47) included 3 explanatory variables: (1) total footage

of off-street paths within 0.5 mile, (2) employment density within 0.25 mile, and (3) population

density within 0.25 mile.

Direct demand models, including the two examples just cited, are usually designed to

estimate total non-directional counts. In other words, they can estimate the number of bicyclists

44

entering an intersection, but not the actual turn movements or even the direction of travel.

Another drawback of direct demand models is that often some or all the explanatory variables

are locality-specific, such as distance to the local university or distance to a particular subway

station, so the models are not transferable to other communities. Likewise, for some communities

certain explanatory variables might exhibit very little variation across the whole community and

therefore result in poor estimation power. For example, “population density within 0.25 mile”

does not significantly vary from facility to facility for many communities, so it is a useless

explanatory variable.

On one hand, direct demand models are advantageous because they simplify the

complexities of travel behavior, but on the other hand this makes it more difficult to attain a rich

understanding of travel patterns. For example, multi-step demand models can predict not just

total counts at an intersection, but also every expected turn movement through the intersection.

This is because multi-step demand models rely on information about the entire street network

and the interaction between origins and destinations.

This paper introduces a new method to estimate bicycle volumes that combines the

strengths of multi-step demand modeling and direct demand modeling. The method uses network

analysis to quantify travel patterns between origins and destinations through a new metric that

we call OD centrality. The metric is then used as an explanatory variable in a direct demand

model which we programed as a tool for geographic information systems (GIS) software. The

method is presented through a case study using data collected as part of the National Bicycle and

Pedestrian Documentation Project (NBPDP); however, data collected through any manner,

including automated counters, could be used (NBPDP 2008).

45

This paper is useful for practitioners looking for simple and ready to use tools to estimate

bicycle volumes and beneficial for researchers studying how urban form influences bicycle

travel. Researchers may find it useful to integrate aspects of the new method into traditional

methods.

3.2 Centrality

In graph theory, the importance of a link or node in a network can be quantified through

various measures of centrality. The most common forms of centrality are: closeness centrality,

which measures how close a link is to all other links; degree centrality, which measures how

many nodes are connected to a link; and betweenness centrality, which measures the proportion

of shortest paths that pass through a link. There are many other forms of centrality, including

alpha centrality, load centrality, stress centrality, straightness centrality, Katz centrality, and

eigenvector centrality (Brandes 2008).

Centrality measures can be formulated for links or for nodes. For example, stress

centrality, which we modify in the next section, is formulated for link e in a network as

 ∑

where

 V = set of all nodes in the network,

 σij = shortest path from node i to node j, and

46

 {
 if link is used in

 otherwise
.

Shimbel (1953) introduced stress centrality in 1953 to analyze communication networks,

but in the context of a transportation network, stress centrality represents the number of times a

street would be used if someone were to travel from every node to every other node.

Researchers have demonstrated the usefulness of the many different centrality metrics in

a variety of transportation planning applications; for example, to improve airline networks (Liu

et al. 2011), design public transportation systems (Derrible 2012), and characterize traffic

analysis zones (Zhang et al. 2011). In the mid-1980s a group of architects and urban theorists

developed a specialized approach to analyzing centrality called “space syntax” with the intent to

quantify the connectivity of hallways and rooms in a building (Hillier & Hanson 1984; Jiang &

Claramunt 2004). Space syntax was eventually extended to larger, outdoor urban environments.

One space syntax measure called integration has shown high correlation with vehicle and

pedestrian volumes (Hillier et al. 1993; Penn et al. 1998; Raford & Ragland 2004). Raford et al.

(2007) used space syntax to explain how bicyclists choose different routes through London.

McCahill and Garrick (2008) explored using space syntax in a direct demand model to estimate

bicycle volumes. They calibrated the model with aggregate bicycle counts at 16 intersections in

Cambridge, Massachusetts, but unfortunately concluded that, on its own, space syntax was not

effective for explaining the observed volumes (R2 = 0.16).

47

3.3 Method

3.3.1 OD Centrality

We modify stress centrality in three ways to create a new metric, which we call origin-

destination (OD) centrality. First, we define
 as the preferred bicycle path between locations i

and j using current research on bicycle route choice. Second, we only consider a specific subset

of origin-destination pairs that can be reasonably reached by bicycle. Third, we augment the

calculation with origin and destination multipliers that represent a magnitude of “trip potential”

between OD pairs. The new formulation for a link e in a network is

 ∑

where

 I = subset of origins in the network,

 J = subset of destinations in the network,

 = preferred bicycle path from node i to node j,

 Mi = multiplier for origin i,

 Mi = multiplier for destination j,

dij = distance between origin i and destination j, and

 δ = reachable distance threshold for bicycles.

48

In the following sections, we describe these innovations and introduce the GIS tool we

created to calculate OD centrality. We also explain how OD centrality can be used in a direct

demand model to estimate and spatially interpolate bicycle volumes throughout a community.

3.3.2 Preferred Bicycle Paths

The preferred path between two points on a network can be determined in various ways,

such as the fewest number of links, shortest geographic distance, or shortest travel time. A

common approach is to define an impedance (or generalized cost) for every link and node, such

that the “shortest” path is the path that minimizes total impedance (cost). Route choice

algorithms, such as those used by Google and MapQuest, analyze the impedance of potential

paths to identify the preferred path. If a bicyclist has complete information (i.e. is aware of the

impedance for all route options, even subconsciously), then according to rationale choice theory,

the bicyclist will choose the route with the lowest impedance (Stinson & Bhat 2003; Lee & El-

Geneidy 2011).

In recent years, the ability to place GPS trackers on bicyclists has allowed researchers to

observe the relative attractiveness of different facility types, or in other words, to quantify the

impedance associated with different facility characteristics (Broach et al. 2012, Harvey et al.

2008, Larsen & El-Geneidy 2011; Menghini et al. 2010) The main impedance factor for

bicyclists is distance; for this reason it is common to quantify other characteristics in terms of

added distance. For example, Broach et al. (2012) found that, for a commute trip, bicyclists are

willing to travel about 4 tenths of a mile extra to avoid a one mile slope that is between 2% and

4%, 1.2 miles extra to avoid a one mile slope that is between 4% and 6%, and 2.2 miles extra to

avoid a one mile slope that is greater than 6%.

49

For the case study, we defined two types of impedance: link impedance for traversing a

street segment and node impedance for passing through an intersection. Link impedance is based

on the street segment’s length, friction, and slope. Friction represents the deterrence/attraction

for bicyclists to use a particular street segment and can be determined according to various

attributes, such as vehicle traffic volumes, presence of a bike lane, or beautiful vistas. In the case

study, we used the Highway Capacity Manual’s bicycle level of service (BLOS) to define

friction, f, (HCP 2010; Lowry et al. 2012; Callister & Lowry 2013) The BLOS calculation

involves ten attributes, which include vehicle volumes, vehicle speeds, and shoulder width, to

produce a letter grade A through F and a corresponding numeric score between 1.00 and 5.75.

For slope impedance, we used the findings from Broach et al. (2012). We combined length,

friction factor, and slope factor as follows:

 (3.4)

with

 (3.5)

 {

 if slope
 if slope
 if slope
 if slope

 (3.6)

where

 = link impedance (cost),

50

 = length for the street segment,

 = friction factor for the street segment,

 = slope factor for the street segment, and

 = friction for the street segment.

Node impedance is calculated based on turn angle (relative bearing, 0-180 degrees), the

type of intersection control and the functional class of the cross street. Thus, for every turn

movement k the calculation is:

 (3.7)

with

 {

 if right-hand turn
 if left-hand turn

 (3.8)

where

 = node impedance (cost) for turn movement k,

 = turn impedance factor for turn movement k,

 = turn angle (relative bearing) for turn movement k, and

51

 = intersection control and cross street impedance factor (see

Table 3.1).

Table 3.1 Intersection Control and Cross Street Impedance Factor, Fc

Intersection
Control

Cross-Street

Local Collector
Minor

Arterial
Primary
Arterial

No Control 20 40 90 120
Stop Sign 25 20 50 80

Signal 30 20 20 20
Note: Factors are unitless.

The node impedance factors are adapted from Broach et al. (2012). Their research did not

report functional class of the cross-street, but rather the cross-street’s Annual Average Daily

Traffic (AADT). Note that the factors for link impedance are multiplicative (Equation 3.4) and

for node impedance the factors are additive (Equation 3.7). This is because the characteristics of

a street segment act over a distance while the characteristics at an intersection act at a single

point.

3.3.3 Origin-Destination Pairs

Two steps determine the origin-destination pairs for the analysis. First, the analyst must

specify certain locations as “origins” and/or “destinations.” For the case study, since bicycle

counts were observed in the morning and in the evening, we simply specified residential parcels

as origins and non-residential parcels as destinations to analyze the morning data and vice-versa

to analyze the evening data. Other, more sophisticated specifications could be explored. For

example, some cursory investigation showed improved model fit for the evening analysis when

52

non-residential parcels were specified as origins and also as destinations. This might be

explained by the fact that the morning commute is often more uniform—people travelling from

home to work—while the evening commute is more diffuse—people not just travelling straight

home, but to a myriad of destinations. An investigation of different OD specifications could be

part of the calibration process, wherein the model is run and re-run to find the best model fit. For

the case study, a straightforward specification was used for the purpose of simply introducing

this new method.

The second step to determine origin-destination pairs is achieved automatically by the

GIS tool. The tool limits origin-destination pairs to those that can be reasonably reached by

bicycle based on a “reachable distance threshold,” which is designated as δ in Equation 3.3. This

parameter is included to recognize the reality that most people do not use their bicycle for long-

distance utilitarian travel (Landis 1996). The δ parameter could also be investigated by the

analyst as a calibration parameter, but we chose to hardcode it into the GIS tool based on results

from our sensitivity analysis and previous research about bicycle travel. Figure 3.1 shows the

results from the sensitivity analysis. The horizontal axis represents different values of δ. High

values of δ allow more origin-destination pairs, while low values of δ signify a tighter restriction

on the pairs to be included in the calculation of OD centrality. Figure 3.1 shows that the best

correlation occurs at about δ = 1.5 miles for the bicycle data and δ = 0.8 miles for the pedestrian

data. This corresponds well with previous research suggesting most trips are no more than 1.5

miles for bicyclists and 0.5 miles for pedestrians (Turner et al. 1997).

53

Figure 3.1 Correlation between OD centrality and observed volumes for different reachable distance thresholds

3.3.4 OD Multipliers

The other innovation we introduced into OD centrality is the inclusion of origin and

destination multipliers, Mi and Mj, respectively. The multipliers represent relative “trip potential”

leaving or going to each node. For example, a large shopping mall is more likely to attract trips

than a small coffee shop; likewise, an apartment building is going to generate more trips than a

single family home.

The analyst who is calculating OD centrality needs to specify the multiplier associated

with the origins and destinations. However, it is important to note that unlike trip generation in

traditional multi-step demand models, the intent here is not to predict the number trips produced

and attracted, but rather to merely specify the relative magnitude of trip potential across different

locations. For the case study, the number of dwelling units was used as the multiplier for

residential parcels and for all other land use types the multiplier was specified according to

54

square footage. Another approach might be to define the multipliers based on the ITE Trip

Generation Manual (TGP 2012).

3.3.5 GIS Toolbox

A GIS toolbox was created to calculate OD centrality and execute a direct demand

model. The tools were written in modifiable open-source python code for ArcGIS® 10.1. The

centrality calculation is based on Brandes’s (2001) algorithm. Figure 3.2 shows the graphical

user interface for the tool to estimate and spatially interpolate bicycle volumes. Other tools in the

toolbox are for data preparation purposes. Each tool prompts the user for input data and the

desired directory for output. The user can access help documentation that explains the required

input by clicking the “Tool Help” button. The tool shown in Figure 3.1 requires four input files:

Observed Count Data – This is a folder of spreadsheet files for each intersection. The

format is similar to the guidelines in the NBPD.

Origins – This is a point or polygon shapefile representing origins, such as a land use

parcel file. The user is also prompted to specify the origin multiplier attribute field.

Destinations – This is a point or polygon shapefile representing destinations. This could

be the same parcel file used for the origins, perhaps with different destination multipliers.

Bikeway Network – This is a polyline shapefile representing streets and shared-use

paths. Most communities have a “street center line file” that can be used, but if not, ESRI

provides a free street file for all of North America. The file must exhibit correct topology.

The user is also prompted to specify the impedance field associated with the network

(which can be calculated using a different tool in the toolbox).

55

Figure 3.1 Graphical user interface for the GIS tool to estimate bicycle volumes

Once the required input is provided, the user runs the tool by clicking “Ok”. The tool

calculates OD centrality, calibrates a regression model, and uses this regression model to

estimate bicycle volumes throughout the network. The user can choose to include additional

explanatory variables in the regression model (see Figure 3.1). The output includes a text file

with a summary of the regression statistics and a polyline shapefile with predicted bicycle

volumes for the entire network. For the case study community the execution time on a standard,

workstation-class Lenovo laptop is about 7 minutes.

56

3.4 Analysis and Results

3.4.1 Case Study Data

The National Bicycle and Pedestrian Documentation Project is an increasingly popular

grass-roots effort to collect data in communities around the United States (NBPDP 2013) Often

the work is accomplished by citizen-volunteers who stand on an assigned street corner counting

bicyclists and pedestrians for a two-hour period in the morning and evening. The City of

Moscow, Idaho (population 25,000) has conducted counts each fall for the past three years. The

city has high bicycle ridership because it is home to the University of Idaho and is located nine

miles away from the City of Pullman, Washington (population 32,000) the home of Washington

State University. Moscow’s fall 2012 data were used for the case study.

The 14 intersections that were observed are located throughout the city as shown in

Figure 3.1. The volunteers observed every thru and turn movement for the intersection, tallying

the counts for fifteen minute intervals from 7:00 to 9:00 AM and 4:00 to 6:00 PM. With twelve

movements at a standard four legged intersection and six movements at a three legged T-

intersection, a total of 162 movements were observed.

57

Figure 3.1 Intersection count locations

3.4.2 Model Calibration and Validation

The data were randomly split into two sub-samples; 90% for calibration, and 10% for

validation. Various regression techniques that are common for direct demand modeling were

investigated, including ordinary least squares regression, log-linear regression, Poisson

regression, negative binomial regression, and zero-inflated negative binomial regression.

Ordinary least squares regression produced the best model fit based on within-sample

(calibration) and out-of-sample (validation) R2.

Error! Reference source not found. shows the coefficients and statistics for the

morning and evening models using conventional stress centrality and OD centrality as the sole

explanatory variable (in practice, additional explanatory variables could be used, but were

ignored here to highlight the predictive power of OD centrality). Conventional stress centrality is

not statistically significant and does not produce a useful estimation model. OD centrality, on the

58

other hand, is statistically significant for the AM and PM models and exhibits good R2 values,

suggesting OD centrality provides strong explanatory and predictive power. The best model was

for the PM counts which explained 61% of the variability in the calibration dataset and 73% of

the variation in the validation set. Presumably, these models could be significantly improved

with additional explanatory variables.

Table 3.1 Estimation Coefficients and Model Statistics

 Stress Centrality
Model OD Centrality

Model
Model Variable AM PM AM PM

Constant 1.97 ** 2.54** 1.54** 2.13**
Stress Centrality 0.11 0.17* - -
OD Centrality - - 0.69** 0.63**
Calibration R-

squareda
0.04 0.10 0.45 0.61

Validation R-
squaredb

0.08 0.07 0.58 0.73

Note: Dependent variable is one hour peak bicycle count observed in the morning (AM) and evening (PM).
*Significant at 95% (p<0.05); **significant at 99% (p<0.01).

a Within-sample goodness-of-fit for a random 90% of observed data, n = 147.
b Out-of-sample goodness-of-fit for a random 10% of observed data, n = 16.

Figure 3.1 shows the difference between stress centrality and OD centrality across the

case study community. Dark street segments signify higher centrality, or in other words, more

incidence of being on a shortest path. This figure illustrates how the modifications of stress

centrality produced better values. First, the figure shows improvement from using bicycle-

specific impedances. This can be seen by the straightness of the paths in Figure 3.4b compared to

the indirect, stair-step paths in Figure 3.1a. Furthermore, for stress centrality many of the shortest

paths include busy streets and steep hills. Second, the figure illustrates improvement from

incorporating origin and destination multipliers. Note in Figure 3.1b, high values of OD

59

centrality are generally located toward the southwest, which is expected because this is where the

university is located.

(a)

(b)

Figure 3.1 Comparison of: (a) stress centrality and (b) OD centrality

Figure 3.2 shows bicycle volume estimates for the whole city. This is the output of the

GIS tool. Figure 3.2b provides detail for a selected intersection where counts were actually

observed. In general, the difference between observed and estimated volumes is fairly small and

magnitudes correspond very well. Engineers and planners could use maps like Figure 3.2 in a

variety of ways, including prioritizing capital investments and analyzing risk exposure.

Furthermore, practitioners could use the tool for scenario planning by first calibrating the model

under current conditions and then running it again under different conditions. For example, if a

community is proposing to build a new residential subdivision, then the tool could be used to

60

predict how this would change bicycle volumes throughout the community. Likewise, the tool

could be used to investigate the change in travel patterns from improving network connectivity

by constructing new shared-use pathways or painting new bike lanes. These types of applications

would not be easily accomplished through a traditional direct demand model.

61

(a)

(b)

Figure 3.2 Estimated one hour peak bicycle volumes for: (a) the entire community and (b) a selected intersection

3.5 Conclusion

This paper presents a new method to estimate bicycle volumes that is advantageous over

traditional multi-step demand models and direct demand models. Multi-step demand models are

data intensive and require specialized skills and software. The new approach is easy to use and

only requires a street network, digital elevation map, residential and non-residential parcels, and

counts at select locations, all of which are readily available for most communities. This new

approach integrates these data, thereby facilitating analysis of urban form and bicycle travel.

Direct demand models are also easy to use and straight forward, but do not adequately consider

 observed: 3

 observed: 69

 observed: 13

estimated: 61

estimated: 12

estimated: 2

 observed: 18

estimated: 2
 observed: 1

 observed: 1

estimated: 14

estimated: 2

est
im
ate
d:
12

ob
ser
ve
d:
6

ob
ser
ve
d:
11

ob
ser
ve
d:
1

est
im
ate
d:
7

est
im
ate
d:
2

ob
ser
ve
d:
2

ob
ser
ve
d:
1

ob
ser
ve
d:
1

est
im
ate
d:
2

est
im
ate
d:
2

est
im
ate
d:
2

62

network characteristics and the important spatial relationship between origins and destinations.

Consequently, traditional direct demand models cannot easily model detailed information, such

as directional volumes for all turn movements at an intersection. The new approach’s advantages

provide the opportunity for engineers and planners to use the new method for many important

applications.

The method is based on a new metric called OD centrality. Future work could investigate

how to improve the metric. For example, different origin and destination multipliers could be

examined, perhaps from the ITE Trip Generation Manual (Turner et al. 1997) Another possible

improvement could be to use a “distance decay function” rather than a fixed reachable distance

threshold for δ (see Equation 3.3) (Iacono et al. 2010). Future research could develop guidelines

for the calibration process and other best practices, including investigating additional explanatory

variables that would work well alongside OD centrality.

63

64

CHAPTER 4.0 PEDESTRIAN LIVABILITY AND MICROSOFT’S KINECT

4.1 Introduction

In recent years, there has been increasing interest in active forms of transportation from a

public health perspective. With a growing body of evidence supporting the health benefits of

walking and biking for transportation (Pucher et al. 2010), urban planners and public officials are

increasingly interested in the relationship between rates of participation in active transportation

and the design of neighborhoods and other public spaces. In addition, due in part to the observed

correlation between participation and access to walking and bicycling infrastructure (Dill 2009;

Buehler & Pucher 2012), there is a trend toward increased public investment in new and existing

facilities. As in all forms of transportation infrastructure, a great deal of pedestrian and bicycle

traffic data are needed to inform the planning, design, and management of such facilities. In

addition, from an academic research perspective, pedestrian data are indispensable for studies

including analysis and modeling of pedestrian behavior and movement patterns, traffic safety,

and signal timing.

Despite the importance of accurate pedestrian data, most data collection has relied on

labor-intensive manual counting. In the case of large and widespread pedestrian data collection

efforts, manual methods are expensive and often impractical. Therefore, automatic detection and

tracking of pedestrians is of significance to both engineers and researchers.

Over the past decade, a number of technologies have been developed and applied to

various pedestrian detection applications. Currently, the most commonly employed sensors for

pedestrian detection are imaging sensors in various configurations using visible light and infrared

65

(IR) radiation, as well as the time-of-flight based sensors such as RADAR and LASER scanners

(Gadhi & Trivedi 2007). Imaging sensors can capture a high-resolution view of the scene with

very rich information, but extracting information involves a substantial amount of processing. In

addition, one of the most challenging issues for imaging-based approaches is occlusion, where a

pedestrian is partially obscured by another pedestrian or an environmental feature. Although a

number of image processing techniques have been developed to solve this problem, the

performance of most existing detectors degrades quickly as the number of pedestrians and

corresponding rate of occlusion increases. Occlusion is less of an issue for time-of-flight

scanners because they are based on depth information, but resolution is often limited. In this

sense, these two types of sensors are complementary, and their fusion is expected to result in

more robust detection.

Microsoft’s Kinect device with 3D sensing capabilities provides us a new way to easily

fuse the 2D image information and depth information for pedestrian detection. In this paper, we

aim to utilize Kinect to develop a low cost solution for occlusion robust pedestrian detection in

crowded scenes. The paper contains the following contributions: 1) Utilizing the RGB-D image

from Microsoft Kinect, we present an efficient pedestrian detection approach for crowded scenes

where occlusion occurs frequently. 2) More specifically, by fusing the pedestrian contour regions

extracted from the RGB image with the depth information, we develop a pedestrian extraction

algorithm. As our results demonstrate, this fusion presents a novel way to make pedestrian

detection robust to occlusion. 3) We design a pedestrian tracking and counting algorithm based

on template matching.

66

The remainder of this paper is structured as follows: Section 4.2 summarizes a literature

review of Kinect based pedestrian detection approaches, Section 4.3 describes our proposed

approach in detail, Experimental results are introduced in Section 4.4, and Section 4.5 concludes

the study.

4.2 Literature Review

Since it was first introduced in November of 2010, Kinect has generated a great deal of

research interest particularly in the Computer Graphics and Computer Vision communities as a

low cost 3D sensor. It has been the subject of considerable research in a number of fields,

including robotics, medical imaging, and natural human-computer interaction (Stowers et al.

2011; Alnowami et al. 2012; Boulos et al. 2011). Among these recent research efforts, many

have focused on human detection for gaming or other purposes. Previous work on Kinect-based

pedestrian detection can be generally classified into two categories: depth based and RGB-D

based.

4.2.1 Depth Based Human Detection

Xia et al. (2011) proposed a model based human detection approach using depth

information. It detects humans using a 2-D head contour model and a 3-D head surface model,

and segment a human from his/her surroundings to extract the whole contours of the figure. It

was reported that a detection accuracy of 98% was achieved in their test cases. However the

frame achieved in this study was only 0.4s/frame which is hard for real-time applications.

Furthermore, it failed to detect a human when his/her head is occluded, which is often the case in

crowded scenes.

67

Hsieh et al. (2012) presented a people counting system with Kinect. They first apply

morphological processing to the depth image to find the regions of interest (ROI), then determine

the targets from the ROI and count the pedestrian number. It was reported that a counting

accuracy of almost 100% was achieved in their tested case, but no details were released on how

to deal with occlusion in their paper. In addition, the algorithm did not perform well when

background still objects such as tables, shelves and pillars also appeared in depth images which

occur in most real-world cases.

Charreyron et al. (2013) proposed a pedestrian data collecting system using Kinect. They

used the Kinect SDK skeleton tracking information to track pedestrians and get volumes and

walking speeds. The system has a pedestrian volume accuracy of 92% in low to moderate traffic

conditions. However, the system cannot deal with occlusion due to the limitation of the Kinect

SDK middle-ware.

Wu et al. (2011) presented a feature descriptor, Histogram of Depth Difference (HDD),

for detecting pedestrian in depth images. The HDD feature descriptor can describe the depth

variance in a local region in depth image. Though it was reported that the detection accuracy was

about 96% for single pedestrian detection, it cannot effectively deal with occlusion.

Won et al. (2013) proposed a pedestrian detection algorithm on labeled depth data. It

computes feature responses for head and legs of human body using depth and label data, and

detects pedestrians by removing edges and partitioning a bipartite graph of head and leg response

blobs using prior knowledge about human body. The reported detection rate was only 68.31%,

and the detector fails when severe occlusion occurs.

68

4.2.2 RGB-D Image Based Pedestrian Detection

Luber et al. (2011) combined a multi-cue person detector for RGB-D data with an on-line

detector to detect and track pedestrians. The two detectors were integrated into a decision

framework with a multi-hypothesis tracker that controls on-line learning through a track

interpretation feedback. For on-line learning, they took a boosting approach using three types of

RGB-D features and a confidence maximization search in 3D space.

Spinello et al. (Spinello & Arras 2011) presented a people detection approach using

RGB-D data. They designed a Histogram of Oriented Depths (HOD) method to detect people in

dense depth data, and then proposed Combo-HOD, a RGB-D detector that probabilistically

combines HOD and HOG to further detect pedestrians. While the approach is effective in scene

with slight occlusion, its performance degrades increasingly in scenarios with severe occlusion.

Seera et al. (2012) used three Kinects mounted on the ceiling of a hallway to record

pedestrian trajectories. They mapped the depth information from each Kinect into a common

world coordinate system using a rigid transformation, and then grouped depth information from a

single Kinect in the world coordinate system into individual pedestrian based on hierarchical

clustering. There was no need to deal with occlusions because the data was collected from a top-

down perspective. Although this approach works well, it is not feasible for many real world

pedestrian detection scenarios such as outdoors or in areas with particularly low ceilings.

Bosso et al. (2013) proposed a multi-person tracking algorithm for mobile platforms

equipped with a RGB-D sensor. Their approach features a point cloud depth-based clustering, an

HOG-like classification to initialize a pedestrian tracker and classifier with online learning to

manage the person ID matching. It was reported that the algorithm proved to correctly track 96%

69

of pedestrians even in case of temporary occlusion. However, it fails when occlusions exist from

pedestrians entering the scene to leaving it, which occur frequently in a crowded scene.

Salas et al. (2011) presented a strategy that combines color and depth images to detect

people in indoor environments. The similarity of image appearance and closeness in 3D position

over time yield weights on the edges of a directed graph they partitioned into “tracklets”. Each

“tracklet” was assigned the highest score that a Histograms-of-Oriented Gradients (HOG) person

detector yielded. High-score tracklets were deemed to correspond to people. Like other HOG

based methods, this approach is only feasible in non-occlusion or slight occlusion cases.

It is clear from the discussions above that while much work has gone into Kinect-based

pedestrian detection in recent years, most has only focused on detecting pedestrian in simple

scene with slight occlusion or no occlusion. Most current work has some limitations for crowded

scenes, especially in resolving the occlusion issue.

4.3 Data

We evaluate our method using sequences of RGB and depth images produced by Kinect

in three scenarios. In the first scenario, we recorded a sequence in our lab with at least five

pedestrians present simultaneously in the scene with tables, chairs, shelves, computers, pillars,

etc. The second scenario is outdoors on a sunny day, where there are at most five pedestrians

simultaneously. The third is also an outdoor scene but on a cloudy day, where at most nine

pedestrians are present simultaneously in the detection range.

All the pedestrians in the three scenarios have a variety of poses, and they have frequent

interactions with others or the surrounding objects. There are approximately 9000 frames in each

70

test database and the resolutions of both RGB and depths image are 640×480 at a frame rate of

30fps. This amounts to about 5 minutes of video for each scenario.

4.4 Methodology

The pedestrian detection method proposed in this paper contains four principle steps. The

first step is to acquire both the RGB image and Depth image through Microsoft Kinect device.

The second step is to extract the pedestrian contours from the RGB image by using traditional

image processing techniques and map depth image coordinates to RGB image coordinates

utilizing the API function provided by Kinect for Windows SDK v1.6. The third step is to detect

pedestrians based on the extracted contours and the 3D information. This is done by developing a

Kinect

RGB Image

Background
Modeling

Background
Subtraction

Depth Image

Map to RGB Coordinate:
3D Information

Thresholding and
Morphological

Processing

Contour Detection

Pedestrian Extraction

Pedestrian Tracking and
Counting

Contour
Extraction

Kinect
Sensor

Space
Conversion

Figure 4.1 Flow chart of the proposed method

71

region-cluttering algorithm which can easily and efficiently deal with the occlusion issue. The

last step is to track and count pedestrians. Figure 4.1 illustrates a simplified flow chart of the

proposed method. Its details are described step-by-step as follows.

4.4.1 Microsoft Kinect

Essentially, Kinect is a motion sensing input device marketed by Microsoft for the Xbox

360 video game console . This device has an RGB camera, an infrared (IR) emitter and an IR

Depth camera, which make it capable of capturing a color image and depth of each pixel in the

scene. These data contain visual and geometric information of the scene. The two images are

complementary and provide us with a way to perform tasks that would be difficult when 2D

imagery is used alone. Both the depth and RGB image have a resolution of 640x480 at 30fps,

which is ideal for real-time application.

4.4.2 Pedestrian Contour Extraction from RGB Images

As illustrated in Figure 4.1, it is a fundamental step to extract the pedestrian contours

from RGB video sequences streamed from Kinect. To achieve this, real-time segmentation of

moving pedestrian regions in the RGB image must be accomplished. Background subtraction is a

simple matter of identifying the background image and subtracting it from the current image to

obtain the moving regions. This approach is by far the most popular, as it is natural and provides

a strong cue for moving objects, thus effectively reducing the area of interest.

In background subtraction, the first step is to choose a suitable background model which

can effectively deal with the dynamic background. After comparing it with other commonly used

background models such as running average and frame difference, we selected the model

developed by Zivkovic el al. (2004) to acquire the background in our approach.

http://en.wikipedia.org/wiki/Motion_sensing
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Video_game_console

72

Once the background is obtained, it is stored and subtracted from each incoming frame to

get the foreground. Then thresholding with a threshold is applied to the foreground to create

a binary image. That is, for a given frame , the binary image’s pixel value at location is

calculated as follows:

 {

 (4.1)

where , and are the pixel values at coordinate on the foreground

binary image, current frame , and background image, respectively; is the threshold.

After the foreground binary image is obtained, there still exist some speckles caused

by noise, or vacancy and fractional false regions while the foreground and background are of

similar color. To improve the foreground quality, we adopt a morphological reconstruction filter

(19) as the post-processing procedure, defined as:

 ̃ (4.2)

where is the final refined binary image, is the ‘mask’, is a structure element with

size of pixels, and ̃ is defined as:

 ̃ (4.3)

where denotes the structuring element with its origin at the center.

73

Based on the above steps, an improved binary image is obtained, which needs

further processing to extract the pedestrian contours. In our approach, pedestrian contours were

obtained from a binary image using a simple approximation method which has been

implemented as a standard method of the image class (Image.FindContours ()) in OpenCV 2.4.

Meanwhile, the small contours whose perimeters are less than a threshold are filtered

out. The remaining ones are the extracted pedestrian contours to be used for extracting pedestrian

with depth information.

4.4.3 Conversion from Depth Space to RGB Space

Even though we obtain the pedestrian contours from RGB image and the depth

information, we cannot directly use them to extract pedestrian. Because RGB and depth images

come from two different cameras with different fields of view, pixels in the two images do not

always line up exactly.

For this reason, lining up data is an essential prerequisite to acquiring the 3D information

of the pedestrian contours. Fortunately, Kinect for Windows SDK v1.6 provides an API function

that enables us to achieve this complex task easily. It implements a mapping of depth coordinates

to RGB coordinates. The API function we used is CoordinateMapper.MapDepth

FrameToColorFrame. By calling this function, we can obtain the 3D information of the

pedestrian contours.

74

4.4.4 Pedestrian Extraction

From steps discussed above, we extract the pedestrian contours from the RGB image and

acquire the 3D information of each pixel in the contours. However, each pedestrian contour may

contain one pedestrian or more due to the possible occlusions which often exist in real word

scenes. For traditional image processing approaches, a complex occlusion reasoning algorithm is

required to deal with the issues caused by occlusion such as merging, splitting, etc. However, it

Times-out-of-region=0; /* a variable to record the times a pixel not belonging to any existed seed region */

For each (pedestrians’ contour in current frame)

Get current contour’s bounding-rectangle;

For each (line in the bounding-rectangle from top to bottom)

 For each (column of the bounding-rectangle from left to right)

 If (pixel) is out of the contour)

 Continue; /*continue to judge next pixel */

 End if

 If (pixel .depth is not available)

 Continue; /*continue to judge next pixel */

 End if

 If (seed-list.counts==0) /* the first time to encounter a pedestrian in the contour, treated as a seed */

 Add pixel .depth to the seed- list;

 Continue; /*continue to judge next pixel */

 Else

 For each (seed in current seed- list)

 If (==1) /*) belongs to the current seed’s region */

 Calculate ;

 Break; /*continue to judge next pixel */

 Else

 If (seed is the last one of the current seed-list)

 If (++times-out-of-region<5)

 Break; /*continue to judge next pixel */

 End if

 Add pixel .depth to the seed- list; /* a new seed is found, and add it to the seed-list */

 Times-out-of-region=0;

 Break;

 End if

 End for

 End if

 End for

 End for

End for

Table 4.1 Pseudo-code of Pedestrian Extraction Algorithm

75

is still a great challenge for traditional 2D RGB image approaches if objects are occluded the

entire time they are present in the scene.

By utilizing the 3D information of pedestrian contours we acquired, the issues related to

occlusions may be easily and efficiently dealt with. We assume that in nearly every instance of

occlusion, two or more occluded objects must have a different depth relative to the camera.

Based on this, we develop a pedestrian extraction algorithm which is similar to the region growth

algorithm (20) in concept but quite different in implementation.

Our pedestrian extraction algorithm scans each contour regardless of whether it contains

one pedestrian or more. It is assumed that the depth values of the adjacent pixels vary gradually

across a region occupied a single pedestrian, so that only an abrupt change in depth within a

pedestrian contour will be identified as the start of a new region. It should be noted that depth

can vary considerably from one edge of a pedestrian region to the other, due to the installation

angle of the Kinect device.

The algorithm runs by searching seeds of different regions in the current pedestrian

contour and judging which region a pixel belongs to. To remove the interference of the noise in

depth data, a new region is judged to be effective only if five subsequent pixels do not match the

depth value of any existing region. The last of the five unmatched pixels is the seed for the newly

established region. Each region is treated as a pedestrian, and its position is marked by the

position of its seed.

To judge whether a pixel belongs to a region with a seed , we define a

criteria function as follows:

76

 () {

 (4.4)

where and are the depth value of the pixel and the threshold

respectively; denotes the mean depth of all the pixels in region , and defined as:

∑

 (4.5)

where () , pixel belongs to region , otherwise the opposite.

The details of the pedestrian extraction algorithm are described in Error! Not a valid bookmark

self-reference..

77

4.4.5 Pedestrian Tracking and Counting

Once the pedestrians are extracted, they have to be tracked from frame to frame to get the

pedestrians volumes. To accomplish this, several parameters must be kept for each pedestrian:

3D position, ID tag, and untracked time.

The key to tracking pedestrians is to identify their presence in the current frame and each

successive frame. In our proposed method, this is done by establishing a tracking template and

comparing the parameters of the pedestrians in the current frame with those in the tracking

template at a small predefined tracking range , then finding the minimum cost match. For each

If (template. Count==0) /* create the template */

For each (pedestrian in current frame)

 If (pedestrian.depth within)

 Add the current pedestrian to template;

 Initiate its untracked times to 0;

 ++pedestrian Counts;

 End if

 End for

Else

For each (pedestrian in current frame)

 If (pedestrian.depth within)

 Calculate ;
 If (<) /* Pedestrian tracked, update the template */

 Update the template using ;

 Update its untracked times to 0;

 Else /* a new pedestrian appear, add it to the template */

 ++pedestrian Counts;

 Add the current pedestrian to template;

 Initiate its untracked times to 0;

 End if

 End if

End for

End if

For each (pedestrian in template)

If (++its untracked times==2) /* a tracked pedestrian disappeared for 2 times,

remove it from template */
 Remove it from template;

End if

End for

Table 4.1 Pseudo-codes of Pedestrian Tracking and Counting Algorithm

78

pedestrian with the minimum cost match, we assume that there is a threshold radius confining the

range in which it should appear in the next frame. Thus, if the minimum cost is within that

threshold radius, the corresponding pedestrian continues to be tracked and the matching one in

the template is updated. Otherwise, it will be treated as an untracked pedestrian and removed

from template if the untracked time gets to a given value. With the depth information as the

tracking range , the 3D Euclidean distance is used as the cost. So the cost of two potentially

matching pedestrians and () is calculated as follows:

 √ (4.6)

where , () are the pedestrian in current frame and one in tracking

template respectively; and are the numbers of pedestrians in the current frame and the

matching template respectively. The minimum cost for pedestrian in

current frame is defined as:

 () (4.7)

Once the minimum cost match for a current pedestrian is found to be within the threshold

radius , it is considered to be the same pedestrian as it progresses from frame to frame. The

detail of the pedestrian tracking and counting algorithm is described in Table 4.2.

79

4.5 Experiment

For implementation of our proposed approach, we used visual studio 2010, C# 4.0, .NET

framework 4.0, Kinect for windows SDK v1.6, as well as Emgu CV 2.4 which is the wrapper of

OpenCV under the .NET platform. OpenCV (Open Source Computer Vision Library) was

initially introduced by Intel and released to the public at the IEEE Conference on Computer

Vision and Pattern Recognition in 2000. This library is implemented in C/C++.

The hardware used in our experiment is Microsoft Kinect and a desktop computer with an

Intel(R) Core(TM) i5-2400 3.1GHz CPU and 4GB RAM. Both RGB and depth images by Kinect

are 640x480 resolution.

4.5.1 Experiment results

Experiments were conducted for all the three scenarios, and examples of successfully

detecting and tracking pedestrians in the crowded scenes based on consecutive frames are

demonstrated in Figure 4., Figure 4. and Figure 4.4. From Figure 4., we can see that the

pedestrians were still detected and tracked even though severe occlusions occurred frequently in

this scenario. In addition, our approach can also successfully detect pedestrians in scenes with a

cluttered background where other still objects such as tables, computer, shelves, pillars etc. are

present, which is a great challenge for other depth-based detection approach such as (Hsieh et al.

2012). It should be noted that, in Figure 4., the pedestrian behind the pillar in (a) and the last

pedestrian in (b) were not detected just because they were out of range and their depth

information was not available.

Figure 4. and Figure 4.4 show the experiment results in outdoor environment. In Figure

4.3 (a), (b), and (c), the farthest pedestrian in the white shirt cannot be detected for the same

80

reason; i.e. his depth was not available at that distance. However, other pedestrians can be

successfully detected and tracked once their depth information is available.

81

While in most cases the proposed approach in this paper can successfully detect and track

pedestrians in crowded scene, missing detections occur in some situations where two or more

pedestrians walk so closely that they have almost the same depth relative to the Kinect. As

indicated in Figure 4.4, one of the four pedestrians was not detected in scenario 3. In fact, the

undetected pedestrian and the adjacent detected one have nearly equivalent average depths of

Frame 3891 (b) Frame 4089 (c) Frame 4134 (d) Frame 5316

(a) Frame 1719 (b) Frame 1761 (c) Frame 1791 (d) Frame 2309

Figure 4.2 Examples of successful detecting and tracking pedestrians for scenario 1 (Yellow solid circle locating one
pedestrian), RGB image on top while corresponding depth image on bottom

Figure 4.3 Examples of successful detecting and tracking pedestrians for scenario 2 (Yellow solid circle locating
one pedestrian), RGB image on top while corresponding depth image on bottom

82

8879mm relative to Kinect. According to our pedestrian extraction algorithm described in

section 4.4, they were clustered to one region which resulted in the missing detection. Though

missing detection exists in this case, the missing pedestrian could be tracked and counted once it

is detected again. It should be noted that in Figure 4.5, others behind these four pedestrians are

not detected just because they were out of the detection range at that moment which can be easily

seen from the depth image.

From the experimental results illustrated in Figure 4.-Figure 4.4, we can definitely

conclude that in most cases, our proposed approach performs reasonably well for detecting and

tracking pedestrians in crowded scenes with cluttering backgrounds, even though severe

occlusions occur frequently.

(a) Frame 3841 (b) Frame 3861 (c) Frame 3902 (d) Frame 3937

Figure 4.1 Examples of successful detecting and tracking pedestrians for scenario 3 (Yellow solid circle locating

one pedestrian), RGB image on top while corresponding depth image on bottom

83

It was also found that though Kinect was initially designed for indoor applications, it

performs very well in outdoor environments. In our studied cases, scenario 2 is on a sunny day

while scenario 3 is on a cloudy day. A pedestrian with a depth of at least 10m can be reliably

detected in scenario 3, and at least 7m far away from Kinect in scenario 2. Both of these are

beyond the reliable depth range of 4m reported by Microsoft.

4.5.2 Counting Accuracy and Real- time Performance

Table 4.1 summarizes the resulting counts and accuracies of the approach proposed in

this paper under various scenarios. The automatic counts were generated by the tracking

approach developed in this paper. Pedestrians were also manually counted as ground truth data.

The results show that the indoor scenario has higher accuracy, but in general the results remain

reasonably accurate.

Table 4.1 Summary of Counting Test Results

Scenario
Test
length

Manual
counts

Automatic
counts

Under
counting

Over
counting

Accuracy
(%)

1 5 min 56 59 0 3 94.7
2 5 min 60 56 4 0 93.3
3 5 min 58 54 4 0 93.1

 Figure 4.2 Example of missing detection (Yellow solid circle locating one pedestrian), RGB image on the left while

corresponding depth image on right

84

Detection errors resulted in some over counting and under counting. The primary reason

for over counting lies in the incomplete pedestrian contour formed due to vacancy and fractional

false regions in places where the foreground and background are similar in color, which

separates one pedestrian contour into two or more. Under counting results from a failure to detect

one or more pedestrians when they have almost the same depth relative to Kinect, as indicated in

Figure 4.5.

Real-time performance is essential for almost all the real world pedestrian detection

system. Our proposed approach has an average running time of 50ms per frame in all the three

tested scenarios, i.e. 20 fps for Kinect images with 640x480 resolution. This means it can be

applied to scenarios where real time performance is required.

4.6 Conclusion

By utilizing Microsoft’s Kinect device with 3D sensing capabilities, a low cost solution

for occlusion robust pedestrian detection in crowded scenes was proposed and tested. The

proposed approach fused the information extracted from RGB images with that from depth

images to efficiently detect pedestrian in crowded scenes where occlusion occurs frequently,

which is very challenging for traditional image based approaches. Three crowded pedestrian

scenarios from indoor and outdoor environments were used to test the proposed approach, and

the results are very promising both in terms of accuracy and real time performance. This

demonstrates that the low cost Kinect is quite feasible in real-world pedestrian detection for

crowded scenes.

The approach proposed in this paper could be effectively used in a broad range of

applications including but not limited to:

85

Management of large pedestrian infrastructures such as public transport, railway stations,

airports, stadiums, shop center etc. Pedestrian detection is required to quantify and monitor the

demand for the infrastructure in order to correspondingly adjust supply.

 Onboard passenger volume estimation for public transit such as buses, light rail, ships,

etc.

 Pedestrian data collection for academic research on pedestrian behavior and movement

patterns, pedestrian traffic safety, etc.

 Pedestrian data collection for intersection geometric design, signal timings, etc.

 Other pedestrian surveillance applications related to security and safety.

While promising results were achieved, the approach proposed in this paper has a

limitation in that missed detections occur especially when two or more pedestrians walk closely

together such that they have almost the same depth relative to the Kinect device. What’s more,

pedestrian walking speeds and trajectories were not addressed in this paper, though they could be

easily acquired from the proposed approach. Further enhancements in the detection and tracking

algorithm will definitely help improve accuracy of the proposed approach.

86

CHAPTER 5.0 BLUETOOTH DATA COLLECTION SYSTEM FOR PLANNING AND

ARTERIAL MANAGEMENT

5.1 Introduction

This chapter documents the research and development of an inexpensive portable

wireless roadside data collection system. This system is comprised of the roadside data collection

units (DCUs), and a web-based software application that is used to process the collected data.

The system developed utilizes Bluetooth technology as the wireless technology platform

due to the widespread use of Bluetooth-enabled devices in vehicles, and builds off of results and

knowledge gained from prior research projects (Porter et al. 2011; Kim et al. 2012). These

projects focused on the development and implementation of a permanently installed Bluetooth-

based wireless travel time data collection system for arterials. In this project a portable wireless

roadside data collection system intended for short-term data collection purposes is designed,

researched, and developed. The portable roadside DCUs can work as a system or in isolation

depending on the needs of the application. Applications include:

 Intersection performance

 Origin-Destination data collection

 Travel time data collection.

The objectives of this part of the project are:

1. Utilize prior research experience to develop an inexpensive, easily deployed portable

system for wireless Bluetooth-based automatic collection of vehicle movement data.

2. Use this prototype wireless data collection system to collect Origin-Destination data for

traffic planning models.

87

3. Apply the system at an intersection to monitor intersection performance.

4. Evaluate the use of the proposed system to collect travel time data needed for project

level analysis to monitor, evaluate, and maximize the performance of advanced traffic

signal systems; and compare the performance of arterials.

The remainder of this chapter will begin with a literature review and background

information on the data collected using Bluetooth wireless technology. This information is

presented to facilitate better understanding of the data collection system operation and the

research and development conducted. After the background information the project objectives

will define report sections where the work and results related to that objective are presented.

5.2 Literature Review and Background Information

5.2.1 Performance Data with Bluetooth Sensors

Most of the applications of Bluetooth-based DCUs to transportation have been in the area

of travel time data collection. In addition to Wasson et al. (2008), other examples of such

research are Malinovskiy et al. (2010), Puckett and Vickich (2010), Quayle et al. (2010), Quayle

and Koonce (2010), and Hagani et al. (2010). One exception is the study performed by Tsubota

et al. (2011), where the “duration” (the length of time the same MAC address was seen by a

sensor) and travel time data obtained from a system of Bluetooth DCUs installed on a main

arterial in Brisbane, Australia, was analyzed. Scatter plots of duration (at the downstream

detector) versus travel times between DCUs did not show a strong relationship between duration

and travel times. The researchers stated that the lack of a strong relationship between duration

and travel times was due to uncontrollable environmental factors. Finally, it was demonstrated

through simulation that the relationship between duration and travel times is linear in

88

uncongested conditions, but becomes bimodal as congestion increases. However, no specific

intersection performance measures are computed.

5.2.2 Data Description

This section presents background information on the data collected by Bluetooth–based

wireless data collection units (DCUs) and how it is utilized. The objective of data collection by a

set of DCUs is to estimate when a vehicle containing a discoverable Bluetooth device just passes

each DCU. This is referred to as point detection and is depicted in Figure 5.1. If this can be done

accurately for a series of DCUs on a specific road segment, then a number of performance

measures can be estimated.

Figure 5.1 Point detection refers to estimating when a vehicle containing a discoverable Bluetooth device just

passes the DCU marked by the vertical line across the road

Bluetooth-based DCUs repeatedly conduct an “inquiry” procedure to identify any

Bluetooth devices that are within the unit’s antenna coverage area. Bluetooth devices within the

89

DCU coverage area will respond to this inquiry with a data packet that contains a media access

control (MAC) address, which is used as an identifier for the vehicle containing the device.

Because the antenna coverage area of a DCU can cover several hundred feet (or more) of the

road being monitored, and because multiple vehicles may travel on the road over the same time

period, several features of the data collected by a single DCU are:

 There may be multiple MAC addresses detected over a fixed time period.

 A single MAC address may be detected multiple times as the vehicle travels past the

DCU. The multiple detections are referred to as a group.

 The number of times a single MAC address is detected may vary for the different

MAC addresses detected.

 Different MAC addresses may have the same time stamp (i.e., date and time).

For the portable data collection system developed, each DCU will have one or more data

files that contain all detected MAC address records stored in a comma separated text file. No

data filtering or data processing will be conducted on the DCU. Figure 5.2shows a sample MAC

address record.

Figure 5.2 A sample MAC address record stored on a DCU

In Figure 5.2, RSSI is the received signal strength indicator, which is a measure of the

detection strength. The RSSI has been used in past work to utilize a single DCU for point

1F:16:76:C3,2013-04-29 09:57:32.265782,-66,0:1:95:17:C9:C5

Detected MAC Address Date and Time RSSI DCU MAC Address

90

detection. More information on the use of RSSI within a single DCU, and more detailed

Bluetooth data collection background information can be found in Kim et al. (2012).

5.3 Portable Collection System Design

This section documents the final design of the portable data collection system design,

beginning with a summary description of the system and its operation. This will be followed by

descriptions of individual system components, new data processing web application developed

for specific applications of the system, and system cost.

5.3.1 System Description

The portable Bluetooth-based data collection system provides a means to automatically

collect vehicle movement data between points on a road segment defined by the location of

individual DCUs. The system consists of multiple battery-powered DCUs and their packaging,

and a web-based software application for data processing. A user of the system will deploy the

DCUs on a temporary basis for a particular application of interest, and the total period of data

collection will dictate the need for battery changes. After deployment, the user will collect the

DCUs and download data from the DCUs to a USB jump drive. The raw data files can then be

transferred to a personal computer. The user will access the web-based data processing

application, upload the data files, and proceed with the appropriate data processing and analysis

option. Results can be printed and/or copied to spreadsheets. Figure 5.1 shows a hypothetical

deployment of four DCUs to collect data to estimate intersection performance. In Figure 5.1, the

DCUs are packaged within traffic drums.

91

Figure 5.1 System deployment for intersection performance estimation

There are two types of DCUs: a coordinator DCU, and a router DCU. The use of a

coordinator DCU depends on whether the specific application requires time synchronization

between the DCUs. The application depicted in Figure 5.1 and other applications where vehicle

movement data is of interest will require time synchronization. Periodically, all DCUs will

update their time to match the coordinator DCU. For such applications, a single coordinator

DCU is used, and the DCUs must be close enough to another DCU (within several hundred feet)

to communicate with it. The DCUs communicate using a Zigbee radio and the system of

deployed DCUs will constitute a “mesh network,” which means that a router DCU that cannot

communicate directly with the coordinator DCU can do so through other router DCUs.

In other applications such as origin-destination data collection, time synchronization is

not needed since the primary interest is in vehicle trip counts between various origins and

destinations. Time synchronization is also not needed for temporary travel time data collection

over road segments of approximately one half mile in length or greater.

The system was developed to be as user-friendly as possible and a “kit” of DCUs can be

deployed by following a simple start-up procedure. The start-up procedure will vary depending

92

on the data collection application. Establishing DCU operation time settings and data download

are accomplished by simply plugging a USB jump drive into a DCU.

5.3.2 Data Collection Unit Hardware and Software

The complete data collection unit consists of the following three main components:

1. Data collection microcontroller unit in an enclosure with an external Bluetooth adapter,

micro-SD memory card, an integrated Zigbee radio, and an antenna for the Zigbee radio

mounted to the enclosure.

2. An external directional antenna and antenna cable for the Bluetooth adapter.

3. An external rechargeable battery and battery cable.

In addition to the main DCU components, a GPS module that is only necessary at start-up

to establish the time is also a part of the system. Since the GPS module is only used at start-up

one module can be used with multiple DCUs. Figure 5.1 below shows the microcontroller unit

with the Bluetooth adapter, Zigbee radio, and Zigbee antenna mounted to the opened enclosure.

The components in Figure 5.1 normally stay together (except for the Zigbee antenna), and are

matched with an external Bluetooth antenna, Zigbee antenna, and battery as needed.

93

Figure 5.1 Microcontroller unit portion of the DCU

Bluetooth
Adapter

Microcontroller Board Zigbee
Radio

Zigbee
Antenna

94

Figure 5.2 External Bluetooth antenna and cable battery

Figure 5.3 Battery and GPS module

Antenna Cable

Antenna for
Bluetooth Adapter

95

The components in Figure 5.2and Figure 5.3 are paired with a microcontroller unit as

needed, and the GPS module is only needed when the system is started. Thus one GPS module

can support multiple system deployments.

The specific component model numbers are shown in Error! Reference source not found..

Table 5.1 DCU Component List

Component Manufacturer Model Number

Microcontroller board Olimex Ltd. iMX233-OLINUXINO-MINI
Bluetooth adapter Parani Parani-UD100

Memory card Sandisk 2GB MicroSD memory Card
Zigbee radio module Digi XBee XB24-Z7SIT-004

Antenna for Bluetooth adapter HyperGain HG2408P
Antenna for Zigbee radio Taoglas GW.71.5153

External DCU battery Turcom Ultra Capacity 33600mAh
Portable Power Bank Charger

There are two types of DCUs:

1. Coordinator DCU. The coordinator sends the time to other DCUs for the purposes of

time synchronization. If the DCUs deployed are to be used in a system with time

synchronization, then the GPS module is only used with the start-up of the coordinator

DCU.

2. Router DCUs synchronize time with the coordinator DCU, and also send data to the

coordinator. They also serve as nodes in a mesh network if a router DCU cannot

communicate directly with the coordinator DCU.

Both types of DCUs can be operated in two modes:

1. System mode where time synchronization to a single coordinator DCU is executed.

2. Stand-alone mode where the Zigbee radio is not operated and the DCU detects and stores

MAC addresses in isolation (e.g., as is the case in for origin-destination data collection).

96

In this case each DCU must be started using a GPS module to establish the correct date

and time.

The operational mode is selected by the start-up procedure completed. The software for

operating the DCU which includes the operating system, start-up scripts, and python code source

code is stored on a micro-SD card that is inserted into the DCU and accessed when the DCU is

started. The main specifications of the software are:

 Operating system – Arch Linux.

 Python source code with the PyBluez and PySerial libraries for operating the Bluetooth

adapter and Zigbee radio.

The main functions implemented in the start-up script, which are a series of Linux commands,

are:

 Detection of the presence of a USB flash drive. If present, MAC address data files will be

downloaded (moved) from the DCU to the USB drive, and text files (with DCU settings)

will be copied from the USB drive to the DCU.

 Detection of the presence of a USB GPS receiver. If present the date and time on the

DCU will be set from the date and time obtained through the GPS receiver.

 Running the DCU in the proper mode.

 Control the on/off running status of the Python code.

The main functions of the Python code are:

 Execution and control of the Bluetooth inquiry procedure and the storing of detected

MAC addresses.

 Controlling communication between the DCUs using the Zigbee radios.

97

5.3.3 Web-Based Software Application for Data Processing

To process the data collected by the portable data collection system, a web-based—

currently hosted on an OSU server—application has been developed. The URL for the

application is http://research.engr.oregonstate.edu/btdataanalysis/logIn.php.

The application has been designed with three main data processing and analysis

procedures for the following applications:

1. Origin-Destination data collection,

2. Travel time data collection,

3. Vehicle movement and road segment performance estimation (in progress).

The latter application includes various types of road segments, but was developed with

intersection performance as a primary use.

The user of the application will normally execute the following steps after accessing the

application.

 Choose the appropriate data processing and analysis procedure for the application,

 Upload raw data files obtained from the DCUs,

 Enter parameters for the analysis such as the location of the DCUs, the MAC address of

the DCUs, the maximum allowed travel time between locations, etc.

 Conduct the analysis, view the results, and copy the results from the application directly

into a spreadsheet.

 Close the application.

98

No data is saved on the server, so if the user closes the application raw data uploads will be

required if the analysis is to be repeated. Figure 5.1 shows a screen shot of the origin-destination

data processing screen after files have been uploaded and the analysis parameters entered.

Figure 5.1 Web application screen shot showing origin-destination data entry

Figure 5.2 shows a screen shot of the origin-destination data analysis screen after the analysis has

been completed.

99

Figure 5.2 Web application screen shot showing origin-destination data analysis

100

5.3.4 System Cost and Packaging

The packaging developed for the system consists of a traffic drum with a painted external

Bluetooth antenna. The microcontroller unit, battery, and cables are mounted inside the drum

with zippered pouches.

Figure 5.1 shows a DCU deployed for origin-destination data collection with the

Bluetooth antenna oriented perpendicular to the direction of traffic.

Figure 5.1 DCU deployed on I-5 for origin-destination data collection

101

Costs for individual components are shown in Table 5.1. The costs in Table 5.1 do not reflect

volume discounts and are rounded up to the nearest dollar. For antennas volume discounts can be

up to 40% less costly, but are less for other components.

Table 5.1 DCU Components – Approximate Pricing

Component Manufacturer Unit Cost

Microcontroller board Olimex Ltd. $47
Bluetooth adapter Parani $35

Memory card Sandisk $6
Zigbee radio module Digi $40

Realtime clock module Olimex Ltd. $7
Microcontroller enclosure NA $8

Microcontroller Unit Total $143

Bluetooth antenna and cable HyperGain $32
Antenna for Zigbee radio Taoglas $10

External DCU battery Turcom $120

The Bluetooth and Zigbee antennas and the battery are intended to be purchased

separately and to be paired with microcontroller units as needed. These particular components all

have large volume discounts.

5.4 Origin-Destination Study Data Collection Test

Six DCUs were deployed to collect origin-destination data for a planning model of the

Corvallis-Albany-Lebanon area. Table 5.1 is a list of the locations where vehicle counts and

vehicle trip counts are to be recorded. The highlighted rows show the four locations where DCUs

were deployed. Count ID locations 97 and 105 were on interstate highway I-5 and had two units

deployed at each location. Due to the width of the median, one DCU was placed on the

northbound side and another DCU was placed on the southbound side. Figure 5.1 is a map

showing the numbered data collection locations.

102

Table 5.1 Data Collection Locations for Origin-Destination Data

Count
ID Intersection/Location City

9
On Jefferson Hwy Hwy 164 (OR164) and west of
Mill St. in Jefferson Jefferson

95 Sodaville-Waterloo Dr & Hwy 016 (US20) South of Lebanon and West of the City of Waterloo

96 Berlin Rd & Waterloo Rd South of Lebanon and East of the City of Waterloo

97 I5 North of Dever Rd Interchange.png Albany

98 Hwy 226 East of (Hwy20) Santiam Hwy SE East City of Albany

99 Brewster Rd East of Berlin Rd. Lebanon

100 I5-Exit 228 south of Corvallis Lebanon Hwy Albany

101 Hwy 99E South of Bell Plain Dr.png South of City of Tangent

102 99W Pacific Hwy South of Smith Loop-.png South City of Corvallis

103 BT-CountID103-Hwy 34 and Decker Rd-.png South west of City of Philomath

104 Corvallis Newport Hwy and Hwy 34 West City of Philomath

105 99W Pacific Hwy North of Camp Adair Rd North of the City of Adair Village

Figure 5.1 Data collection locations in the Corvallis, Albany, Lebanon area

Corvallis

Philomath

Lebanon

103

The DCUs were continuously operated from approximately 11am, Monday, April 29, 2013 to

3pm, Friday, May 3, 2013. Battery units were changed with completely charged batteries every

24 hours. A single DCU at count ID location 97 (southbound side) was stolen after one day of

deployment. Table 5.2 shows the exact deployment time periods.

Table 5.2 DCU Deployment Periods for Origin-Destination Data Collection

Count
ID Start Date and Time End Date and Time

95 2013-04-29 11:30:51 2013-05-03 14:27:45

97
NB Unit: 2013-04-29 10:40:45
SB Unit: 2013-04-29 10:51:49

NB Unit: 2013-05-03 15:08:52
SB Unit: Missing

100
NB Unit: 2013-04-29 10:23:27
SB Unit: 2013-04-29 09:57:32

NB Unit: 2013-05-03 14:54:25
SB Unit: 2013-05-03 14:27:45

104 2013-04-29 12:18:13 2013-05-03 11:57:37

The web-based application described in section 5.3.3 was used to process the data

collected by the DCUs. Table 5.3 shows the travel time maximum values used between the DCU

locations when processing the data. Any MAC address “matches” between two locations with a

time difference greater than the value in Table 5.3 were not counted. This prevents the counting

of matches caused by vehicle detections on different days. The parameters in Table 5.3 are easy

to change and are shown as symmetric, but can be entered as non-symmetric times.

Table 5.3 Maximum Travel Time used for Origin-Destination Data Processing

Origin- Dest ID 97 ID100 ID 95 ID 104

ID 97 * 20 min 40 min 40 min

ID 100 20 min * 60 min 60 min

ID 95 40 min 60 min * 80 min

ID104 40 min 60 min 80 min *

Table 5.4 through Table 5.7 are the four tables produced as output from the web-based data
processing application.

104

Table 5.4 Trip Counts

Origin- Dest ID 97 ID100 ID 95 ID 104

ID 97 * 5539 17 49

ID 100 4932 * 79 104

ID 95 7 131 * 15

ID104 41 90 26 *

Table 5.5 Average Travel Times for the Trips in Table 5.2 (minutes)

Origin- Dest ID 97 ID100 ID 95 ID 104

ID 97 * 12.24 26.65 28.29

ID 100 12.34 * 34.16 39.11

ID 95 27.15 36.71 * 51.24

ID104 27.17 38.96 53.53 *

Table 5.6 Total MAC Address Counts

ID 97 ID100 ID 95 ID 104

16499 19896 2627 1973

Table 5.7 Total Unique MAC Address Counts

ID 97 ID100 ID 95 ID 104

10027 11478 1013 902

In this test study, two DCUs were placed at each I-5 data collection location due to the

width of the highway. This was done to examine if a DCU located on one side (e.g., southbound)

was missing a large number of detections for vehicles traveling on the other side of the highway

(e.g., northbound vehicles). At count ID location 100 (I-5 and Highway 34) there were 10,027

unique MAC addresses detected over the study period. The DCU on the southbound side

detected 8,596 unique MAC addresses, and the DCU on the northbound side detected 9,190

unique MAC addresses. This indicates that a large number of detections were missed by both

DCUs. The recommendation that follows is to use one DCU on each side of the road for

deployments on wide roads such as I-5.

105

5.4.1 Estimation of Total Trip Counts

Because not all vehicles contain discoverable Bluetooth devices, the trip counts collected

using the portable DCUs represent a fraction of the total trip count. Assuming that the percentage

of vehicles containing discoverable Bluetooth devices is constant over time and different

geographic areas, a “multiplier” can be used with the trip counts collected to estimate total trip

counts. Tests were conducted to estimate the value of this multiplier. The first test estimated the

fraction of traffic volume detected by the portable DCU, and the second test estimated the

percentage of “trips” where the same discoverable Bluetooth device is detected by two different

DCUs positioned at two locations along a trip route. Figure 5.1 shows the location of a single

DCU (adjacent to highway 34 in Corvallis, Oregon) that was utilized to estimate the fraction of

vehicles detected by the DCU.

Figure 5.1 Data collection location used to estimate the vehicle fraction detected

106

The DCU was run for one hour, and the total number of vehicles travelling on highway

34 over this same hour (in both travel directions) was counted and recorded. 134 different MAC

addresses were detected. These MAC addresses are assumed to be associated with vehicles since

no address generated group sizes that indicated otherwise. 2045 vehicles were counted over this

same period so that 134÷2045 = 6.55% of the vehicles were detected.

The second test was conducted on an approximately one mile round trip route on the

Oregon State University campus. On this route, two DCUs were located approximately 0.5 miles

apart. A single test run consisted of vehicle with a discoverable Bluetooth being driven past both

DCUs. After each test run, the vehicle was driven outside of the DCU coverage area and the

Bluetooth device in the vehicle was turned off. After a two minute wait the Bluetooth device was

restarted and the next test run was conducted. 20 test runs were completed, and the vehicle was

detected at both DCUs in 19 of these test runs.

Combining the results of these tests, it is estimated that on average 6.2% of the vehicle

trips are recorded by the portable DCUs, which implies that trip counts should be multiplied by

16.1 to obtain an estimate of total trip counts. This is consistent with the travel time data

collection sampling rate reported in Kim et al. (2012), which was computed from a larger sample

of data. It is also consistent with the results obtained from the intersection performance

measurement test documented in section 5.5.

5.4.2 Conclusions

The data collection potential offered by the portable DCUs is supported by the test

conducted. The Oregon Department of Transportation Traffic Planning and Analysis Unit

(TPAU) also hired a consultant to collect count data at the locations shown in Figure 5.1. This

107

consultant was not able to collect counts at all locations due to problems with the pneumatic tube

counters. Trip count data was unavailable due to both cost and feasibility. After the conclusion of

this test TPAU requested a larger scale data collection study in the city of Newport, Oregon.

Twenty-six DCUs were deployed in two different months to collect trip count and travel time

data for three consecutive days (Wednesday to Friday). This study was completed successfully

and provided a much less expensive data collection alternative.

Prior research (Kim et al., 2012) has shown that the travel time samples collected by

similar DCUs are very accurate, and that a reasonable multiplier for trip counts is 16.1. This

multiplier value was also verified in tests conducted as part of this project.

5.5 Intersection Performance Test

This section presents results from the application of the Bluetooth-based data collection

system to collect vehicle movement data for vehicles traveling through an intersection. Vehicle

movement data are the travel times (short in duration) between the DCUs, which are placed at

known locations along the road with specific distances between each DCU. The travel time data

samples collected at the intersection also include the time that it takes for a vehicle to interact

with the control mechanism at the intersection. The test was conducted at an intersection with

large amounts of pedestrian and cyclist traffic relative to vehicle traffic. The test location was at

the intersection of NW Monroe Ave and NW Kings Blvd near the Oregon State University

campus in Corvallis, Oregon (Figure 5.1). The test was completed on a Friday, during noon rush

hour (from 11:00 am to 12:00 pm). This three-way stop-controlled intersection has several

businesses in the vicinity and experiences high/medium levels of traffic in different modes,

including passenger vehicles, buses, pedestrians and bicyclists. The frequent occurrence of

108

different travel modes introduces a very high level of complexity to the system since active

Bluetooth devices are present in all travel modes. This environment represents one of the more

complicated environments where such a system may be deployed.

Figure 5.1 Intersection utilized for the data collection test

The goal of this test was to compare the time duration that vehicles spend at the

intersection obtained from the wireless data collection system to the same data obtained

manually. For the purpose of this experiment, ground-truth intersection time duration data was

obtained by video recording the intersection. The next section provides a summary of the test

setup.

5.5.1 Intersection Test Setup

The overall setup configuration for this test is presented in Figure 5.1. Three DCUs were

utilized in this test and they were located so that the beginning, stop, and the end points of the

functional area of the intersection could be monitored for eastbound traffic. MAC address data

109

was collected for one hour. Two high definition (HD) and high-speed cameras were utilized to

record traffic at the DCU locations. The high-speed feature allowed for the recording of up to 60

frames per second, which made it possible to track moving objects with very high accuracy. The

video recorded by the cameras was used for validation purposes and made it possible to see

exactly when a detected vehicle just passed a DCU.

Figure 5.1 Test setup for intersection performance data collection test

5.5.2 Test Results

A total of 54 unique MAC addresses were detected by all three DCUs during the one-

hour data collection period. By reviewing the video data from both cameras, a total of 25 unique

MAC addresses were matched to specific vehicles (or a platoon of vehicles). In cases when a

platoon of vehicles passed the DCU locations, it was not clear exactly which individual vehicle

contained the active Bluetooth device. However, since the accuracy assessment is based on

measured travel time between reference points (i.e., DCU locations) this did not affect the test

results. Four hundred vehicles travelled past all three DCUs (from video review) during the one-

DCU 1 DCU 3DCU 2

N
W

 K
in

g
s
 B

lv
d

Monroe Ave

Dutch Bros.

Rogers Graff

N

University
Christian
Center

X

50 ft150 ft

X

110

hour data collection period. This means that the installed DCU system was able to capture travel

times for approximately 6.25% of the total traffic. Of the 25 vehicles detected, the travel times

recorded by the DCUs were the same as those calculated from the video in 14 cases. In the other

11 cases, a maximum error of 6 seconds was recorded with an average error of 1.14 seconds. The

summary of the results is presented in Table 5.1.

111

Table 5.1 DCU to DCU Travel Time Accuracy Results

MAC Travel Time From DCUs
(sec)

Travel Time From Video
(sec)

Travel Time Error
(sec)

Address
DCU1

–
DCU2

DCU2
–

DCU3

DCU1
 –

DCU2

DCU2
–

DCU3

DCU1
–

DCU2

DCU2
–

DCU3
1 1C:A1:2F:47 1 7 1 7 0 0
2 18:A3:6B:03 N/A 15 N/A 15 0
3 7E:AD:FB:B8 10 6 10 12 0 6
4 D1:68:B6:6C 5 13 5 13 0 0
5 43:7F:EA:02 16 9 16 15 0 6
6 6C:A7:3F:7A 10 5 12 5 2 0
7 6C:A7:3F:7A N/A 5 N/A 9 4
8 7E:74:28:B0 5 4 5 4 0 0
9 9F:B7:14:E6 4 7 4 7 0 0

10 FE:73:4A:5C
11 7E:25:51:47 N/A 13 N/A 13 0
12 AE:6D:FA:3B 5 7 5 7 0 0
13 58:0E:9E:36 5 9 10 4 5 5
14 4B:DE:10:B9 12 6 12 6 0 0
15 16:67:00:E0 11 5 11 8 0 3
16 1C:14:19:BF
17 68:96:34:C0 6 10 6 10 0 0
18 7E:5D:3E:85 16 4 16 4 0 0
19 1C:A1:A7:36
20 3D:1F:94:A4 9 5 9 5 0 0
21 3D:1F:94:A4 N/A 2 N/A 2 0
22 0C:5A:ED:DD 16 5 16 5 0 0
23 BE:6B:ED:CD 7 4 7 4 0 0
24 BE:46:1D:E4
25 3E:EC:AF:75 14 7 14 7 0 0

Average Travel Time 0.41 1.14

Max (seconds) 5 6

In Table 5.1, the cells with “N/A” indicate that there was no record from that road

segment for a particular vehicle (identified by the detected MAC address). The particular vehicle

may not have passed all three DCUs, and/or was not detected by a DCU. For four MAC

112

addresses in Table 5.1 (10, 16, 19, and 24) all fields have been left blank. In these cases, the

MAC address could not be paired to a vehicle from the video.

For this study, the functional area of the intersection can be defined as the length of the

road between DCU 1 (150ft upstream of the stop bar) and DCU 3 (50ft downstream of the stop

bar). Within this length of the road, vehicles approaching the intersection on eastbound NW

Monroe Avenue interact with the traffic control device (a stop sign in this test). The average time

it takes a vehicle to travel between DCU 1 and DCU 3 can be used as an intersection

performance measure. It can be compared to the travel time at the posted speed limit. 17 of the

25 vehicles in Table 5.1 drove eastbound past all three DCUs. The average travel time from

DCU 1 to DCU 3 obtained from the wireless data collection system is 16.5 seconds. The average

time obtained from video recordings is 18.2 seconds, which is a 1.7 second difference. At the 25

MPH speed limit a vehicle traveling from DCU 1 to DCU 3 would take 5.45 seconds, thus the

estimated delay due to the eastbound traffic control device is 11.05 seconds.

5.5.3 Conclusions

The results of the intersection test show that the portable DCUs have the potential to

accurately monitor the performance of an intersection. Utilizing more than three DCUs would

allow more detailed estimates of vehicle trajectories through the intersection. This is currently

being researched as part of an Oregon Department of Transportation sponsored research project.

5.6 Traffic Signal Timing Evaluation

Three DCUs were deployed along Highway 99W in Sherwood, Oregon to test their use in

travel time data collection to evaluate signal timing changes. The primary consideration was

northbound travel along Highway between the DCU locations shown in Figure 5.1. DCU number

113

1 is the farthest south, and DCU number 3 is the farthest north. The DCU locations were

determined by the Oregon Department of Transportation who are responsible for the signal

operation along Highway 99W. Travel time data between the DCUs was collected for two

separate time periods between which a signal timing change was to be implemented. The data

collection periods were September 17, 2013 (00:00) to September 19, 2013 (23:59), and October

1, 2013 (00:00) to October 3, 2013 (23:59). Both data collection time periods were from Tuesday

through Thursday.

The travel time data collection summary for both time weeks is shown in Table 5.1.

Although the DCUs were only deployed on the east side of Highway 99W to collect northbound

travel times, the DCUs were able to collect a number of southbound travel times, which are also

shown in Table 5.1. Table 5.2 and Table 5.3 present the same summary information for the

morning and evening rush hour periods.

114

Figure 5.1 DCU deployment locations (yellow pins) along Highway 99W in Sherwood, Oregon

115

Table 5.1 Travel Time Data Collection Summary for Highway 99W Signal Timing Evaluation

Table 5.2 Travel Time Data Collection Summary for Highway 99W, 6AM - 8AM

September 17, 2013 (00:00) to September 19, 2013 (23:59) October 1, 2013 (00:00) to October 3, 2013 (23:59)

Number of trips between DCUs Number of trips between DCUs

1 2 3 1 2 3

1 - 3097 1590 1 - 2623 1296

2 1922 - 1742 2 953 - 1483

3 1360 1145 - 3 605 990 -

Average Travel Time Between DCUs (Minutes) Average Travel Time Between DCUs (Minutes)

1 2 3 1 2 3

1 - 1.09 3.33 1 - 1.1 3.41

2 0.99 - 2.21 2 0.93 - 2.17

3 4.08 2.91 - 3 3.9 2.81 -

Total Number of Vehicles Detected at each DCU Total Number of Vehicles Detected at each DCU

1 2 3 1 2 3

7193 6815 6143 4412 5945 5769

Total number of unique vehicles detected at each DCU* Total number of unique vehicles detected at each DCU

1 2 5 1 2 3

3340 3367 3068 2515 2987 2795

*The same MAC address detected on different days is only counted once.

Sept. 17, 2013 (06:00-08:00) to Sept. 19, 2013 (06:00-08:00) Oct. 1, 2013 (06:00-08:00) to Oct. 3, 2013 (06:00-08:00)

Number of trips between DCUs Number of trips between DCUs

1 2 3 1 2 3

1 - 501 273 1 - 471 276

2 143 - 312 2 62 - 325

3 69 67 - 3 27 62 -

Average Travel Time Between DCUs (Minutes) Average Travel Time Between DCUs (Minutes)

1 2 3 1 2 3

1 - 1.28 3.5 1 - 1.25 3.38

2 1.03 - 2.25 2 0.89 - 2.04

3 3.74 2.41 - 3 3.33 2.41 -

Total Number of Vehicles Detected at each DCU Total Number of Vehicles Detected at each DCU

1 2 3 1 2 3

872 882 694 633 814 716

Total number of unique vehicles detected at each DCU* Total number of unique vehicles detected at each DCU

1 2 5 1 2 3

527 562 442 419 510 446

*The same MAC address detected on different days is only counted once.

116

Table 5.3 Travel Time Data Collection Summary for Highway 99W, 4PM – 7PM

5.6.1 Conclusions

The results of the intersection test show that the portable DCUs have the potential to

collect travel time data that can be used to evaluate different traffic system changes. In the test

performed the travel time data is being used to evaluate signal timing changes. The data

collection was automatic and thus required manual setup and takedown, and a single battery

change to ensure continuous data collection over the desired 72 hour period.

5.7 Dedicated Short Range Communication

Dedicated short-range communication (DSRC) is a wireless technology which is

designed to support a variety of applications based on vehicular communication (USDOT, 2006).

The word “Dedicated” in DSRC refers to the fact that the U.S. Federal Communications

Sept. 17, 2013 (16:00-19:00) to Sept.19, 2013 (16:00-19:00) Oct. 1, 2013 (16:00-19:00) to Oct. 3, 2013 (16:00-19:00)

Number of trips between DCUs Number of trips between DCUs

1 2 3 1 2 3

1 - 531 242 1 - 467 203

2 414 - 275 2 231 - 218

3 329 295 - 3 164 256 -

Average Travel Time Between DCUs (Minutes) Average Travel Time Between DCUs (Minutes)

1 2 3 1 2 3

1 - 1.12 3.17 1 - 1.22 3.76

2 1.05 - 2.03 2 0.98 - 2.42

3 4.39 2.95 - 3 4.37 3.24 -

Total Number of Vehicles Detected at each DCU Total Number of Vehicles Detected at each DCU

1 2 3 1 2 3

1348 1419 1339 888 1179 1260

Total number of unique vehicles detected at each DCU* Total number of unique vehicles detected at each DCU

1 2 5 1 2 3

1016 1023 961 716 911 920

*The same MAC address detected on different days is only counted once.

117

Commission has allocated 75 MHz of licensed spectrum in the 5.9 GHz band for DSRC

communication (FCC 1998, 2003).

The primary motivation for deploying DSRC is to enable collision prevention

applications. Collision prevention applications depend on frequent data exchanges among

vehicles, and between vehicles and roadside infrastructure. However, DSRC can be used for

many other applications beyond collision avoidance. Most of these involve communication to

and from road side units (RSUs). For example, DSRC can be used to assist navigation, make

electronic payments (e.g., tolls, parking, fuel), improve fuel efficiency, gather traffic probe data,

and disseminate traffic updates (Kenney 2011).

The objective in this project was to investigate the potential of using DSRC technology to

support the automatic collection of arterial operations performance data by serving as the main

platform to support point detection, and vehicle re-identification data collection methods. For the

specific purposes of this project, this potential was judged from two perspectives: technology

readiness and equipment availability and economic feasibility. The conclusions reached are

presented in the following sections.

5.7.1 Technology Readiness

Table 5.1 shows the most relevant specifications of DSRC in six categories: standard(s),

operating frequency, application, range, data rates and latency. Three common wireless

technologies also used in vehicular applications (i.e., WiFi, Bluetooth, and ZigBee) are also

shown to provide a reference for comparison.

118

Table 5.1 Most Relevant Specifications of DSRC and Other Wireless Technologies

 DSRC WiFi Bluetooth ZigBee

Standard(s)

IEEE 802.11p (WAVE) –
PHY & MAC

IEEE 1609 (middle of
protocol stack)

SAE J2735 (message set
dictionary)

IEEE 802.11 IEEE 802.15.1 IEEE 802.15.4

Operating

Frequency
5.9 GHz 2.45 GHz 2.45 GHz

2.45 GHz (Global)
915 MHz

(Americas)
868 MHz (Europe)

Application

Vehicular communications:
Vehicle-to-vehicle (V@V)
Vehicle-to-Infrastructure

(V2I)

Wireless version of a
common wired

Ethernet network
(WLAN)

Exchanging
data over short

distances
(WPAN)

Low data rate,
long battery life,

and secure
networking

Range 100 ~ 1000 m 100 m (outdoors)
20 m (indoors)

Class 1 ~ 100
m

Class 2 ~ 10 m
Class 3 ~ 5 m

10 – 75 m
Up to 1500 m
(ZigBee PRO)

Data Rates 6 to 27 Mbps 1 to 866.7 Mbps 0.7 – 2.1 Mbps
20 kbps
40 kbps
250 kbps

Latency 200 >20 msec ~ 100 msec 30 msec or less

DSRC has a maximum range of 1000 meters within the current standards. Under most

operating conditions, DSRC will be limited to less than 200 meters. This limitation is well-suited

to most vehicular applications, especially those involving vehicle re-identification, since the

infrastructure where the roadside readers would be installed are generally within these kinds of

ranges. DSRC offers the capability of broadcast messages. This is a significant advantage over

point-to-point wireless communications (e.g., cellular) for vehicle re-identification applications

since roadside readers can communicate with multiple vehicles simultaneously in an attempt to

capture identification and signal strength data (USDOT 2005). One of the most significant

potential advantages of DSRC technology is its capability for very low latency communications.

119

Latencies in the 200 sec range seem to be possible with DSRC, and many of the vehicle re-

identification applications will certainly benefit from this feature.

DSRC is a technology that is definitely ready to support vehicle re-identification

applications. If utilized in a similar fashion as Bluetooth, extracting vehicle identification and

signal strength data would be accomplished with the use of the message set dictionary defined in

the SAE J2735 standard.

5.7.2 Equipment Availability and Economic Feasibility

To assess equipment availability and economic feasibility, an Internet search was

performed to search for DSRC-compliant hardware development platforms that could be used to

manufacture data collection units. Also, two vendors that offer DSRC system solutions were

contacted and provided an informal quote.

The Internet search revealed that single board computers (SBC) compatible with the

DSRC technology standard are not currently available in the marketplace. Reasons for this

unavailability are that widespread DSRC deployments are still to occur. Therefore, the market

for these devices does not exist. Given the unavailability of commercial-off-the-shelf (COTS)

components to build custom data collection units, the DSRC system vendors Denso and Savari

Networks were contacted next.

Denso offers a DSRC solution referred to as V2X. Roadside units cost approximately

$2,000 and on-board units cost approximately $1,000 each. No specifications about the

equipment were available at the time of contact. The lead time for equipment delivery was

estimated to be 6 months (Berg 2012).

120

Savari Networks offers a DSRC technology solution referred to as MobiWAVE™, which

encompasses a family of products with several on board equipment (OBE), including the Vehicle

Awareness Device (VAD), the Automotive Safety Device (ASD), and the Modular

Communications Platform (MCP), as well as a Software Development Kit (SDK) (Savari 2013).

As an example, the unit cost for the ASD platform is $4,000 and the RSU platform is $10,000.

The SDK to develop applications for the ASD/RSU platform costs $25,000 (Ravi 2103). The

lead time for equipment delivery was estimated to be 4 months.

Based on the information gathered via the Internet and provided by Denso and Savari

Networks, it is clear that the costs involved with procuring a DSRC platform are extremely

prohibitive. As applications of this technology become more widespread and market penetration

improves, it is anticipated that the hardware and software costs of this technology will become

more reasonable.

121

122

CHAPTER 6.0 EFFECTIVE TURNING MOVEMENT VOLUME ESTIMATION FOR

INTERSECTION ANALYSIS USING GAUSS-JORDAN ELIMINATION

6.1 Introduction

Engineers need intersection traffic supply and demand information to design and operate

traffic systems, and turning movement volumes are a key aspect of traffic demand. Knowledge

of turning movement volumes facilitates better decisions. As a result, engineers need access to

more economical turning movement counts acquired at more locations and with greater

frequency. This paper presents a method that solves for turning movement volumes using Gauss-

Jordan elimination row operations (e.g., row swapping, multiplying rows by non-zero constants,

and adding a factor of one row to another row). The input data are phase status, lane-by-lane

detector counts, and limited exit detector counts. It evaluates existing intersection detector

locations for their combined suitability to estimate turning movements and selects detection

plans that minimize data requirements. The method accommodates varying lane configurations,

varying detector locations, and includes or excludes phase status. Because the method is founded

on direct implementation of basic matrix analysis row operations, the solution process is easy to

implement.

The paper first gives a background and then in the methodology section it provides a

detailed description of the turning movement calculation algorithm, involving an example

intersection. Then the paper discusses how the methodology determines feasible intersection

configurations with and without phase information and how to choose new detector placements.

Then validation and error sensitivity test results are presented. Finally, the paper gives

conclusions and recommendations for future research.

123

6.2 Background

Traffic detectors have a variety of applications. Local intersection control is the most

predominant, where the intersection detectors communicate vehicle presence to the traffic

controller, which then changes its state to accommodate newly arrived vehicles. System

detection is another application, where mid-block detectors collect data that, together with

intersection detectors, informs performance measures and/or system traffic control strategies. In

recent years, technology advances expanded system detection capabilities to include vehicle

tracking either in the form of magnetic vehicle reidentification, probe vehicle tracking, or video

vehicle tracking. Unfortunately, these advances have not succeeded in economically acquiring

turning movement volume data. One reason for this shortcoming is reidentification and probe

vehicle technologies both can only sample a portion of vehicles. In addition, high capital costs

limit the application of all of these technology advances, forcing the large majority of

intersection analysis to rely on labor-intensive manually collected turning movement count data.

While turning movement count data collection using automated means is still not widely

available, it is still useful to clarify the availability of detection that would prove useful for

calculating turning movement counts. Many previous turning movement estimation efforts

utilized lane-by-lane entry and exit counts and this paper depends on these data as well (Davis et.

al. 1995; Nihan et. al. 1989; Dixon et. al. 2007). Stop bar entry counts can be lane-by-lane.

However, it should be noted that detection standards tend to vary from agency to agency, but it is

safe to say that stop bar detection is fairly common at signalized intersections. Lane-by-lane

detection is less common, but desirable for more accurate detection and signal operations (Yuan,

124

Y. et. al. 2013). Exit detectors are much less common and are primarily used for system

detection purposes, not for local intersection control.

The proposed method possesses several advantageous attributes, which are listed below,

and the following literature review discusses previous methods relevant to each of them.

 Analysis scope,

 Detector location,

 Use of detector and phase status event data,

 Input data, and

 Estimate mathematical form.

6.2.1 Analysis Scope

Different methods for estimating turning movements require different analysis scopes and

these can be categorized by generalized network approaches and intersection input-output

approaches. Some methods use general network topological relationships between detector

points and turning movements and these are defined by vehicle paths through a network. These

vehicle paths help correlate changes in volume collected at a specific location to changes in

turning movement volumes at other locations. As a result, detector locations can vary and are not

limited by requiring complete instrumentation at all exit and entry lanes for a given intersection.

However, these methods are complicated by their need to employ detection at key locations

throughout the broader network in order to maximize information regarding each of the unknown

turning movement volumes. In addition, these methods rely on mathematical solutions that are

not generally used in engineering practice and require simplifying assumptions, such as

possessing reliable vehicle paths, prior knowledge of origin-destination volumes, or extensive

125

detection requirements. Furthermore, although these methods provide valuable data for planning

level applications, they lack the accuracy that operations and design decisions require (Chen et.

al. 2012; Nakatsuji et. al. 2004; Lan et. al. 1999).

In comparison, intersection input – output methodologies are significantly simpler.

Generally, these methods require detection data on all lanes entering and exiting an intersection

and have a much more limited analysis scope. Because of the limited scope, these methods can

be more reliable and executed with more common modeling and statistical techniques that rely

on vehicle count multi-sampling or time-series analysis (Davis et. al. 1995; Nihan et. al. 1989;

Cremer et. al. 1987; Martin 1997; Yi et. al. 2010; Tian et. al. 2004; Dixon et al. 2007).

6.2.2 Detector Location

Detector location is important for turning movement volume estimation and is key for

determining which solution approach to take. Two basic strategies are taken for detector

location. Entering – Exiting detection focuses on one intersection, where all entering and exiting

traffic are observed by locating detectors on each entering and exiting lane. General network

detection relaxes the detection requirement by enlarging its scope to include more than one

intersection. Although the general network strategy does not require detection on all entering and

exiting lanes, it does require detection at locations such that all path flows contributing to the

turning movements are observed.

Entering – exiting detection strategies only require the analyst to specify the required

turning movements to estimate (Nihan et al. 1989; Cremer et al. 1987). Others developed

methods that worked with this same detection strategy, while allowing for incomplete counts

(Davis et. al. 1995).

126

In contrast, the general network strategy requires the analyst to describe the surrounding

network, the detector locations, network street characteristics (i.e., lengths, speeds, etc.), origins

and destinations, and a means to relate traffic traveling between a given origin and destination to

traffic counts at detector locations (Chen et al. 2012; Nakatsuji et al. 2004; Lan et al. 1999).

6.2.3 Use of detector and phase status event data

Research has shown that a vehicle’s turn movement can be inferred if intersection

detectors are situated at entrances and exits such that they allow accurate time correlation

between vehicles arriving at an entrance detector and vehicles arriving at an exit detector. List et

al. showed this was the case for roundabouts and was able to achieve very accurate results using

travel time estimates between entrances and exits (List et al. 2006). Signalized intersections were

analyzed in similar fashion, where phase status events were used to correlate entrance and exit

events (Tian et al. 2004; Yi et al. 2010).

6.2.4 Input data

All turning movement volume estimation methodologies required different detector

aggregations. Most methods require vehicle detection aggregated into volumes. Only those

methods that base their turning movement estimation on the connection of individual detection

events require disaggregate detection data (List et al. 2006; Tian et al. 2004; Yi et al. 2010).

Path-based methods require vehicle path information, defining the set of links vehicles

will use to travel from an origin to a destination. For a small linear network, there is only one

possible path for each origin-destination pair and the relationship between a detector’s counts

and path flows is clear. However, as the network size increases, two complexities arise. The

127

number of possible paths increases and the relationship of a detector’s counts during one interval

to path flows during another interval changes as a function of travel time.

6.2.5 Estimate process

Because of the range of characteristics defining methods proposed in the literature, this

discussion refers to each of these proposed methods as estimation processes. Consequently, a

process is defined by its mathematical approach and its underlying requirements regarding input

data.

Previous processes use a variety of mathematical techniques to estimate turning

movement counts for small areas for which most of the trip length is outside the area of interest.

Cascetta et al. (1988) identified three categories: maximum likelihood estimators, Generalized

least squares estimators, and Bayesian estimators. Two more categories exist: recursive

estimators (Cremer 1987; Nihan 1987; Okutani 1987; Chang 1994; Ashok 1996; Dixon 2002)

and heuristic estimators (Nakatsuji et. al. 2004; List et. al. 2006). All of the estimators in each of

these categories utilize a procedure to optimize an objective function that includes minimizing

the difference between the estimated link volumes and the observed link volumes. Regression is

the simplest of these estimators (Robillard et. al. 1975), but none estimate volumes for

conventional intersections by simply manipulating and solving simultaneous equations.

Processes using raw individual vehicle detections, tally individual turning movements,

depending on the pair of entrance and exit detections that the process deems most likely (List et.

al. 2006). However, all processes using aggregated input data estimate turning movement

volume in an aggregate form.

128

Some processes assume fewer independent detectors than the number of unknown

turning movements and require detector data from more than one interval to use regression

(Nihan et. al. 1989; Gajewski et. al. 2002). These processes produce estimates that are averages

for the input data intervals. Other process employ recursive estimation techniques, where a prior

solution is updated with each time interval’s data (Cremer 1987; Nihan 1989).

The regression and recursive methods have been used for cases as small as estimating

turning movements for one intersection to estimating origin-destination volumes for general

networks. In general, more sophisticated methods primarily address a general network analysis

scope (Lan 1997; Nakatsuji 2004; Chen 2012).

6.2.6 Summary

Turning movement estimation methods usually have extensive input data requirements,

employ a sophisticated estimation process, and have insufficient accuracy for design or

operations. This paper proposes a method that assumes the possibility of lane-by-lane detection

at intersection entrances and exits, but minimizes the detection requirements leading to an

economical estimation process. In so doing, the method achieves accuracy that is directly

controlled by the user by way of detection accuracy. If the detector data are very accurate and the

detector locations yield independent equations equal in number to the number of unknowns then

the turning movement volume estimation problem can be accurately solved.

6.3 Methodology

This method uses lane-by-lane vehicle counts and intersection geometry to create a

matrix of detectors versus turning movements to solve for turning movement counts. If phase

information is available then this method can separate the turning movements and counts into

129

concurrency groups. In concept, a concurrency group is a mechanism to group phases and the

counts of their corresponding turning movements into portions of the cycle during which they

can occur. Counts included in a given concurrency group occur from the time the first phase in

the group is active until the end of the all-red interval for the last phase served in the group. For

example, an eight phase intersection conveniently arranges into two concurrency groups defined

by the barriers contained in a ring-barrier diagram (group 1: NBL, SBT, SBL, NBT; group 2:

EBL, WBT, WBL, EBT). During a group’s portion of the cycle, detectors will record volumes

resulting from movements executed during its corresponding phases, including right-turn-on-red

movements. This results in two sets of counts for the detectors, one for each concurrency group.

More than two concurrency groups may improve solution feasibility and this method allows the

user to define the number of concurrency groups.

The method relies on an important distinction between a turn movement and a Lane

Specific Movement (LSM). A LSM specifically defines a turn by the entrance lane of an

approach and the exit lane of an exit. For example, a through movement served by two lanes

would include two LSMs, one from the inside lane at the approach to the inside lane at the exit

and the other LSM from the outside lane at the approach to the outside lane at the exit. A turn

movement is the aggregation of the corresponding LSMs (e.g., Left turn, Through, and Right).

Turning movement counts for each concurrency group are solved separately and the

results summed across groups to produce a final result of overall estimated turning movement

counts. The phase information can reduce the number of detectors needed to solve some

intersections and may be necessary to solve others. There are some intersections that this method

cannot solve even with phase information; however they are not the norm.

130

This method can work with unsignalized intersections as well. Because there is no signal,

it is treated the same as a signalized intersection without phase information. Most unsignalized

intersections have too few turn pockets to be solved. However, some will be feasible, especially

three legged intersections.

This method requires detectors obtaining vehicle counts on many of the lanes, but usually

not all. The section, Identifying Solvable Intersection Configurations and New Detector

Placement, describes a method for determining the most strategic set of detector locations.

6.3.1 Overall Method Description

Figure 6.1 contains information for an example application of the proposed method. On

the top right, a figure illustrates all possible lane-by-lane detector locations, accompanied by lane

numbers. On the top left, two elements of information are given in a table. The first element

establishes the concurrency groups into which phases are grouped. Second, below the

concurrency grouping, are the counts for each lane that has a detector. In this example, lane four

and six do not have detectors. On the bottom right, turning movements and LSMs are defined in

terms of their exit and entrance lanes.

Note that the proposed method allows many different detection options to suit varying

intersection configurations. This simplified intersection configuration and detection layout was

intentionally chosen to allow a demonstration of key aspects of the proposed method.

131

Detector Counts

Concurrenc
y group 1

 Concurrency
group 2

Lanes with
Detectors

1 45 5
2 90 30
3 90 0
5 3 12

7 32 3

8 33 2
Lane Specific Movement Definitions

LSM

Entrance
Lane

Exit
Lane

Movement
ID

1 4 EBT
1 7 EBR
1 8 EBR
3 7 WBL
3 8 WBL

3 2 WBT
5 4 NBR
6 2 NBL

Figure 6.1 Intersection Concurrency Groups, Counts, Lane Numbering, and Lane Specific Movement Definitions

The following describes the 12-step process to estimate turn movements using the

intersection shown in Figure 6.1 as an example to illustrate key points.

Step 1: Calculate the turning movement counts occurring during the green time of one

concurrency group at a time. Each detector needs to have counts for each concurrency group (see

Figure 6.1). If this phase information is not known and only total detector counts are known,

treat the intersection as if it had only one concurrency group. This step results in detector counts

aggregated by concurrency group.

North

132

Step 2: Associate detectors with LSMs for all concurrency groups. As defined previously, an

LSM is defined by the entrance lane, the exit lane, and the movement ID. The LSM for the

example problem are shown in Figure 6.1, bottom right. The example presented in this paper

works under the assumption that right turns and left turns may cross the detectors in either lane 7

or 8. In addition, right turns are allowed on red.

Step 3: Create a list of all possible Exit Detector Combinations (EDC). An EDC is a group of

two or more exit lanes with detectors on the same intersection leg. The EDC will be the same for

each concurrency group. There is only one possible exit detector combination for the example

intersection, which is 7/8. However, a three lane exit would have three possible combinations

and result in three EDCs. Moreover, each intersection leg with multiple exit detectors will

contribute more EDC to this list. Each EDC represents an equation, an alternative to its

corresponding individual detector equations. Opting for an EDC alternative may be necessary for

a feasible solution.

Step 4: Select a concurrency group. This step begins the loop through the concurrency groups,

repeating Steps 4 through 12.

Step 5: Create the “a0” matrix for the concurrency group selected in Step 4 that has a row for

each individual detector, a row for each EDC in the EDC list, and a column for each LSM

contributing to the concurrency group’s counts. Even though the current execution of this step is

for concurrency group 1, the “a0” matrices for both concurrency groups are given in Figure 6.2

for the sake of discussion.

133

For concurrency group 1, refer to the table on the left. Notice that the no NBT

movements can occur during concurrency group 1. Consequently, it is not included in the

concurrency group 1 “a0” matrix. The table on the right is the concurrency group 2 “a0” matrix

and will be used in the next loop, when solving for the turning movement volumes occurring

during the second concurrency group. For the second concurrency group, only the EBR

movement is included from the eastbound and westbound approaches.

The table cells of 1’s and 0’s represent detector/movement combinations. If a movement

crosses a detector then the corresponding cell contains a “1”, otherwise it contains a “0”. The

EDC rows follow the detector rows. In this case, there is only one, the combination of detectors 7

and 8. In the case of the EDC rows, each cell represents an EDC/movement combination, which

should contain a “1”if the movement crosses any of the detectors contained in the EDC. In this

example, the row for the EDC element of 7/8 will be one if a movement crosses detector 7 or 8

and a “0” otherwise (see Figure 6.2). Only the coefficients and counts comprise an “a0” matrix,

the rest of the rows and columns are for row and column labeling purposes.

Figure 6.2 Example Matrix “a0” (first concurrency group and second concurrency group)

134

Step 6: Given the list of EDCs from Step 5, create all possible unique combinations of the EDCs

and arrange them in order of increasing complexity. The discussion refers to each combination of

EDC as an EDC set. Intersections with three lane approaches or several multi-lane approaches

will have several EDCs in the EDC list (established in Step 3) and these can be arranged into

unique EDC sets listed in order of increasing complexity.

Step 7: For the concurrency group selected in Step 4, this step manages looping through different

EDC sets. The algorithm attempts to solve for the turning movement volumes beginning with the

first EDC set and stops when a solution is found. It is important to list the smallest EDC sets

first, so that the simplest solutions are attempted first. For the given example, two sets of EDCs

would be possible: none and 7/8.

a) “a” matrix for the EDC set of “none” b) “a” matrix for the EDC set of “7/8”

Figure 6.3 Group 1 “a” matrices

135

Step 8: Create the “a” matrix, given the EDC set selected in Step 7, which will have the same

columns as matrix “a0” but will only contain a subset of the rows. In Step 7, the algorithm

started with the simplest set of EDCs, which is “none”. As shown in

c) “a” matrix for the EDC set of “none” d) “a” matrix for the EDC set of “7/8”

136

Figure 6.3, the “a” matrix only includes rows corresponding to detectors 1, 2, 3, 5, 7, and 8,

excluding any EDCs. The “a” matrix represents a system of equations. In this case, there are six

equations, where the Group 1 counts constitute the equation solutions and the cells to the right of

the count contain the equation coefficients for the unknown LSM counts. There are seven

unknowns, so it is not possible to solve for all LSMs, because there are more unknowns than

there are equations. It is important to proceed to Step 9 to address this issue.

Step 9: Delete all but one of any columns that have the same value in every row of the

coefficients matrix and contribute to the same turning movement. Then check that the number of

equations equals the number of unknowns. After this step, there should be no two columns that

are identical, which is equivalent to eliminating redundant variables. For the “a” matrix using the

EDC set of “none”, no columns can be deleted (see Figure 6.3a). Consequently, there are six

equations and seven unknowns, so the current “a” matrix is not feasible and the algorithm returns

to Step 7 to select the next EDC set of “7/8”.

The algorithm then proceeds to Step 8 to create the next “a” matrix with the “7/8” EDC

set. Step 8 then excludes the rows for detectors 7 and 8 (see Figure 6.3b). Excluding these

equations created two sets of columns that are identical. The two EBR columns are identical and

so are the WBL columns. These duplicate columns correspond to variables that became

redundant by adding the equation for EDC “7/8” and excluding the equations for detectors 7 and

8. This step (Step 9) removes one of each of the duplicate columns, creating a system of five

equations and five unknowns (see Figure 6.4a). Step 10 will determine if these equations are

independent and yield a feasible solution.

137

Step 10: Use Gauss-Jordan elimination row operations to simplify matrix “a” coefficients to

achieve an identity matrix and the turning movement count solutions (see Figure 6.4b). The

value in the “Group 1 Counts” column is the solution for the turning movement in the column

that contains a 1 in the value’s same row. For example, the value “25” is the solution for the EBT

corresponding to the LSM going from detector 1 to 4. The Gauss-Jordan process was augmented

to delete all zero rows, ensure the fewest row operations, and minimize the variance in the

turning movement count errors. The appendix “Simplifying the Matrix” explains this in more

detail. If the matrix can be simplified to a feasible solution, then this step results in an identity

matrix.

If the “a” matrix can’t be simplified then the current EDC set does not work. If another

EDC set exists then the process loops back to Step 7 to select the next EDC set to evaluate its

feasibility.

a) Reduced “a” matrix from Step 7 b) Simplified matrix and solution from Step 8

Figure 6.4 Matrix input to Step 8 from Step 7 and Matrix resulting from Step 8

Because it was possible to simplify matrix “a”, the given detector configuration can be

solved for all of the turning movements and Step 11 should be next. However, if Step 10 failed

(matrix “a” was unable to be simplified) then the process returns to Step 7 to select the next EDC

set in the list.

138

Step 11: If none of the EDC sets from Step 3b result in feasible solutions then the given detector

configuration cannot be used to calculate turning movement counts. See the following section for

more on determining where to place detectors.

Step 12: If more concurrency groups remain then return to Step 4 to select the next one. This step

maintains running sums for each turning movement. Results from the first concurrency group are

the first to contribute to these sums. Because there is one more concurrency group in this

example, this method loops back to step 4, to repeat the process for the next concurrency group.

After completing the steps for the second concurrency group in this example, the

resulting turning movement count estimates are complete and they are given in Table 6.1.

Table 6.1 Turn Movement Estimates for Concurrency Groups 1 and 2

Concurrency Group

Counts

Movement
s Group 1 Group 2 Total

NBR 15 5 20

NBT 15 0 15

NBL 10 0 10

WBR 5 10 15

WBT 0 20 20

WBL 0 25 25

EBR 5 25 30

EBT 0 25 25

EBL 0 20 20

SBR 10 5 15

SBT 10 0 10

SBL 15 0 15

This method uses Gauss-Jordan elimination to solve a system of equations for the LSM

counts. An equation is written for each detector saying that the number of vehicles that crossed

139

the detector equals the sum of the vehicles from each LSM that passes over the detector. The

equations for each of the detectors are combined into a matrix built in this method (Matrix “a”).

Then row operations are used to solve for the LSM counts. Maintaining the direct use of row

operations to solve the problem, instead of matrix analysis functions, provides two benefits

stemming from the interjection of different detection options. One benefit is being able to solve

for the turning movement volumes relying on the fewest detectors. Another benefit is finding the

detection layout with the fewest detectors that would result in a solution.

The two additional actions that need additional explanation are the deletion of one of two

identical columns of the matrix and the use of the EDC list. By deleting an identical column, the

process changes the solution space to solve for the sum of two LSM counts that are for the same

turn movement, rather than individually. For example, refer to the WBL turn movement of the

intersection shown in Figure 6.1. Aggregating exit detectors 7 and 8 removes the need to solve

for the counts for LSMs 3 to 7 and 3 to 8 separately, because both LSMs complete the count of

the westbound left turn. Instead, all that is needed to find the total westbound left turns is to

know the sum 3 to 7 and 3 to 8. This is because if detectors 7 and 8 were aggregated then the two

LSMs would have the same coefficients in every equation. So, they can be factored together,

thus allowing solving for the sum of the two LSMs (e.g., 2a+2b=4=>2(a+b)=4=>a+b=2). To

factor the two movements together, the algorithm would delete one of the two LSM columns (3

to 7 or 3 to 8), and the remaining column would represent the sum of the two LSMs (e.g., 3 to

7/8) (see Figure 6.4b).

The purpose of an EDC is to aggregate detectors on the same exit into one effective

detector. Detector aggregation results in LSMs with identical columns in the matrix.

140

Subsequently, through column deletion, the method reduces unknowns, increasing turn

movement solution feasibility. However, the following conditions must be observed for detector

aggregation at a specific exit to increase solution feasibility.

 First, there needs to be more than one exit detector at the exit.

 Second, two or more turn movements must cross the exit detectors.

 Third, each turn movement crossing one of the exit detectors being aggregated must have

two or more LSMs.

 Fourth, for two or more of these turn movements, the LSMs must share the same entrance

detector or not have an entrance detector.

For situations satisfying these four conditions, aggregating the exit detectors makes the

LSM columns identical for a given turn movement, allowing one column to be deleted. So, by

aggregating the two exit detectors, the matrix loses one row for each detector that will be

aggregated and gains a row for the aggregated detector. Overall, this reduces the number of

equations by one. However, if the above four criteria are met then aggregating detectors will

eliminate at least two columns, one for each turning movement entering the intersection from a

single lane and that crosses the aggregated detector. In this way, the algorithm increases

intersection feasibility through detector aggregation.

In order to ensure that no opportunity is missed to make an otherwise unsolvable

intersection solvable, every combination of multiple exit detectors for the same travel direction is

compiled, creating the EDC list. Then every combination of elements of the EDC list (EDC sets)

is tried until a solution is found, to see if any combination of exit detectors will allow the matrix

to be solved.

141

6.3.2 Identifying Solvable Intersection Configurations and New Detector Placements

Many different counting scenarios exist for existing intersections. It is not possible to

enumerate all intersection configurations and their corresponding feasible counting scenarios.

Table 6. shows the detector locations for five different example intersections. These

examples are based on existing intersection configurations in Moscow, Idaho. The first two

intersections can be solved with no phase information (i.e. one concurrency group) or with phase

information (two concurrency groups). Intersections C and D can only be solved if phase

information is available. Intersection E cannot be solved even with phase information. Each

intersection is shown with the minimum number of exit detectors needed to solve for the turning

movement counts (assuming that all entrance lanes have detectors).

Table 6.2 Turn Movement Count Feasibility Examples – Minimum Detection

Intersection

Minimum Detection

Diagram Possible Phase Grouping

Solvable

with

phase

data

Solvable

without

phase

data

A

Yes Yes

B

Yes Yes

142

C

Yes No

D

Yes No

E

No No

Note: RTOR are also accommodated, but are not explicitly shown in the concurrency grouping diagrams.

As a rule of thumb, intersections without phase information that fit one of the following

descriptions are feasible.

 two one-way roads.

 a two-way street and a one-way street with at least one turn pocket.

 two two-way streets are frequently feasible if they have at least 5 turn pockets.

Signalized intersections that don’t fit the above should be checked to see if they can be solved

with phase information.

The street network for Moscow, Idaho was examined to see the frequency with which the

proposed method can yield a feasible solution. Of the 17 signalized intersections, 11 are feasible

without phase information and 4 additional ones are feasible with phase information. On the

other hand, of the 548 unsignalized intersections, only 27 are feasible.

143

The twelve steps described previously can be used to identify new detector placement in

order to make an existing configuration solvable. This is done by starting the twelve steps with

the existing configuration and iterating through different configurations until a solution is found.

Based on the analysis of Moscow, Idaho intersections, typically only one additional detector is

needed for signalized intersections and two for unsignalized intersections.

6.3.3 Method Validation

The proposed method’s capability to produce accurate results was determined using field

data with randomly generated error. The validation used data from two sources. One consisted of

data manually extracted from video recorded at the signalized intersection of State Highway 8

and Farm in Moscow, Idaho. The second was taken from previous research (Smaglik 2007;

MioVision 2013). For all three intersections, two types of data were collected, where one was

spot counts at the stop bar and spot counts at the exit lanes. Another was turn movement counts

(the ground truth data). Errors were randomly generated for the stop bar and exit count data to

create detection errors according to ranges documented in previous research (Smaglik, 2007).

144

The proposed method was applied to each intersection in three ways: one without phase

information, the second with phase information and no detection errors, and the third with phase

information and with detection errors. If the intersection configuration and given phase

information afforded a feasible solution, eleven trials were run. The first trial used the true

detector counts and the remaining ten trials had random errors applied to the detector counts,

with random errors varying within the ranges shown in the list below (Smaglik, 2007).

 Left turn lane detectors: 0.5% to 13.7%

 Through lane detectors: 4.4% to 23.3%

 Right turn lane detectors: 1.1% to 6.1%

The validation test results are given in Table 6.. As expected, for all three intersections, the

trial run with no detection error, estimated the turn movement counts exactly, regardless of phase

information. Naturally, Table 6. also shows that detection errors propagate through to the final

estimates.

Table 6. summarizes the results for situations with detection error, with and without

phase information. Overall, the proposed method estimates turn counts with Mean Absolute

Percent Error (MAPE) in the approximate range of 9% to 13.6%, which is quite promising.

Finally, the overall Mean Percent Error (MPE) is positive, in the range of 9% to 13%, indicating

that the estimates are biased high. This bias occurred because the error ranges of the detectors

were all positive, resulting in detectors that over counted.

In addition to increasing solution feasibility, including phase information also reduced the

errors, as is evidenced by the validation data. As is shown Table 6., the MAPE changed by -

145

0.9%, 0.3%, and -1.4%, for the three intersections, respectively, indicating that, in addition to

increasing feasibility, adding phase information possibly increases accuracy.

Table 6.3 Validation Test Results

Intersection
Error

Measures

W/o Phase
Information;
No detection

error

With Phase
Information;
No detection

error

W/o phase
Information;

With
detection

error

With phase
Information;

With
detection

error
SH 8 and

Farm
MPE 0 0 13.0% 12.7%

MAPE 0 0 13.6% 12.7%
MioVision,

2013
MPE 0 0 11.1% 11.4%

MAPE 0 0 11.1% 11.4%
Smaglik,

2007
MPE 0 0 9.8% 9.0%

MAPE 0 0 10.4% 9.0%

6.3.4 Conclusions and Recommendations

The proposed method employs widely known Gaussian Elimination operations to search

for detection arrangements and solve for turn movement volumes. Validation tests found that the

method, while sensitive to detection errors, yields reasonable solutions that can be very accurate.

In addition, the method can estimate turning movement volumes for most signalized

intersections and some unsignalized intersections.

Several important distinctions characterize this method and they are as follows:

1. Solves quickly through Gauss-Jordan elimination,

2. Provides for lane-by-lane detection,

3. Integrates phase information,

4. Considers lane-specific movement as unknowns,

5. Leverages a straight forward procedure for aggregating exit detectors,

6. Simultaneously determines a minimum detection scenario, and

146

7. Selects detection to minimize estimate variance.

Future research should focus on two areas. One area is applying the methodology to

freeway and urban street facilities. The second area is reducing error sensitivity by detection

error filtering and integrating information from multiple time intervals by averaging or simple

linear regression.

147

REFERENCES
Alnowami, M., B. Alnwaimi; F. Tahavori; M. Copland and K. Well. A quantitative assessment

of using the Kinect for Xbox360 for respiratory surface motion tracking. Proc. SPIE
Medical Imaging, 2012, pp. 83161T-83161T

Basso, F.,M. Munaro,S. Michieletto, E. Pagello, and E. Menegatti. Fast and robust multi-people
tracking from RGB-D data for a mobile robot. Intelligent Autonomous Systems, Springer
Berlin Heidelberg, 2013, pp. 265-276.

Berg, Roger (Personal communication), Vice President, Wireless Technologies, Denso. April 19,
2012.

Boulos, M. N. K., B. J. Blanchard, C. Walker, J. Montero, A. Tripathy, and R. Gutierrez-Osuna.

Web GIS in practice X: a Microsoft Kinect natural user interface for Google Earth
navigation. International Journal of Health Geographics Vol. 10(45), 2011.

Brandes, U. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology,
Vol. 25, 2001, pp. 163–177.

Brandes, U. On Variants of Shortest-path Betweenness Centrality and Their Generic

Computation. Social Network, Vol. 30, 2008, pp. 136–145.

Brennan, T.M., et al., (2011). “Visual Education Tools to Illustrate Coordinated System

Operation” Transportation Research Board, National Research Council, Washington, DC.

Broach, J., J. Dill, and J. Gliebe. Where Do Cyclists Ride? A Route Choice Model Developed

with Revealed Preference GPS Data. Transportation Research Part A, 46, 2012, pp.
1730–1740.

Buehler, R. and J. Pucher. Cycling to work in 90 large American cities: new evidence on the role

of bike paths and lanes. Transportation, Vol. 39, 2012, pp. 409-432.

Callister, D. and Lowry, M. Tools and Strategies for Wide-Scale Bicycle Level of Service

Analysis. Journal of Urban Planning and Development. Vol. 139, No. 4. 2013.

Charreyron, S., S. Jackson, L. F. Miranda-Moreno.Towards a Flexible System for Pedestrian

Data Collection Using Microsoft Kinect Motion Sensing Device. 92nd Annual Meeting
of the Transportation Research Board, Washington D.C. No. 13-3284, 2013.

Chen, Anthony, Piya Chootinan, Seungkyu Ryu, Ming Lee, and Will Recker. “An Intersection

148

Turning Movement Estimation Procedure Based on Path Flow Estimator.” Journal of

Advanced Transportation 46, no. 2 (2012): 161–176. doi:10.1002/atr.151.

Cremer, M., and H. Keller. “A New Class of Dynamic Methods for the Identification of Origin-

destination Flows.” Transportation Research Part B: Methodological 21, no. 2 (1987):
117–132.

Davis, G. A., and C. J. Lan. “Estimating Intersection Turning Movement Proportions from Less-

than-complete Sets of Traffic Counts.” Transportation Research Record no. 1510 (1995):
53–59.

Derrible, S. Using Network Centrality to Determine Key Transfer Stations in Public

Transportation Systems. Presented at the 91st Annual Meeting of the Transportation
Research Board, Washington D.C., 2012.

Dill, J. Bicycling for Transportation and Health: The Role of Infrastructure. Journal of Public

Health Policy, Vol. 30, 2009, pp. 95-110.

Dixon, Michael P., Ahmed Abdel-Rahim, Michael Kyte, Phil Rust, Howard Cooley, and Lee

Rodegerdts. “Field Evaluation of Roundabout Turning Movement Estimation
Procedures.” Journal of Transportation Engineering 133, no. 2 (2007): 138–146.

Eash, R. Destination and Mode Choice Models for Nonmotorized Travel. In Transportation

Research Record: Journal of the Transportation Research Board No.
1674, TRB of the National Academies, Washington, D.C., 1999, pp. 1–8.

Federal Communications Commission, Intelligent Transportation Services Report and Order,

R&O FCC 99-305, Oct. 21, 1998.

Federal Communications Commission, Dedicated Short Range Communications Report

and Order, R&O FCC 03-324, Dec. 17, 2003.

Gajewski, Byron J., Laurence R. Rilett, Michael P. Dixon, and Clifford H. Spiegelman.
“Robust Estimation of Origin-destination Matrices.” Journal of Transportation and

Statistics 5, no. 2/3 (2002): 37–56.

Gandhi, T., and M. M. Trivedi. Pedestrian Protection Systems: Issues, Survey, and Challenges.
Intelligent Transportation Systems. IEEE Transactions, Vol. 8.3, 2007, pp. 413-430.

Griswold, J, A. Medury, and R. Schneider. Pilot Models for Estimating Bicycle Intersection

Volumes. In Transportation Research Record: Journal of the Transportation Research

149

Board No. 2247, TRB of the National Academies, Washington, D.C., 2011, pp. 1–7.

Hagani, A., H. Masoud, F.S. Kaveh, S. Young, and P. Tarnoff. Freeway Travel Time Ground

Truth Data Collection Using Bluetooth Sensors. CD-ROM. Transportation Research
Board of the National Academics, Washington, D.C., 2010.

Harvey, F., Krizek, K. J., and Collins, R. (2008). “Using GPS Data to Assess Bicycle Commuter

Route Choice.” Presented at the Transportation Research Board 87th Annual Meeting
Washington D.C., 208.

Highway Capacity Manual 2010. Transportation Research Board of the National Academies,

Washington, D.C., 2010.

Hillier, B., A. Penn, J. Hanson, T. Grajewski, and J. Xu. Natural movement: or, configuration

and attraction in urban pedestrian movement. Environment and Planning B, Vol. 20,
1993, pp. 29–66.

Hillier, B., and J. Hanson. The Social Logic of Space. Vol. 2. Cambridge University Press

Cambridge, 1984.

Hsieh, C.-T., H.-C. Wang, Y.-K. Wu, L.-C. Chang and T.-K. Kuo. A Kinect-Based People-flow

Counting System. IEEE International Symposium on Intelligent Signal Processing and
Communications Systems (ISPACS), 2012.

Hudson, J., T. Qu, and S. Turner. Forecasting Bicycle and Pedestrian Usage and Research Data

Collection Equipment. Research Project Number P2009330, Report P2009330. Texas
Transportation Institute; Capital Area Metropolitan Planning Organization; FHWA, U.S.
Department of Transportation, 2010.

Iacono, M., Krizek, K. J., and El-Geneidy, A. (2010). “Measuring non-motorized accessibility:

issues, alternatives, and execution.” Journal of Transport Geography, 18(1), 133–140.

Jones, M., S. Ryan, J. Donlon, L. Ledbetter, D. Ragland, and L. Arnold. Seamless Travel:

Measuring Bicycle and Pedestrian Activity in San Diego County and Its Relationship to

Land Use, Transportation, Safety, and Facility Type, PATH Report UCB-ITS-PRR-
2010-12, 2010.

Jiang, B., and C. Claramunt. “Topological Analysis of Urban Street Networks.” Environment

and Planning B: Planning and Design, Vol. 31, 2004, pp. 151–162.

150

Kenney, J.B. (2011). Dedicated Short-Range Communications (DSRC) Standards in the
United States. Proceedings of the IEEE, Vol.99, No. 7, pp. 1162-1182.

Kim, D.S., Porter, J.D., Magana, M.E., Park, S., and Saeedi, A. Wireless Data Collection System

for Travel Time Estimation and Traffic Performance Evaluation. Final Report ODOT

SPR 737 OTREC-RR-012-06, 2012.
http://www.oregon.gov/ODOT/TD/TP_RES/docs/Reports/2012/SPR737_Wireless.pdf.

Lan, Chang-Jen, and Gary A. Davis. “Real-time Estimation of Turning Movement Proportions

from Partial Counts on Urban Networks.” Transportation Research Part C: Emerging

Technologies 7, no. 5 (October 1999): 305–327. doi:10.1

Landis, B. Using the Latent Demand Score Model to Estimate Use. ProBike/Pro Walk 96

Resource Book. Presented at the Ninth International Conference on Bicycle and
Pedestrian Programs, Portland, Maine, 1996.

Larsen, J., and A. El-Geneidy. “A Travel Behavior Analysis of Urban Cycling Facilities in

Montréal, Canada.” Transportation Research Part D: Transport and Environment, Vol.
16, 2011 pp. 172–177.

Lee, B., Jennings, L., and El-Geneidy, A. “How Does Land Use Influence Cyclist Route Choice?

Geospatial Analysis of Commuter Routes and Cycling Facilities.” Presented at the
Transportation Research Board 90th Annual Meeting Washington D.C., 2011.

List, G. F., and S. M. Eisenman. “Identifying Vehicle Trajectories and Turning Movements at

Roundabouts.” In 5th International Symposium on Highway Capacity and Quality of

Service, 2006.

Liu, H., X. Hu, S. Yang, K. Zhang, and E. Di Paolo. Application of Complex Network Theory

and Genetic Algorithm in Airline Route Networks. In Transportation Research Record:

Journal of the Transportation Research Board No. 2214, TRB of the National
Academies, Washington, D.C., 2011, pp. 50–58.

Liu, F., J. Evans, and T. Rossi. Recent Practices in Regional Modeling of Nonmotorized Travel.

In Transportation Research Record: Journal of the Transportation Research Board No.

2303, TRB of the National Academies, Washington, D.C., 2012, pp. 1–8.

Lowry, M., D. Callister, M. Gresham, and B. Moore. Assessment of Communitywide Bikeability

http://www.oregon.gov/ODOT/TD/TP_RES/docs/Reports/2012/SPR737_Wireless.pdf

151

with Bicycle Level of Service. Transportation Research Record: Journal of the

Transportation Research Board No. 2314, TRB of the National Academies, Washington,
D.C., 2012, pp. 41–48.

Luber, M., L. Spinello, and K. O. Arras. People Tracking in RGB-D Data With On-line Boosted

Target Models. 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2011.

L. Xu and J. Landabaso, Segmentation and tracking of multiple moving objects for intelligent

video analysis. BT Technology Journal, Vol. 22.3, 2004, pp. 140-150.
Malinovskiy, Y., Y. Wu, Y. Wang, and U. Lee. Field Experiments on Bluetooth-based
Travel Time Data Collection. CD-ROM. Transportation Research Board of the National
Academics, Washington, D.C., 2010.

Martin, P. T. “Turning Movement Estimation in Real Time.” Journal of Transportation

Engineering 123, no. 4 (1997): 252–260.

McCahil, C., and N. Garrick. The Applicability of Space Syntax to Bicycle Facility Planning. In

Transportation Research Record: Journal of the Transportation Research Board No.

2074, TRB of the National Academies, Washington, D.C., 2008, pp. 46–51.

Menghini, G., N. Carrasco, N. Schüssler, and K.W. Axhausen. Route Choice of Cyclists in

Zurich. Transportation Research Part A, Vol. 44, 2010, pp. 754–765.

MioVision, http://miovision.com/wp-content/uploads/sample-reports/Intersection-Count-PDF-

Report.pdf. Accessed July 11, 2013.

Nihan, Nancy L., and Gary A. Davis. “Application of Prediction-Error Minimization and

Maximum Likelihood to Estimate Intersection O-D Matrices from Traffic Counts.”
Transportation Science 23, no. 2 (May 1, 1989).

Nakatsuji, Takashi, Kenji Nakano, Chumchoke Nanthawichit, and Hironori Suzuki. “Estimation

of Turning Movements at Intersections: Joint Trip Distribution and Traffic Assignment
Program Combined with a Genetic Algorithm.” Transportation Research Record:

Journal of the Transportation Research Board 1882, no. -1 (January 1, 2004): 53–60.

National Bicycle and Pedestrian Documentation Project (NBPDP), Institute of Transportations

Engineers and Alta Planning, Accessed July 17, 2013 http://bikepeddocumentation.org/

Penn, A., B. Hillier, D. Banister, and J. Xu. Configurational modelling of urban movement

http://miovision.com/wp-content/uploads/sample-reports/Intersection-Count-PDF-Report.pdf
http://miovision.com/wp-content/uploads/sample-reports/Intersection-Count-PDF-Report.pdf

152

networks. Environment and Planning B: Planning and Design, 1998, pp. 59–84.

Porter, J.D., Kim, D.S., Magaña, M.E. (2011). Wireless Data Collection System for Real-Time

Arterial Travel Time Estimates. ODOT Research Report Number OR-RD-11-10. Oregon
Department of Transportation, Salem, OR.

Pucher, J., R. Buehler, D. R. Bassett, and A. L. Dannenberg. Walking and cycling to health: a

comparative analysis of city, state, and international data. American Journal of Public

Health, Vol. 100, 2010, pp. 1986-1992.

Puckett, D.D., and M.J. Vickich. Bluetooth-Based Travel Time/Speed Measuring Systems

Development, Final report of University Transportation Center for Mobility project
report #09-00-17, Texas Transportation Institute, 2010.

Quayle, S.M., P. Koonce, D. DePencier, and D. Bullock. Arterial Performance Measures Using

MAC Readers: Portland Pilot Study. CD-ROM. Transportation Research Board of the
National Academics, Washington, D.C., 2010.

Quayle, S.M., and Koonce. Arterial Performance Measures Using MAC Readers: Portland’s

Experience. NATMEC Conference, June 23, 2010.

Raford, N., A. Chiaradia, and J. Gil. Space Syntax: The Role of Urban Form in Cyclist Route

Choice in Central London, Recent Work, Safe Transportation Research & Education

Center, Institute of Transportation Studies, UC Berkeley, 2007.

Raford, N., and D. Ragland. Space Syntax: Innovative Pedestrian Volume Modeling Tool for

Pedestrian Safety, In Transportation Research Record: Journal of the Transportation

Porter, C, J. Suhrbier, and W.L. Schwartz. Forecasting Bicycle and Pedestrian Travel:
State of the Practice and Research Needs. In Transportation Research Record: Journal of

the Transportation

Research Board, 1674, TRB of the National Academies, Washington, D.C., 1999, pp. 94–101.

Research Board No. 1878, TRB of the National Academies, Washington, D.C., 2004, pp. 66–74.

Ravi, Email communication, Saveri Networks Sales Representative. June 29, 2013.

Replogle, M. “Integrating Pedestrian and Bicycle Factors into Regional Transportation Planning

Models: Summary of the State-of-the-art and Suggested Steps Forward.” Presented at the
Urban Design, Telecommuting and Travel Forecasting Conference, 1995.

Robillard, P., 1975. “Estimating the O-D Matrix from Observed Link Volumes”. Transportation

153

Research 9, pp. 123-128.

Saito, Forbush, (2011). “Automated Delay Estimation at Signalized Intersections: Phase I

Concept and Algorithm Development” Utah Department of Transportation Research and
Development Division.

Salas, J., and C. Tomasi. People detection using color and depth images. Pattern Recognition,
Springer Berlin Heidelberg, 2011, pp. 127-135.

Savari Networks. http://www.savarinetworks.com/files/MobiWAVE-DS-Family.pdf. Accessed:

October 8, 2013.

Schwartz, W. L., Porter, C. D., Payne, G. C., Suhrbier, J. H., Moe, P. C., and Wilkinson III, W.

L. (1999). Guidebook on Methods to Estimate Non-Motorized Travel: Overview of

Methods.

Seera, S., N. Brandlea, and C. Rattib. (2012). “Kinects and Human Kinetics: A New Approach

for Studying Crowd Behavior”. arXiv preprint arXiv:1210.2838
(2012)(http://arxiv.org/abs/1210.2838).

Shimbel, A. Structural Parameters of Communication Networks. The Bulletin of Mathematical

Biophysics, Vol. 15, 1953, pp. 501–507.

Smaglik, E.J., Vanjari, S., Totten, V., Rusli, E., Ndoye, M., Jacobs, A., Bullock, D.M., and

Krogmeier, J.V. “Performance of Modern Stop Bar Loop Count Detectors over Various
Traffic Regimes.” In Transportation Research Board 86th Annual Meeting, 2007.

Smaglik, E. J., et al. (2011). “Comparison of Alternative Real-Time Performance Measures for

Measuring Signal Phase Utilization and Identifying Oversaturation” Transportation
Research Board, National Research Council, Washington, DC.

Spinello, L., K. O. Arras. People Detection in RGB-D Data. 2011 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2011.

Stowers, J., M. Hayes, A. Bainbridge-Smith. Altitude control of a quadrotor helicopter using

depth map from Microsoft Kinect sensor. 2011 IEEE International Conference on
Mechatronics (ICM), 2011, pp.358-362.

Stinson, M., and Bhat, C. “Commuter Bicyclist Route Choice: Analysis Using a Stated

Preference Survey.” Transportation Research Record: Journal of the Transportation

Research Board, 1828, TRB of the National Academies, Washington, D.C., 2003, 107–115.

http://www.savarinetworks.com/files/MobiWAVE-DS-Family.pdf

154

Tian, J., M. R. Virkler, and C. Sun. “Field Testing for Automated Identification of Turning

Movements at Signalized Intersections.” Transportation Research Record: Journal of the

Transportation Research Board 1867, no. -1 (2004): 210–216.

Tremeau, Alain, and Nathalie Borel. A region growing and merging algorithm to color

segmentation. Pattern recognition, Vol. 30.7, 1997, pp. 1191-1203.

Tsubota, T., A. Bhaskar, E. Chung, and R. Billot. Arterial traffic congestion analysis using

Bluetooth duration data. Australasian Transport Research Forum 2011 Proceedings,
Adelaide, Australia, 28-30 September 2011.

Trip Generation Manual, 9th Edition. Institute of Transportation Engineers. 2012.

Turner, S., A. Hottenstein, and G. Shunk. Bicycle and Pedestrian Travel Demand Forecasting:

Literature Review. Research Study No. 0- 1723, Report 1723-1. Texas Transportation
Institute; FHWA, U.S. Department of Transportation, 1997.

UDOT, (2013). “http://udottraffic.utah.gov/signalperformancemetrics/”

U.S. Dept. Trans., Vehicle Safety Communications Project Task 3 – Final Report, Nat. Highway
Traffic Safety Admin., Rep. DOT HS 809 859, Mar. 2005

U.S. Dept. Trans., Vehicle Safety Communications Project – Final Report, Nat. Highway Traffic

Safety Admin., Rep. DOT HS 810 591, Apr. 2006

Wang, L., P. Waddell, and M. Outwater. Incremental Integration of Land Use and Activity-

Based Travel Modeling. In Transportation Research Record: Journal of the

Transportation Research Board, No. 2255, TRB of the National Academies, Washington,
D.C., 2011 pp. 1–10.

Wang, Z., et al. (2014). “Estimating Queue Length at Signalized Intersections Using Multi-
Source Data A Shockwave Theory Approach.pdf” Transportation Research Board,
National Research Council, Washington, DC.

Wasson, J.S., J.R Sturdevant, and D.M. Bullock. Real-Time Travel Time Estimates Using Media
 Access Control Address Matching. ITE Journal, Vol. 78, No.6, 2008, pp. 20--23.

Wu, S., S. Yu, W. Chen. An attempt to pedestrian detection in depth images. 2011 Third Chinese

Conference on Intelligent Visual Surveillance (IVS), 2011.

Won, K. H., S. Gurmu, S. K. Jung. Pedestrian Detection using Labeled Depth Data. 2013 IEEE

155

19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, 2013.

Xia, L., C.-C. Chen and J. K. Aggarwal. Human Detection Using Depth Information by Kinect.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2011

Yi, Ping, Chun Shao, and Jialei Mao. “Development and Testing of an Automated Turning

Movement Identification System” (February 2010).
http://trid.trb.org/view/2010/M/1127254.

Yuan, Yufei, R. Eddie Wilson, Hans Van Lint, and Serge Hoogendoorn. “Estimation of

Multiclass and Multilane Counts from Aggregate Loop Detector Data.” Transportation

Research Record: Journal of the Transportation Research Board 2308, no. 1 (2012): 120–
127.

Zhang, Y., X. Wang, P. Zeng, and X. Chen. Centrality Characteristics of Road Network Patterns

of Traffic Analysis Zones. In Transportation Research Record: Journal of the

Transportation Research Board, No. 2256, TRB of the National Academies, Washington,
D.C., 2011, pp. 16–24.

Zivkovic, Zoran. Improved adaptive Gaussian mixture model for background subtraction. 2004.

IEEE ICPR 2004. Proceedings of the 17th International Conference on Pattern
Recognition, Vol. 2, 2004.

156

APPENDIX
Appendix 3.1 GIS Tools

1 Map Count Data Help File

Title: 1 Map Count Data

Summary: This tool is used to map observed count data into a polyline shapefile and a point

shapefile. First, it maps the turning movement volumes by drawing turning movement polylines

around each observed intersection and mapping the counts to the correct turning movement.

Second, it maps the total intersection volumes as a point file, where it creates a new point for

each observed intersection.

Syntax: MapCountDataiCount (Input__Folder_of_excel_files, AM_PM, Year, Time_Period,

Output__Turn_Movement_Shapefile, Output__Intersection_Points,

Map_to_Augmented_Network, Input_Network, Output_Network)

Parameter Explanation Data Type

Input__Folder_of_excel_files Dialog Reference
This is a folder containing a series of files
that represent count data at different
observed locations. The count data need to
be contained in an Excel file containing
the iCount Data Entry Form in order for
this tool to correctly parse the count data.
There is no python reference for this
parameter.

Folder

AM_PM Dialog Reference
This input is a filter that determines what
time of day you want to map the observed
count data for.
AM refers to mapping the counts observed
during morning time period.
PM refers to mapping the counts observed
during evening time period.
Both refers to mapping the counts
observed during the morning and evening

String

157

time periods.
There is no python reference for this
parameter.

Year Dialog Reference
This input is a filter that determines what
year you want to map the observed count
data for.
2011 refers to mapping count data
collected during 2011.
2012 refers to mapping count data
collected during 2012.
Both refers to mapping count data
collected during 2011 and 2012.
There is no python reference for this
parameter.

String

Time_Period Dialog Reference
This input is a filter that determines what
analysis period you want to map the
observed count data for.
15 minute peak refers to mapping the peak
15 minute bicycle volume for each
individual turning movement at each
intersection.
1 hour peak refers to mapping the peak 1
hour bicycle volume for each individual
turning movement at each intersection.
2 hour total refers to mapping the total
bicycle volumes that were observed for
either the AM or PM count periods.
There is no python reference for this
parameter.

String

Output__Turn_Movement_Shapefile Dialog Reference
The turning movement output feature class
to be created. This feature class includes
individual turning movement counts
mapped to the individual turning
movement polylines drawn around each
observed intersection.
There is no python reference for this
parameter.

Feature Class

Output__Intersection_Points Dialog Reference
The intersection points output feature class

Feature Class

158

to be created. This feature class includes
total intersection volumes mapped to a
single point for each observed intersection.
There is no python reference for this
parameter.

Map_to_Augmented_Network Dialog Reference
This input determines if the count data
will be mapped to the bikeways network
or not.
Yes means the count data will be mapped
to the bikeways network.
No means the count data will not be
mapped to the bikeways network
There is no python reference for this
parameter.

String

Input_Network (Optional) Dialog Reference
If 'Map to Augmented Network' is set to
yes then this input provides the bikeways
network polyline shapefile for the count
data to be mapped to.
There is no python reference for this
parameter.

Feature
Layer

Output_Network (Optional) Dialog Reference
The output bikeways network feature class
to be created. This feature class includes
the filtered observed counts for each
turning movement of each observed
location.
There is no python reference for this
parameter.

Feature Class

159

Appendix 3.2 Define Bicycle Impedance Help File

Title: 2 Define Bicycle Impedance

Summary: This tool is used to define the impedances of each element of a bikeways network.

The calculation is based on the input fields the user selects and is calibrated to represent

impedances that effect a bicyclist's route choice.

Higher values make a link less attractive. For example, the impedance might be length. As

another example, the impedance might be length * (slope factor), and this would increase the

impedance for the link.

Syntax: DefineImpedance (Input__Network, Slope_Field, Friction_Field,

Output_Impedance_Field_Name, Output_Network)

Parameter Explanation Data Type

Input__Network Dialog Reference
This is the input bikeways network feature
class. This feature class is a polyline
shapefile that represents the streets and
shared-us paths that permit bicycle travel.

Feature Layer

Slope_Field (Optional) Dialog Reference
This field should provide the slope for every
link.
A link with a higher slope value will be
more difficult for a bicyclist to traverse and
thus increase the impedance of the link.

Field

Friction_Field (Optional) Dialog Reference
This field should provide the friction for
every link.
Friction could be anything from vehicle
volumes to BLOS to the speed limit of the
link. The friction field is representative of a
link characteristic that might cause a
bicyclist to choose a different route. For
example, if BLOS is selected then a BLOS
score of 1 (BLOS = A) would not increase
the impedance of the link, but a BLOS score

Field

160

of 4 (BLOS = D) would increase the
impedance of the link.

Output_Impedance_Field_Name Dialog Reference
This is the name of the impedance field to be
created. This name will be referenced in the
Estimate Bicycle Volumes tool to assist in
determining the shortest path between an
origin and destination.

String

Output_Network Dialog Reference
The output feature class to be created. This
feature class inlcudes the impedance values
for each street segment and shared-use path
in the bikeways network.

Feature Class

161

Appendix 3.3 Estimate Bicycle Volumes Help File

Title: 3 Estimate Bicycle Volumes

Summary: This tool is used to estimate bicycle volumes throughout a network from observed

count data at sample locations. The calculation is based on the number of times a link in the

network is used as the shortest path between user-supplied origins and destinations. The origins

and destinations can be given "weight" multipliers as needed.

Illustration

162

Usage: There is no usage for this tool.

Syntax: EstimateBicycleVolumes (Input_1__Count_Data, Input_2__Origins,

Origins_Multiplier_Field, Input_3__Destinations, Destinations_Multipler_Field,

Input_4__Bikeway_Network, Impedance_Field, Additional_Explanatory_Variables,

Output__Estimated_Volumes)

Parameter Explanation Data Type

Input_1__Count_Data Dialog Reference
This is a folder containing a series of files
that represent count data at different
observed locations. The count data need to
be contained in an Excel file containing the
iCount Data Entry Form in order for this
tool to correctly parse the count data.
There is no python reference for this
parameter.

Folder

Input_2__Origins Dialog Reference
This is a feature layer represented by a
polygon shapefile consisting of parcels to
be used as trip origins. This shapefile must
contain parcels as well as parcel area or the
number dwelling units per parcel
depending on if the origins are made up of
non-residential or residential parcels,
respectively.
There is no python reference for this
parameter.

Feature Layer

Origins_Multiplier_Field
(Optional)

Dialog Reference
The attribute field used to weight the
orgins. For example, number of dwelling
units or square footage or trip production
rate.
There is no python reference for this
parameter.

Field

Input_3__Destinations Dialog Reference
This is a feature layer represented by a
polygon shapefile consisting of parcels to
be used as trip destinations. This shapefile

Feature Layer

163

must contain parcels as well as parcel area
or the number dwelling units per parcel
depending on if the origins are made up of
non-residential or residential parcels,
respectively.
There is no python reference for this
parameter.

Destinations_Multipler_Field
(Optional)

Dialog Reference
The attribute field used to weight the
destinations. For example, number of
employees or square footage or trip
attraction rate.
There is no python reference for this
parameter.

Field

Input_4__Bikeway_Network Dialog Reference
This input provides the bikeways network
polyline shapefile for the count data to be
mapped to. This file must containt street
center lines and shared-use paths.
There is no python reference for this
parameter.

Feature Layer

Impedance_Field Dialog Reference
This field should provide the impedance
(also called travel cost) for every link.
Higher values make a link less attractive.
For example, the impedance might be link
length. As another example, the impedance
might be travel time = length/speed limit.
The values must be greater than 0. (Note:
give a huge value to a link that you want to
keep in the network, but should not be used
for travel, for example, a bike path
restricted from car travel).
There is no python reference for this
parameter.

Field

Additional_Explanatory_Variables
(Optional)

Dialog Reference
All attribute fields to be used as
explanatory variables during the regression
process. For example, centrality and/or
functional classification.
There is no python reference for this
parameter.

Multiple
Value

164

Output__Estimated_Volumes Dialog Reference
The output feature class to be created. This
feature class includes estimated volumes
for each street segment in the network.
There is no python reference for this
parameter.

Shapefile

Appendix 3.4 Pedestrian Model Fit Analysis

The NBPD data collected by the city for the iCount survey had both bicycle and

pedestrian turning movement counts, and a model for pedestrians was developed in addition to

the bicycle models. The pedestrian analysis included fitting regression models to the AM and

PM time periods for the 2011, 2012, and a combination of 2011 and 2012 observed count data.

There were three primary differences between the bicycle and pedestrian models. First,

the reachable target threshold distance was set to 0.9 because this provided the highest

correlation between OD centrality and the observed counts, this analysis is shown in Figure 3.1

in Section 3.3.3. Second, the impedance used for the shortest path algorithm was distance; this is

because a pedestrian route choice model was not formulated for this research. Finally, the third

main difference was that the pedestrian model was analyzed for directional movements as well as

gate counts. Each typical intersection consisted of eight gate counts including an entrance and

exit gate count for each approach. To determine the gate counts, the observed movement counts

corresponding to each gate location were summed, i.e. the south bound exit gate consisted of the

SBT, EBR and WBL movement counts.

These models were fit using two different sets of trip multipliers. The first set of trip

multipliers was the same as the trip multipliers used for the bicycle models. The second set of

trip multipliers was based on the ITE Trip Generation Manual. The results of these analyses are

shown below in Table A1 and Table A2.

165

TABLE A1 Pedestrian Model Fit Results: ITE Trip Generation Multipliers

Directional
Counts Gate Counts

R2
(y)

R2
LN(y)

R2
(y)

R2
LN(y)

2011 AM 0.08 0.14 0.14 0.16
PM 0.28 0.21 0.37 0.36

2012 AM 0.15 0.14 0.22 0.24
PM 0.19 0.13 0.36 0.29

Both
Years

AM 0.09 0.14 0.15 0.18
PM 0.26 0.18 0.36 0.29

Note: R2 (y) is the R-Squared value for the untransformed dependent variable. R2 LN(y) is the R-Squared value of
the natural log transformed dependent variable.

Note: Impedance = Distance, δ = 0.9 miles, Multipliers: ITE Trip Generation Manual

TABLE A2 Pedestrian Model Fit Results: OD Multipliers from Section 2

Directional
Counts Gate Counts

R2
(y)

R2
LN(y)

R2
(y)

R2
LN(y)

2011 AM 0.17 0.16 0.34 0.21
PM 0.34 0.26 0.47 0.40

2012 AM 0.20 0.16 0.32 0.28
PM 0.32 0.17 0.40 0.23

Both
Years

AM 0.17 0.16 0.34 0.21
PM 0.31 0.18 0.47 0.28

Note: R2 (y) is the R-Squared value for the untransformed dependent variable. R2 LN(y) is the R-Squared value of
the natural log transformed dependent variable.

Note: Impedance = Distance, δ = 0.9 miles, Multipliers: Residential = Dwelling Units and Non-Residential =
Modified Area.

The results shown in Table A1 and Table A2 show poor model fits for the pedestrian

models explored. Future work could explore why these models did not perform as well as the

bicycle models. This work could look into formulating a shortest path algorithm that better

166

represents impedances affecting pedestrian route choice, or the future work presented in Section

3 could result in more acceptable model results.

Appendix 6.1: Simplifying the “a0” Matrix

Step 10 of the method requests that matrix “a” be simplified by Gauss-Jordan elimination

row operations. There are various ways to do this. First, recognize that errors are present in

detector counts. In addition, if the matrix has more rows than columns, then a solution may be

attempted for different combinations of rows. As a result, because of count errors, each feasible

combination will produce different estimates. The following is a method that will minimize the

variance in the turn movement count errors. The method accomplishes this by minimizing the

number of counts involved in estimating a turn movement count.

This method uses the three elementary row operations to simplify the matrix coefficients:

(1) swap rows, (2) multiply a row by a non-zero constant, and (3) add a factor of one row to

another row.

First, sort the rows in the “a0” matrix in ascending order by the number of nonzero

coefficients they contain. This will allow the process to prioritize the use of rows that require the

least number of alterations to simplify the matrix.

Next, use row operations to achieve an identity matrix of the coefficients, thus solving for

the turn movement counts. When pursuing row echelon form, lower rows are shifted down to

maintain as much of the initial sorting as possible. In addition, each row containing only zero

coefficients is deleted, leaving an identity matrix.

