| UTC Project Information |  |
| :--- | :--- |
| Project Title | Modeling Passing Behavior on Two-Lane Rural Highways: Evaluating <br> Crash Risk under Different Geometric Conditions - Year 3 |
| University | University of Idaho |
| Principal Investigator | Kevin Chang |
| PI Contact Information | kchang@uidaho.edu |
| Funding Source(s) and <br> Amounts Provided (by each <br> agency or organization) | University of Washington PacTrans \$69,000 <br> University of Idaho \$69,000 |
| Total Project Cost | \$138,000 |
| Agency ID or Contract <br> Number | DTRT13-G-UTC40 |
| Start and End Dates | January 15, 2015- September 16, 2016 |
| Brief Description of <br> Research Project | The primary goal of this project is to provide a better understanding of <br> a driver's passing behavior and model their decision-making on two <br> lane rural highways under different geometric configurations. <br> This project will specifically examine passing behavior on horizontal <br> curves on two-lane rural highways and explore how the different <br> degrees of curvature influence driver behavior. |
| Describe Implementation <br> of Research Outcomes (or <br> why not implemented) <br> Place Any Photos Here | For this study, two phases of driver simulation testing, consisting of <br> twenty-four participants each, were conducted in a driving simulation <br> environment. <br> transportation (DOTs) with guidelines that allow them to improve the <br> safety and efficiency of traffic operations along this particular type of <br> highway setting. |
| The results indicate that the passing behavior of drivers is influenced by |  |
| the degree of horizontal curvature (i.e., horizontal curves with a radius |  |
| of more than 3000 feet had a higher driver passing probability when |  |
| compared to curves with a radius of less than 3000 feet) and the added |  |
| presence of vertical curvature compounded driver sight distance issues |  |
| and caused drivers to pass with an increased sense of urgency. |  |$|$


|  | The findings from this study were utilized by the Alaska Department of <br> Transportation (which provided three locations for the driver <br> simulation environment) to determine future needs with regard to <br> additional signage and/or driver cues in the real-world driving <br> environment. |
| :--- | :--- |
| Impacts/Benefits of <br> Implementation (actual, or <br> anticipated) | There are many impacts and benefits associated with this research <br> effort. Specifically, agencies may consider targeted no-passing zones <br> based on roadway geometry, signage at specific locations, and <br> establishing more uniform geometry at future highway locations <br> (design consideration). |
| Web Links |  |
| • Reports |  |
| • Project Website |  |
| demand, recognizing that the de facto 55 mile per hour historical |  |
| threshold may, in fact, be too low when today's driver population is |  |
| considered. |  |

