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1 Introduction 

The Critical Infrastructure Protection (CIP) Program sponsored by the U.S. Department 

of Homeland Security (DHS) has three primary goals (Bush et al. 2005): 

1. Develop, implement, and evolve a rational approach for prioritizing CIP strategies and 

resource allocations using modeling, simulation, and analyses to assess vulnerabilities, 

consequences, and risks; 

2. Propose and evaluate protection, mitigation, response, and recovery strategies and 

options; 

3. Provide real-time support to decision makers during crises and emergencies. 

“Infrastructure interdependencies refer to relationships or influences that an element in 

one infrastructure imparts upon another infrastructure” (Dudenhoeffer et al., 2006). According to 

Rinaldi et al. (2001), interdependency is “two infrastructures [that] are interdependent when each 

is dependent on the other”. Yao et al. (2004) defined “lifeline interaction as the mutual effect 

between a lifeline system and other lifeline systems in the same district under seismic conditions. 

The reliability of a lifeline system, in addition to its earthquake resistant performance, still 

depends on the reliability of other lifeline systems which have functional connections or physical 

proximity with the lifeline system” (Kakderi et al., 2011). Various definitions of interdependency 

are summarized in table 1-1. 
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Table 1-1. Summary of interdependency types 
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Figure 1-1. Summary of interdependency modeling approaches 
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Table 1-2. Summary of interdependency studies on real infrastructure systems 
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2 Literature Review 

2.1 Empirical Approaches 

The empirical approach analyzes interdependencies of critical infrastructure systems 

(CISs) on the basis of historical accident or disaster data and expert experience. Empirical 

analysis can help identify frequent and significant failure patterns, generate interdependency 

strength metrics to facilitate decision making, conduct empirical-based risk analysis, and provide 

alternatives to minimize the risk (Ouyang, 2014). As some intangible interdependent 

relationships are undetectable by using standard data collection approaches or only emerge after 

the occurrence of a disruptive event, the interdependencies among CISs can be hard to discover 

under normal operation. Thus, historical events can be used to unveil the interdependency 

structure between CISs. Interdependency incident records are usually collected from newspapers, 

media reports, official ex-post assessments, and utility operators (Luiijf et al., 2009; McDaniels 

et al., 2007). 

McDaniels et al. (2007) defined infrastructure failure interdependency (IFI) as failures in 

interdependent infrastructure systems that are due to an initial infrastructure failure stemming 

from an extreme event. McDaniels et al. (2007) examined the IFIs that occurred in three kinds of 

events: the August 2003 northeastern North American blackout, the 1998 Quebec ice storm, and 

a set of three 2004 Florida hurricanes. In the paper, a framework was developed to define the 

context and condition of the initial failure, the nature of the interactions and context that leads to 

an IFI event, and the severity of the societal consequences. Two indexes were also characterized 

on the basis of the data set collected from the aforementioned three events: impact index (the 

product of the failure duration and severity weights) and extent index (the product of the failure 

spatial extent and number of people affected) (Chang et al., 2009; McDaniels et al., 2008). 
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Luiijf et al. (2009) examined the interdependencies of 1,749 critical infrastructure (CI) 

failure details in 29 European nations. The events were classified into three categories: cascade 

initiating events (an event that causes an event in another CI), cascade resulting events (an event 

that results from an event in another CI), and independent events (an event that is neither a 

cascade initiating event nor a cascade resulting event). These are not mutually exclusive. The 

analysis suggested that energy and telecommunication systems were the main cascade initiating 

sectors; they caused outages in other sectors 60 percent and 24 percent of the time, respectively. 

The dependencies were found very focused and directional. As a matter of fact, because the data 

did not exhibit reciprocal relationships occurring frequently, one may want to stop talking about 

interdependency. In addition, 50 percent of the events in the energy sector triggered a disruption 

in another CI, and about 40 percent of events in the telecommunications sector triggered a 

disruption. The analysis also demonstrated that 24 percent of the 1,749 events were a first-level 

cascade event, 4 percent were the result of a second cascade, and four events were caused by a 

third cascade. No deeper cascades were found, either in Europe or internationally. 

The interdependencies were found to occur far less frequently than analysts have 

modelled. Only two out of 770 failures were found. However, the data may have been biased for 

two reasons. First, the European languages that were used to extract the data from media reports 

were limited. Second, not every serious CI incident is reported by the news media; in other 

words, the news is more likely to report incidents that are of interest to their audience (Luiijf et 

al., 2009). 

In order to explore whether certain combinations of infrastructure failures are more 

common than others, Zimmerman (2004) created a database of failure sequences and 

components based on websites, reports from the National Transportation Safety Board, and news 
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media searches. Several indicators were introduced to inform mitigation and emergency decision 

making: the types of infrastructure that were more frequently damaged than other infrastructure, 

the types of infrastructure that are more commonly affected by or damaged by failures in other 

infrastructure, the ratio between being a cause of a failure and being affected by a failure, the 

combinations of failures that were most frequent, and the number of people affected and how 

they are affected. Utne et al. (2011) created a cascade diagram to describe cascading failures 

across CISs under a specific initiating event. The diagram supports both qualitative and 

quantitative analysis of consequences and risk, which is helpful when a stakeholder has no strong 

risk analysis background. Kjolle et al. (2012) also presented a cross-sector risk analysis that 

included contingency analysis (power flow) and reliability analysis for power systems, as well as 

an interdependency study with a cascade diagram. 

The empirical approaches help to identify potential vital interdependency patterns and 

increase decision makers’ awareness of and capabilities to respond to an event. But they also 

have some weaknesses (Ouyang, 2014). First, under-reported interdependency failures may have 

a significant impact. Second, there is no standardized data collection procedure for 

interdependent CIS performance. A uniform data collection method would assist in collecting the 

information, thus reducing the time needed to code and sort out the content of incident reports. 

Third, previous failure records may be able to give accurate prediction of future similar events 

but not new disasters. 

2.2 Agent-Based Approaches 

An agent-based approach adopts a bottom-up method and presumes that the complex 

behavior or phenomenon is generated from relatively simple interactions among the enormous 

agents. Each agent interacts with others and the environment on the basis of a set of rules, which 
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approximate the way a real counterpart would react. Most CIS components can be modeled as 

agents. Agent-based approaches are, therefore, widely employed in CIS interdependencies 

modeling. 

Sandia National Laboratories (SNL) firstly developed Aspen (Basu et al., 1998), an 

“agent-based” Monte-Carlo method, to simulate the U.S. economy. Individuals in the model 

represent real-life economic decision makers. It models a large number of individual economic 

agents with fine detail and a high degree of freedom. In 2000, Aspen-EE (Barton et al., 2000) 

proposed to simulate the interdependent effects of market decisions and disruptions in the 

electric power system on other CISs in the U.S. economy. It extended and modified the 

capabilities of Aspen. Aspen and Aspen-EE both utilized a message-passing mechanism to 

achieve communication between agents without specially representing the telecommunication 

system. In 2004, SNL developed CommAspen (Barton et al., 

2004), a new agent-based model to simulate the interdependent effects of disruptions in the 

telecommunications infrastructure on other CIS, such as banking, finance, and electric power. In 

the meantime, SNL (Schoenwald et al., 2004) also developed a next-generation agent-based 

economic ‘laboratory’ (N-ABLE) to analyze the economic factors, feedbacks, and downstream 

effects of infrastructure interdependencies. 

Argonne National Laboratory (ANL) developed an agent-based model, Spot Market 

Agent Research Tool Version 2.0 (SMART II) (North, 2000), in 2000. It used a Swarm agent-

based framework. SMART II contained three different kinds of components: (a) generation 

agents that produce electric power, (b) consumer agents that use electric power, and (c) 

interconnections that represent the transmission grid. Two kinds of agents were considered, 

electric power generators and consumers. Unlike the models from SNL, SMART II considered 
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the topology of the power transmission system. As an extension of SMART II, an integrated 

model of electric power and natural gas markets, SMART II+, was developed (North, 2001a). 

SMART II+ included new agents and interconnections that represent the electric power 

marketing and transmission infrastructure, the natural gas marketing and distribution 

infrastructure, and the interconnections between infrastructures in the form of natural gas fired 

electric generators. The interdependency analysis suggested that emergency natural gas 

consumed by electric generators need to be monitored to prevent electric failures from spreading 

to natural gas infrastructure. Later, Flexible Agent Simulation Toolkit (FAST) was developed. It 

was an integrated infrastructure model based on SMART II+. FAST included many of the 

original features of SMART II+ along with improvements in modeling infrastructure, detail, and 

fidelity (North, 2001b). 

Idaho National Laboratory (INL) developed the Critical Infrastructure Modeling System 

(CIMS) (Dudenhoeffer et al., 2006) for critical infrastructure interdependency analysis. CIMS 

took a command-level approach, aiming to provide decision makers with mission capability 

information without digging down to the engineering level. It enabled the visualization to update 

as the simulation ran. This would allow decision makers to quickly evaluate the interrelationships 

between infrastructure networks and the damaging effects of the events. However, when the size 

and complexity of the network increased, the visualization might not suffice. Additional search 

and analysis methods were required to identify event-effect relationships, especially across 

multiple infrastructures. Therefore, INL and the University of Idaho sought to use artificial 

intelligence (AI) techniques to facilitate space searching and possible interaction identification. A 

genetic algorithm (GA) integrated into CIMS was developed to search for the optimal 

infrastructure assets to protect from attack or to restore in a disaster situation. 



 

10 

Tolone et al. (2004) developed a framework to identify and understand vulnerabilities in 

the geographic information system (GIS) environment. The simulation contained four critical 

infrastructures for a fictional town: electrical power transmission and distribution, gas 

distribution, telecommunications, and transportation. Barrett et al. (2010) developed a conceptual 

framework for investigating human-initiated interdependencies between critical societal 

infrastructures. A case study of a chemical plume in the downtown Portland, Oregon, area was 

conducted to show the evacuation of individuals leading to traffic congestion. This in turns 

would cause changes in cell phone usage patterns, which would result in an overload of the 

telecommunications system. 

Agent-based approaches model the interactions of participants in the interdependent CISs 

to provide scenario-based, what-if analysis. They allow us to access the effectiveness of different 

control strategies and can also be integrated with other modeling techniques to provide more 

comprehensive analysis. However, there are several concerns with regard to agent-based 

approaches. First, the assumptions made by the modeler will heavily affect the quality of 

simulation, and such assumptions can be hard to justify either theoretically or statistically. 

Second, there is an obstacle in calibrating the simulation parameters. The relevant data are hard 

to acquire because stakeholders consider detailed information about each CIS to be very 

sensitive because of their relevance to their business (Ouyang, 2014). 

2.3 System Dynamic-Based Approaches 

The system dynamics (SD)-based approach is a top-down method that manages and 

analyzes complex adaptive systems with interdependencies. SD enables us to model the network 

abstractly and to evaluate the impacts of that topology on system robustness as a result of 

different types of failures and attacks. It is useful in finding the tipping point in the dynamic 
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behavior from stable to unstable operational conditions (Brown, 2007). There are three basic 

elements in this type of approach: feedback, stock, and flow. Feedback loops represent the 

interconnections and directions of effects between CIS components. Stocks indicate quantities or 

states of the system, and flow rates control the level of stocks. Two diagrams are usually used to 

depict interdependent CISs: a causal-loop diagram captures the causal effects among different 

variables and a stock-and-flow diagram describes the flow of information and products through 

the system (Brown, 2007). 

Argonne, Los Alamos, and Sandia National Laboratories jointly developed the Critical 

Infrastructure Protection Decision Support System (CIPDSS). The CIPDSS serves as a decision 

support system that provides help in critical infrastructure protection decision making (O’Reilly 

et al., 2007). It allows decision makers to prioritize and invest limited resources and to execute 

rational strategies to protect various systems and infrastructures on the basis of objective and 

dynamic modeling, simulation and analysis (Bush et al., 2005). Conrad et al. (2006) applied SD 

models to the analysis of power distribution and its cascading effect on telecommunications 

infrastructure, as well as emergency services infrastructure. 

By capturing causes and effects under disruptive conditions, SD-based approaches are 

able to model the dynamic and evolutionary behavior of the interdependent CISs. They also 

capture the effects of policy and technical factors to reflect system evolution in the long term and 

to provide investment recommendations. SD does have limitations. First, SD-based approaches 

are semi-quantitative, since the causal-loop diagram is developed on the basis of the knowledge 

of experts. Second, SD-based models are hard to calibrate because of a lack of data. Third, SD-

based approaches use differential equations to model system-level behavior. They cannot, 
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however, analyze component-level behaviors, such as changes in infrastructure topologies. Last, 

S-D based models are hard to validate because of the difficulty in obtaining data (Ouyang, 2014). 

2.4 Economic Theory-Based Approaches 

There are two types of players on the market: households and businesses. Households 

offer labor and capital to businesses in exchange for income. In turn, businesses use these factors 

to produce goods and services to sell to households. However, businesses do not just use labor 

and capital to produce goods and services, but they also need various raw and processed 

materials and services, referred to as intermediate goods. Infrastructure falls into this category, 

and CIS interdependencies can be thus analyzed through a model of economic interdependencies 

(Rose, 2005). Currently the literature mainly contains two types of economic interdependencies 

models: input-output (I-O) analysis and computable general equilibrium (CGE) analysis. 

2.4.1 Input-Output Analysis 

Input-output analysis is the most widely used tool of regional economic impact analysis. 

The I-O based method is a static and linear model of all purchases and sales between sectors of 

an economy. The model follows the form: 

 (2-1) 

where 

x refers to the total production output from the industry i  

xi ci represents the industry i’s total output for final consumption by end-users  

xii aij is the Leontief technical coefficient that represents the ratio of industry i’s inputs to 

industry j in terms of the total production requirements of industry j. 
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Haimes and Jiang (2001) proposed a Leontief-based infrastructure Inoperability Input-

output Model (IIM). It would depict a system that consists of n critical complex intra-connected 

and interconnected infrastructures, with the output being the risk of inoperability that could be 

triggered by the input, which could be one or multiple failures due to accidents, natural hazards, 

or attacks. Here, inoperability of a system was defined as the inability of the system to perform 

its intended functions. In this model, xi stands for the overall degree of inoperability of the ith 

infrastructure that can be triggered by various attacks. aij is the probability of inoperability that 

the jth infrastructure contributes to the ith infrastructure because of their interconnectedness, and 

ci represents the additional risk of inoperability that is inherent in the intraconnectedness of the 

ith critical infrastructure. When a perturbation was inflicted onto one or multiple infrastructures, 

the proposed model estimated the effects measured by infrastructure or industry inoperability. 

However, several weaknesses limited the wide employment of the input-out model 

(Zhang et al. 2011): spatial characteristics were not considered, the linear risk transmission 

input-output relationship, an inability to address dynamic issues, and coefficients calibration was 

difficult. On the basis of the Leontief input-output model, several extended IIMs were proposed 

to overcome its limitations. They are summarized as follows: 

Demand-Reduction IIM: This model was derived by combining the insight and 

intuition gained from the physical IIM with the rigor of proven Bureau of Economic Analysis 

(BEA) databases. It defines perturbations as a reduction in final demand (i.e., the difference 

between the as-planned and degraded final demands) to a set of economic sectors and assesses 

the output reduction or inoperability of each interdependent economic sector (Haimes et al. 2005; 

Santos and Haimes 2004). 
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Dynamic IIM: Carvajal and Daz (2002) argued that the capital coefficients in traditional 

Leontief dynamic I-O model must be either zero or negative for an economic system to be stable. 

Therefore, the capital coefficient can be interpreted as an expression of short-term counter-

cyclical policy instead of long-term growth. The model describes the inoperability evolvement 

process and the temporally interdependent recovery of economic sectors after an attack or natural 

disaster while integrating the industry resilience coefficients to quantify and manage the 

improvement of various sectors (Haimes et al., 2005; Lian and Haimes, 2006). The classical 

dynamic IIM was developed to help understand the infrastructure interdependencies of deliberate 

external attacks or unfortunate natural disasters. However, classical dynamic IIM is a demand-

driven model. In the real world, more supply-driven sectors exist than demand-driven sectors in 

interdependent infrastructure systems (Xu et al., 2011). A supply-driven dynamic IIM was 

proposed by Xu et al. (2011) to model the behavior of the value-added input perturbation. 

Supply-Side Price IIM: Ghosh (1958) introduced the supply-driven input-output model, 

while the interpretation of describing physical output changes that are caused by changes in the 

physical inputs of primary factors was convincingly argued. Dietzenbacher (1997) showed that 

Ghosh’s model becomes plausible once it is interpreted as a price model. The interpretation of 

the supply-driven model as a price model also allows for the derivation of the Ghosh quantity 

model. Supply-side price IIM helps address the cascading impacts among interdependent 

economic sectors when the initial inoperability is driven by value-added perturbations, and 

output-side IIM investigates the output levels of industries (Leung et al., 2007). 

International Trade IIM: Jung et al. (2009) developed an international trade IIM to 

investigate resulting international trade inoperability for all industry sectors on the basis of losses 

they could incur. 
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Multiregional IIM: Crowther and Haimes (2010) introduced multiregional IIM by 

extending the IIM to model multiregional interdependencies among the various regions in the 

U.S. It measures the cascading regional effects of disruptions to interconnected industries (Pant 

et al., 2011). Crowther and Haimes (2010) also emphasized the importance of spatial explicitness 

in interdependency analysis through a case study. 

The IIM-based models offer intuitive interpretations of interdependencies and can be 

utilized to study the inoperability of CISs in relation to different types of perturbations. 

Perturbation propagation among interconnected infrastructure can be easily captured by the IIM 

models, which also provide insights into how to implement effective mitigation efforts. In 

addition, they are all based on large-scale databases and measure the interdependencies among 

infrastructure systems via economic relationships. Therefore, the IIM-based models are useful 

for macroeconomic-level and industry-level interdependency analysis after natural hazards or 

accidental events. Furthermore, the analytical solutions enable parameter sensitivity analysis. 

However, IIM-based models have several weaknesses (Ouyang, 2014). First, interdependencies 

at the component level cannot be investigated through input-output based models. Second, 

because the interdependency matrix is derived from economic databases, the matrix elements 

only measure interdependent strengths under normal economic operations. Namely, a linear risk 

transmission input-output relationship is assumed. In fact, the coupling strength among 

interdependent infrastructures is non-linear and depends on real-time infrastructure or industry 

outputs. IIM-based models can give a good approximation analysis of cascading failure and 

recovery processes when the perturbations have small impacts on some economic sectors, but 

they have limited strength in the face of large or new perturbations on non-recoverable economic 

sectors. 
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2.4.2 Computable General Equilibrium Analysis 

Computable general equilibrium (CGE) analysis captures most of the advantageous 

features of I-O, such as the consideration of interdependencies among economic sectors, while it 

overcomes many of its weaknesses, such as linear interdependencies among economic sectors, 

and lack of consumers’ and producers’ behavioral responses to markets and prices (Ouyang, 

2014). 

Zhang et al. (2011) proposed a generalized modeling framework to analyze the 

interdependencies among infrastructure systems under a multilayer infrastructure network (MIN) 

modeling platform. The various infrastructure systems are modeled as individual networks 

connected through links representing market interactions. The horizontal links represent the 

interaction or flows of a CIS across different regions, while the vertical links denote the 

interdependencies among various CISs in the same region. The interactions can be formulated 

through supply-demand mechanisms. Combining the MIN platform with the computable general 

CGE theory and its spatial extension (SCGE), an equilibrium problem is thus formulated. This 

model considers the physical and operational characteristics of infrastructure systems, the 

substitutability of infrastructure commodities/services, the decision-making behaviors of 

producers and system users, and transportation/transmission costs. 

CGE-based approaches complement the input-output-based methods, capture the 

nonlinear interactions among CISs, provide resilience or substitution analysis of a single CIS and 

the whole economy, and enable the capture of different types of interdependencies in a single 

framework. However, there are two limitations of CGE-based methods. First, the calibration of 

production functions and utility functions depends on its function form. Calibration becomes 

difficult when the relevant data are scant. Second, the resilience analysis for producers relies 
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heavily on external sources for some of the elasticity values required during the calibration, but 

studies on elasticity derivation are scarce (Zhang et al., 2011). 

2.5 Network-Based Approaches 

It is intuitive to model the CIS as a network, where nodes represent different CIS 

components and links denote the interactions among them. Network-based approaches model 

single CISs by network and describe the interdependencies by links between nodes, providing 

detailed descriptions of their topologies and flow patterns (Ouyang, 2014). The measurement of 

the response of CISs to hazards can start by modeling the failures caused by hazards at the 

component level, then examining the cascading failures within and across CISs at the system 

level. Current network-based studies can be broadly grouped into topology-based methods and 

flow-based methods. 

2.5.1 Topology-Based Methods 

There are several ways that nodes can fail, such as directly from a hazard, indirectly by 

disconnection from the source nodes within the CIS, simultaneous failure of the dependent 

modes in other CISs, or failure of back-up plans. Topology-based analysis can be approached 

from two perspectives: an analytical model and a simulation method. 

When node heterogeneity is not considered (source nodes, transmission nodes, sink nodes 

etc.), then each CIS can then be characterized by its node degree of distribution, which is 

represented by a generating function. Thus the size of a CIS’s giant component under random 

failures can be studied analytically. The degree of distribution pk, which denotes the probability 

that a randomly chosen vertex in a network has degree k, has the generating function 

. 
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For two interdependent networks, one can follow the propagation of the failures back and 

forth from one network to the other so that the cascading failures can be characterized. Starting 

from layer A, we consider the random damage to a fraction 1 − p of the nodes that have been 

inflicted on the network. The size  of the giant component will depend on the average 

message σA
(0)

, indicating the probability that a node at an end of a link in layer A is in the giant 

component of the same layer. Then we consider layer B, in which we assume that all the nodes 

whose replica nodes in layer A are not in the giant component of layer A are damaged. 

Therefore, we consider all the nodes in layer B that remain in the giant component of layer B 

after this damage propagating from layer A has been inflicted.  The probability that the nodes are 

not damaged is p[1 − G0(1 − σA
(0))],  and using this probability we can calculate the probability 

σB
(1)

 that a random link in layer B reaches a node in the giant component of layer B and the 

probability  that a random node in layer B is in the remaining giant component of layer B. 

Iterating this process back and forth from one layer to the other, it is possible to describe the 

propagation of cascading events in the interconnected network. At the end of this iterative 

procedure, the remaining nodes are the nodes in the mutually connected component. In the 

literature, there are several types of networks of networks: 

1. Networks of networks with a fixed supernetwork, i.e., networks of networks in which 

if a layer α is connected with layer β, then every node (i,α) is connected to its replica 

node (i,β) in layer β (Bianconi et al., 2015; Gao et al., 2011); 

2. Networks of networks with a given superdegree distribution, in which every node 

(i,α) is connected to q = qα replica nodes (i,β) of randomly chosen layers β (Bianconi 

and Dorogovtsev, 2014); 
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3. Networks of networks with a fixed supernetwork and random permutation of the 

labels of the nodes, i.e. network of networks in which if a layer α is connected with 

layer β, then any node (i,α) is connected to a single node (j,β), where j is taken from a 

random permutation πα,β of the indices i (Gao et al., 2012, 2013); 

4. Networks of networks with multiple interconnections, in which every node (i,α) has 

kiα,β connections with nodes in layer β (Leicht and D’Souza (2009). 

The generating function method offers an analytical solution to the interdependent 

networks under different types of hazards. However, this method can only analyze the random 

networks with large or infinite size under random attacks with identical failure probabilities for 

all components by removing the nodes with the largest degrees. In reality, infrastructure 

networks are spatially embedded (Bashan et al., 2013), and not only are their sizes limited but 

their component failure probabilities are different. Therefore, other approaches are needed to 

achieve the goal (Ouyang, 2014). 

When node heterogeneity is considered in the CIS modeling, simulation-based methods 

are normally utilized to examine the performance of interdependent CISs under different network 

failures. The performance of each network can be measured through different measures, such as 

the inverse characteristic path length and connectivity loss, clustering coefficient and redundancy 

ratio (Dueas-Osorio et al., 2007), the number of damaged nodes, the duration of the component 

unavailability, and the number of customers served. As to system-level performance, factors 

include lost service hours (Johansson and Hassel, 2010) and the fraction of customers affected 

(Poljanek et al., 2012). In order to evaluate the direct effects of dependencies, removal of a 

component is a way of representing that a component is not able to deliver its designed function. 

For example, Johansson and Hassel (2010) represented the strains to an infrastructure by 
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removing nodes or edges in the network model of one or several infrastructures, or by removing 

the dependency edge between two infrastructures, and then investigated the consequences after 

the failure. 

According to Ouyang et al. (2009), the interdependent effect can be defined as “the 

absolute difference between the independent and interdependent efficiency, and difference is 

normalized by the maximum independent efficiency attained at any removal fraction.” 

| Interdependent Efficiency − Independent Efficiency | 

Interdependent effect =  (2-2) 
max(Independent Efficiency) 

Adjusting and designing the interdependent topologies is an effective strategy to reduce 

the cascading failure effects across CISs. Winkler et al. (2011) introduced a performance 

assessment methodology for coupled infrastructures that links physical fragility modeling with 

the topology of realistic and ideal connecting interfaces. The interface was built on features such 

as betweenness, clustering, vertex degree, and Euclidean distance. It provides utility owners and 

operators with new and simple, yet adequate, strategies to enhance routine operation and reduce 

the probability of widespread interdependent failures following disruptive events. Hernandez-

Fajardo and Dueas-Osorio (2011) introduced a new dynamic methodology for the assessment of 

systemic fragility propagation across interdependent networks. It improves the existing static 

methodologies. They found that most of the interdependent failure propagation across systems 

occurs early in the evolution process from transient to steady state performance. 

Although the topology-based methodology can capture the topological features of the 

interdependent CISs and identify the critical CIS components, the topological model alone 

cannot provide sufficient information about the flow performance of the real CISs. Therefore, 
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other modeling approaches are needed for overall decision support for real-world CISs (Hines et 

al., 2010; Ouyang, 2014). 

2.5.2 Flow-Based Methods 

Interdependent CISs are viewed as networks, with movement of commodities and 

services corresponding to flows. Flow-based methods focus on modeling the mechanisms of 

these flows. Nodes and edges constitute the topology and have the capacities to produce, load, 

and deliver the services. Lee et al. (2007) incorporated five types of infrastructure 

interdependencies into a network flows mathematical representation: an interdependent layer 

network (ILN) model. Each infrastructure system is defined as a collection of nodes and arcs, 

with commodities flowing from node to node along paths in the network. For each commodity, 

each node is a supply node that is the source for the commodity, a demand node that requires 

certain amount of commodity, or a trans-shipment node that neither produces nor consumes but 

serves as a point through which the commodity passes. They all designed to follow the flow 

conservation constraints: (1) for supply nodes, total flow out of the node is no greater than the 

available supply; (2) for demand nodes, the demand should be met; (3) for trans-shipment nodes, 

the flow into the nodes must equal the flow out of the node. Lee et al. (2007) pointed out that in 

systems such as transportation and telecommunications, commodities move across the system 

with specific origins and destinations. The model was implemented by using the lower 

Manhattan region of New York for illustration. It allowed users to assess post-disruption 

impacts, provided insights into the effects of restoration plans, and facilitated scheduling and 

decision making (Cavdaroglu et al., 2013, 2014). 

Models are capable of representing the instantaneous failure between infrastructure 

components such as in an electric power grid, and the telecommunications sector has been 
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widely investigated. However, buffered characteristics exhibited by networks such as for fuel 

and food should also be considered. Svendsen and Wolthusen (2007a,b) refined the unbuffered 

model (Svendsen and Wolthusen, 2008) by adding buffered resource models into the model. 

While more and more studies try to develop a uniform model to describe the 

interdependencies among CISs, they neglect that different CISs have different operation 

mechanisms. By using physical rules, more realistic modeling of CISs can be generated. Ouyang 

et al. (2009) adopted the direct current (DC) power flow model (Dobson et al., 2001) and gas 

pipeline model (Kralik et al., 1984) to investigate the interdependencies of a power system and 

gas system. They found that interdependencies have a small effect on the power network but a 

larger impact on the gas pipeline network. Results also showed that removing a fraction, 18 

percent, can cause the largest interdependent effect. Applying the same flow models to gas and 

power in Houston, Texas, Ouyang and Dueas-Osorio (2011a) proposed an approach to finding a 

global optimum strategy to designing or retrofitting the interdependent topologies between CISs 

to minimize cascading failures across urban infrastructure systems under multiple hazards. Two 

metrics were introduced: the global annual cascading failure effect (GACFE) and the GACFE-

based cost improvement (GACI). The GACI metric quantifies the improvement of the strategy’s 

effectiveness per kilometer increment of interdependent link length. When design cost is not 

considered, the lower the GACFE is, the better the strategy is. When the design cost is 

considered, the higher the GACI is, the better the interface design strategy is. 

In general, flow-based models can capture the flow characteristics of interdependent CISs 

and realistically describe the operation mechanism. They also could help identify the critical CIS 

component and provide emergency protection suggestions. However, if more detailed operation 

mechanisms are pursued, then the computational cost would be very high (Ouyang, 2014). 
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2.6 Other Approaches 

In addition to the aforementioned approaches, other methods have been developed to 

model and analyze interdependent CISs, such as hierarchical holographic modeling (HHM) 

methods, high level architecture (HLA)-based methods, petri-net (PN)-based methods, dynamic 

control system theory (DCST)-based methods, Bayesian network (BN)-based methods, and 

more. 

Haimes (1981) introduced HHM to provide a comprehensive theoretical framework for 

systems modeling. HHM gives a holographic view of a modeled system while also adding both 

robustness and resilience to the model by capturing different systems aspects and other societal 

elements. It also adds more realism to the modeling process. The basis of holographic modeling 

is overlapping among various holographic models with respect to the objective function, 

constraints, decision variables, and input-output relationships of the CISs. Haimes 

(2008) employed HHM to study the multiple dimensions of the risks of a System of Systems 

(SoS). However, because of structural complexity, network evolution, connection diversity, 

dynamic complexity, node diversity, and the interdependent complexity of interdependent CIS, 

HHM is hard to implement in interdependent CIS modeling. It is infeasible to provide a 

mathematical model for some perspective of the system. 

“A system-of-systems (SoS) consists of multiple, heterogeneous, distributed, 

occasionally independently operating systems embedded in networks at multiple levels that 

evolve over time” (DeLaurentis, 2007). The interdependent feature of CISs fits in the SoS 

concept (Eusgeld and Nan, 2009). Zio and Ferrario (2013) adopted Muir Wed to represent all the 

dependencies and interdependencies among the components of the CISs connected to the nuclear 

power plant, then applied the Monte Carlo simulation to calculate the probability that the nuclear 
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power plant would enter an unsafe state. An analysis was also conducted to find the critical point 

at which interdependencies would affect the safety of the nuclear power plant. Eusgeld and Nan 

(2009) extended the electric power supply (EPS) system to system-of-systems by adding the 

agent-based model of supervisory control and data acquisition (SCADA). Also, the high level 

architecture (HLA) based interdependency model was introduced. It was constructed with three 

layers: the lowest level represents the single CIS models, the middle level describes the 

interaction among CISs, and the highest level includes the global system-of-systems model. 

Petri-net (PN) (Petri, 1966) can be represented by four components: PN = (P,T,I,O), 

where P denotes a set of places, T stands for transitions, I represents input functions, and O is the 

output function. “Taking the places of the net together with the tokens to represent the states or 

conditions of the CISs or their components, and the transitions to represent the impacts across 

CISs or their components, then the CISs interdependencies are simulated by the flow of the 

tokens throughout the network” (Beccuti et al., 2012; Ouyang, 2014). This method is similar to 

network-based approaches. One limitation of this approach is that the computation complexity 

could be high when detailed information needs to be modeled or the system size is too large 

(Ouyang, 2014). 

The DCST-based method is built on the dynamic control system theory (Agostino et al., 

2010; Fioriti et al., 2010; Ouyang, 2014). It describes the investigated CISs by the transfer 

functions, which express the input/output relationship of two interdependent infrastructures or 

their components. The Methodology for Interdependencies Assessment EU has adopted DCST to 

assess interdependencies in information and communications technology (ICT) and power 

system networks (Casalicchio et al., 2011). 
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BN-based methods use a directed acyclic graph to depict the interdependencies among 

CISs. In the graph, nodes denote the random variables, which represent the status of 

infrastructure components and services and adverse events. Edges stand for the conditional 

dependencies, which describe the causal relationships among adverse events, CISs components, 

and infrastructure services (Ouyang, 2014). Giorgio and Liberati (2012) presented a novel 

approach to analyzing the CIS interdependencies based on the Dynamic Bayesian Network 

(DBN). The modeling procedure is divided into three stages: the first stage models the adverse 

events that would impact the analyzed CISs, the second stage captures the interdependencies 

among CISs, and third stage allows us to monitor the state of provided services. The DBN 

methodology is considered flexible and able to include experts’ opinion. It has also inherited 

some weakness. For example, computational complexity increases with the number of variables. 
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3 Methodology 

3.1 Percolation Process 

Given a network, the probability that a randomly chosen node from the network that has 

degree k is pk. The generating function for this probability distribution pk is 

  (3-1) 

The average degree z of a node can be calculated by 

 

   (3-2) 

  

The G0(x) encapsulates all the information contained in the probability distribution pk. 

Say G0(x) “generates” the probability distribution pk (Newman, 2010). Following a randomly 

chosen edge, the node at either end of the edge has degree k with a probability proportional to 

kpk. This is because there are k times as many edges connected to a node of degree k than to a 

node of degree 1. This is called the excess degree of the node. The probability qk of having 

excess degree k is 

  (3-3) 

Therefore, another generating function, G1(x), can be represented as 

 

 (3-4) 

Consider the transportation network as a graph in which intersections are described as 

nodes and roads are depicted as links. (for a lifeline network in general, stations are the nodes, 
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and interactions/transmissions are the links.) The percolation process is parametrized by the 

fraction of the nodes in the network. When more nodes are present, the network tends to be more 

connected. We define the cluster that has the maximum number of nodes as the giant component. 

When the percentage of nodes present in the network decreases, there exists a transition point at 

which the giant component breaks apart. The point at which the percolation transition occurs is 

called the critical percolation threshold (pc). We identify the threshold at which the giant 

component size relative to the network size is larger than 0. The logic behind this is that although 

small clusters can form in the network, they are isolated from the resources and not functioning 

properly. Only when the cluster size reaches a critical point, namely the percolation threshold, 

can the network start functioning (partially). Therefore, we use the relative size of the giant 

component to the size of the whole network. In order to connect to the giant component, node A 

must be connected to the giant component via at least one of its neighbors. That is to say, A does 

not belong to the giant component if (and only if) it is not connected to the giant component via 

any of its neighbors. Define u as the average probability that a node is not connected to the giant 

component through its neighbors. If node A has degree k, then the probability that it is not 

connected to the giant component via any neighbors is uk. Hence, the average probability that a 

node is not in the giant component is . 

This probability also equals 1 − S, where S is the fraction of the nodes that belongs to the 

giant component (Newman, 2010). Therefore, we have 

 S = 1 − G0(u) (3-5) 

Again, the probability that a node is not connected to the giant component via a particular 

neighboring node is equal to the probability that this node is not connected to the giant 
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component through any of its neighbors. If there are k of these neighbors, then the probability is 

uk. Since it connects to a neighboring node through an edge, k is following the excess degree 

distribution qk. Therefore, it is formulated as 

  (3-6) 

Equations 3-5 and 3-6 provide a complete solution procedure to identify the size of giant 

component in a transportation network. 

3.2 Cascading Failure 

There exists a critical coupling of interdependent nodes in interdependent, non-embedded 

networks above which single failure can invoke cascading failures that may abruptly break down 

the system. Below this critical coupling, the transition is continuous, and small failures lead only 

to small system damage but not to a collapse. As a result of this critical coupling, the resilience 

of these interdependent networks is threatened by the risky abrupt collapse phenomenon. 

Therefore, when the coupling of interdependent nodes in a network of networks (NON) is below 

this critical coupling, the system can be considered in a safe region, free from the risk of abrupt 

collapse (Gao et al., 2014). 

However, many critical infrastructure networks are embedded in space. Interdependent 

spatially embedded networks, modeled by coupled lattices, have been found significantly more 

vulnerable than non-embedded networks (Bashan et al., 2013). In contrast to non-embedded 

networks, there is no critical coupling of interdependence, but any small coupling of 

interdependent nodes will lead to an abrupt collapse of first-order transition. In such systems 

there is no safe region (Gao et al., 2014). 
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In an interdependent system, take two networks A and B with the number of nodes NA and 

NB, respectively (Parshani et al., 2010). Within network A, the nodes are connected by A edges 

with degree distribution PA(k), while the nodes in network B are connected by B edges with 

degree distribution PB(k). In addition, a fraction qA of network A nodes depends on the nodes in 

the network B, and a fraction qB of network B nodes depends on the nodes in network A. 

The process of cascading failures is initiated by randomly removing a fraction 1 − p of 

network A nodes and all the A edges that are connected to them. Because of the interdependence 

between the networks, the nodes in network B that depend on removed A nodes are also 

removed, together with the B edges that are connected to them. As nodes and edges are removed, 

each network breaks up into connected components. We assume that when the network is 

fragmented, the nodes belonging to the giant component connecting a finite fraction of the 

network are still functional, while nodes that are parts of the remaining small clusters become 

nonfunctional. Since each network is connected differently, the nodes that become nonfunctional 

on each step are different for both networks. This leads to the removal of more dependent nodes 

from the coupled network, and so on. 

The formalism of this process is presented as follows. We define pA and pB as the fraction 

of nodes belonging to the giant components of networks A and B, respectively. The remaining 

fraction of network A nodes after an initial removal of 1 . The initial removal of 

nodes will disconnect additional nodes from the giant component. The remaining functional part 

of network A therefore contains a fraction ) of the network nodes. Since a fraction 

qB of nodes from network B depends on nodes from network A, the number of nodes in network 

B that becomes nonfunctional is (1  Accordingly, the remaining 
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fraction of the network )], and the fraction of nodes in the giant 

component of network  

Following this approach we can construct the sequence ψn and φn of giant components, 

and the sequence  and  of the remaining fraction of nodes at each stage of the cascade 

of failures. 

 

 

   (3-7) 

 

 

To determine the state of the system at the end of the cascade process we look at  

and  at the limit of m → ∞. This limit must satisfy the equations  and  

since eventually the clusters stop fragmenting, and the fractions of randomly removed nodes at 

step m and m + 1 are equal. Denoting  and , we arrive at a system of two equations 

with two unknowns: 

x = p[1 − qA[1 − pB(y)]] (3-8) 

y = 1 − qB[1 − pA(x)p] (3-9) 

 

The model can be solved through generating functions. The generating functions will be 

defined for network A while similar equations describe network B. The generating function of 

the degree distributions GA0(ξ) = ∑k PA(k)ξk. Analogously, . Random removal of 

fraction 1 − p of nodes will change the degree distribution of the remaining nodes, so the 
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generating function of the new distribution is equal to the generating function of the original 

distribution with the argument equal to 1 − p(1 − ξ) (Newman, 2002). The fraction of nodes that 

belongs to the giant component after the removal of 1 − p nodes is 

pA(p) = 1 − GA0[1 − p(1 − fA)] 

where fA = fA(p) satisfies a transcendental equation 

(3-10) 

fA = GA1[1 − p(1 − fA)] (3-11) 
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4 Agent-Based Simulation Framework 

The lifeline network can be abstracted as a graph in which the node represents the 

infrastructure, and the link denotes the interaction between nodes. In a transportation network, 

nodes represent the intersection, and links represent the road. Each node has two states: function 

and fail. Using the concept proposed in Chapter 3, an agent-based modeling framework was 

developed in NetLogo. The framework is presented in figure 4-1. The yellow layer is network A, 

and blue layer is network B. The red and green lines represent the interaction from A to B and B 

to A, respectively. Networks A and B can be any network. Because of the colocation 

interdependency in infrastructure networks, in this project, network A and B both represented 

transportation networks as critical lifeline infrastructure. However, this framework is only 

limited to transportation networks; this interdependency modeling framework can be applied to 

different lifeline networks. 

 

Figure 4-1: Interdependent lifeline infrastructure agent-based modeling framework 
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5 Results 

5.1 High Interdependency 

Three parameters control the cascading failure within the interdependent lifeline system. 

ϕ represents the interdependency from network A to network B, i.e., ϕ = 0.8 means that 80 

percent of the nodes’ normal function in network B depends on network A. Analogously, ρ 

represents the interdependency from network A to network B, i.e., ρ = 0.6 means that 60 percent 

of the nodes’ normal function in network A depends on network B. In this experiment, we 

examined a failure that initiated in network A and then propagated through the system. q 

represented the fraction of nodes in network A that failed during the disaster, i.e., q = 0.4 means 

that 40 percent of the nodes in network A failed. In the meantime, we measured the giant 

component size in network B to examine the interdependency effect on interconnected networks. 

Figure 5-1 presents the scenario in which network A and network B are highly 

interdependent. 

 

 

 (a) ϕ = 1 (b) ϕ = 0.8 

 

Figure 5-1: High interdependency between networks 

For example, as shown in figure 5-1(a), when ϕ = 1, then ρ = 0.2, which means that 

network B is fully dependent on network A; at q = 0.17, the Sgcs decreases to 0. Empirically, this 
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suggests that when the initial failure in network A reaches 17 percent, the giant component size 

in network B will become 0. We call the point when the giant component diminishes the critical 

threshold, qc. As shown in figure 5-1(b), when ϕ = 0.8, the qc at low ρ does not change much. 

However, at a high ρ, such as 0.4 or 0.6, the qc increases by 0.04 and 0.02, respectively. This 

indicates that at a high ϕ, a small increase in ρ will lead to a critical threshold increase. This 

suggests that when network B is highly dependent on A, and when network A is increasingly 

dependent on B, a small disruption in network A will result in catastrophic failure in network B. 

5.2 Medium Interdependency 

Figure 5-2 presents a scenario in which the interdependency is in medium range. When ϕ 

= 0.6, then ρ = 0, and qc = 0.4. Compare that to the case in which ϕ = 1, ρ = 0, and qc = 0.3. That 

is to say, when network A depends on network B at a fixed level, then as the network B 

increasingly depends on network A, the critical threshold qc increases. In the meantime, when ϕ 

= 0.4, the giant component size stops decreasing at 0.1, which means that when 40 percent of the 

nodes in network B depend on network A, no matter how much network A depends on network 

B, the giant component size will always stay at 0.1 percent eventually. Similarly, when ρ 

increases, the qc increases. For example, when ϕ = 0.4, then ρ = 0, qc = 0.5. 

 

 (a) ϕ= 0.6 (b) ϕ = 0.4 
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Figure 5-2: Medium interdependency between networks 

5.3 Low Interdependency 

When ϕ decreases to a low level, then the different ρ cases get closer. Similarly, at a low 

level ϕ, for example, ϕ = 0.2 as shown in figure 5-3(a), the giant component size stays steady 

(Sgcs = 0.75). When the ϕ decreases to 0, as shown in figure 5-3(b), which means that network B 

is not dependent on network A, then no matter how many nodes fail in network A, the giant 

component size will stay at zero. This is because when network B is not dependent on network 

A, then no matter how big the failure, the failure has no channel to propagate to network B. 

Essentially, this is a single network percolation. 

 

 

 (a) ϕ = 0.2 (b) ϕ = 0 

 

Figure 5-3: Low interdependency between networks 
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6 Conclusion 

When two networks are interdependent on each other, then failure occurring in one 

network will propagate to the other one, and there is a threshold above which a small disturbance 

will result in a cascading failure that may abruptly break down the system. In this project, we 

investigated the critical threshold that will prevent a network from breaking down in different 

scenarios. Multiple networks can be involved in an interdependent system; in this project, only 

two networks were considered in order to prove the concept. However, the framework can be 

generalized to multiple networks. An agent-based modeling framework was developed to 

simulate cascading failure between networks. 

The results were as follows:  

 At a fixed ϕ (i.e., the fraction of nodes in network B that depends on network A), 

when ρ increases (i.e., the fraction of nodes in network A that depends on network B), 

the critical percolation threshold decreases. That is to say, when network A is more 

dependent on network B, a smaller disruption in network A will be needed to destroy 

network B.  

 When ρ is fixed, as ϕ decreases, the critical threshold increases. For example, when ϕ 

= 0.8, ρ = 0.2, and qc = 0.18, as ϕ increases to 0.6, then qc = 0.22 when ρ = 0.2. This 

means that when the fraction of nodes in network A that depends on network B is 

fixed, as the nodes in network B that depend on network A decrease, the fraction of 

nodes needed to fail in network A to destroy network B increases. This is reasonable 

because when network B is not strongly dependent on network A, there are fewer 

channels for failure of network A to propagate to network B. Therefore, the critical 

threshold for the giant component to diminish increases;  
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 As ϕ keeps decreasing, the giant component size stops decreasing at a certain level. 

For instance, when ϕ = 0.4, then Sgcs is around 0.1 for all levels of ρ, while when ϕ = 

0.2, then Sgcs is around 0.75. This phenomenon indicates that when network B is less 

dependent on network A, then failure in network A can hardly propagate to network 

B, which leads to higher giant component size. To increase the robustness of one 

network, the key is to impair its dependency on other networks. 
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7 Future Research 

This project explored how different dependencies between networks shape the robustness 

of network behavior. While experiment demonstrated very insightful results, there are several 

interesting directions that can be explored in future research. First, more lifeline infrastructure 

networks can be investigated through the framework. Because of data limitations, we utilized 

two transportation networks to prove the concept. However, real coupled networks would be 

more interesting to investigate and would generate insightful ideas. Second, random failure was 

explored in this project. However, network failure can also result from man-made disasters, so 

localized failure patterns should be further investigated to validate the results. Third, not only do 

percolation phenomenon exist in ϕ and ρ, but when they both change, qc also exhibits a phased 

transition. This could be examined by designing more scenarios. 
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