Development of Asphalt Materials to Mitigate Studded Tire Wear of Pavements

By

Amir Bahadori¹, Kun Zhang², Xiaojun Li³, Balasingam Muhunthan¹

¹Washington State University ²California State University, Chico ³California State University, Fresno

> Final Report (August 2018)

Pacific Northwest Transportation Consortium (PacTrans) USDOT University Transportation Center for Federal Region 10 University of Washington More Hall 112, Box 352700 Seattle, WA 98195-2700 In cooperation with US Department of Transportation-Research and Innovative Technology Administration (RITA)

Disclaimer

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation's University Transportation Centers Program, in the interest of information exchange. The Pacific

Northwest Transportation Consortium, the U.S. Government and matching sponsor assume no liability for the contents or use thereof.

Technical Report Documentation Page							
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.					
4. Title and Subtitle		5. Report Date					
Development of Asphalt Material	s to Mitigate Studded Tire Wear	August 2018					
of Pavements		6. Performing Organizatio	n Code				
7. Author(s)		8. Performing Organizatio	n Report No.				
Amir Bahadori, Kun Zhang, Xiao	jun Li, Balasingam Muhunthan						
9. Performing Organization Name and Add	ress	10. Work Unit No. (TRAIS	5)				
PacTrans							
Pacific Northwest Transportation Con	nsortium	11. Contract or Grant No.					
University Transportation Center for	Region 10	DTRT13-G-UTC40					
University of Washington More Hall							
12. Sponsoring Organization Name and Add	lress	13. Type of Report and Per	riod Covered				
United States of America		Research					
Department of Transportation		14. Sponsoring Agency Co	de				
Research and Innovative Technology	Administration						
15. Supplementary Notes							
Report uploaded at <u>www.pacTrans.o</u> 16. Abstract	rg						
Safe Transport." Currently, all fe Washington, allow the use of stu- small aggregate and eventually r important reasons of vehicle hydr related with traffic accidents dur millions of dollars are spent to re- surface materials that resist stude the traffic accidents and repair/re-	Ins theme of "Developing Data D our northwestern states, including idded tire. Studded tire can dig in esult into pavement rutting (1). R roplaning and loss of skid resista ing night and accidents under rais epair/rehabilitate the wear from the ded tire wear will greatly improve ehabilitation costs associated with v is to determine potential materia asphalt mix.	Alaska, Idaho, Orego to asphalt pavement a cutting was reported as nce in wet weather an n weather conditions (ne studded tire. Develo e the conditions of pav n the studded tire wear	on, and nd pick out the s one of the most d can be closely 2, 3). Each year, oping pavement rements, and reduce the the the the the the the the the the the the the the the the the the the				
17. Key Words		18. Distribution Statement					
Pavement, studded tires, asphalt		No restrictions.					
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price				
Unclassified.	Unclassified.		NA				
	1		l .				

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

Contents

Chapter 1.	Introduction	1				
Chapter 2.	Literature Review	3				
2.1. Back	ground	3				
2.2. Effec	cts of Studded Tires on Pavement	3				
2.3. Effec	cts of Mix Design Factors on Asphalt Pavement Wear	5				
2.4. Nois	e and Air Pollution	5				
2.5. Com	parison between Studded Tires and Studless Winter Tires	6				
2.6. Stud	ded Tire Regulations and Restrictions	6				
Chapter 3.	Objectives of Study	8				
Chapter 4.	Mix Design and Laboratory Tests	10				
4.1. Mix	Design	10				
4.2. Rutti	ng Performance Tests of Asphalt Mixes	11				
4.3. Stud	ded Tire Wear Resistance Test	14				
Chapter 5.	Test Results	16				
5.1. Rutti	ng Performance	16				
5.2. Stud	ded Tire Wear Resistance	18				
5.3. Stati	stical Analysis	19				
Chapter 6.	Summary and Conclusions	24				
Chapter 7.	References	26				
Appppendix	A	28				
A.1 Post-	Hoc test on Maximum Wear Depth	28				
A.2 Pos-Hoc Test on Studded Tire Mass Loss						

Figures

Figure 1.1	(a) Studded tire wear and (b) related hydroplaning	2
Figure 4.1	Gradation of mixes	11
Figure 4.2	Asphalt Pavement Analyzer (APA) Jr with studded loading wheels	15
Figure 5.1	Flow number, cycles	17
Figure 5.2	Dynamic modulus at low time-temperature level (40°F, 25Hz)	18
Figure 5.3	Dynamic modulus at intermediate time-temperature level (70°F, 1Hz)	19
Figure 5.4	Dynamic modulus at high teime-temperature level (100°F, 0.1Hz)	19
Figure 5.5	Studded wear depth	20
Figure 5.6	Naximum wear deapth, mm	22
Figure 5.7	Mass loss after the studded tire test	23

Tables

Table 2.1	State regulation on studded tire use	8
Table 4.1	Test design matrix	13

Acknowledgments

The authors thank Pacific Northwest Transportation Consortium (PacTrans) for the financial support of the program. Materials were supplied by Idaho Asphalt Supply Inc and POE Asphalt Paving Inc. Dr. Jia Cheng, Washington State University, is thanked for her contributions.

Chapter 1. Introduction

The use of studded tires is allowed in the cold region states of the United States. These include Alaska, Idaho, Oregon, Washington, Montana, South Dakota, Nebraska, and Colorado. They are used during the winter season to reduce snow- and ice-related accidents. During driving, the studs in these tires progressively punch into the asphalt pavement and displace small aggregates. This raveling process eventually results in pavement rutting, as shown in Figure 1.1 (a). Asphalt pavement rutting can result from deformation of asphalt pavement materials and/or the layers below them under heavy traffic loads or because of raveling from the studded tires that are often mounted on passenger vehicles. Rutting associated with the plastic deformation of asphalt pavement materials has been studied extensively. However, few studies have focused on the reduction or prevention of asphalt pavement rutting related to studded tire wear. Rutting from studded tire wear could be significant and often becomes an engineering concern. It has been reported that rutting from studded tire wear may reach 1 inch within six years, which exceeds the 0.75-inch rutting depth criterion for rehabilitation/repair specified by most highway agencies [1]. In addition, rutting has been reported as one of the most important causes of loss of skid resistance in wet weather and of vehicle hydroplaning (Figure 1.1 (b)). It is closely associated with traffic accidents at night and under rainy weather conditions [2, 3].

Figure 1.1 (a) Studded tire wear (after WSDOT) and (b) related hydroplaning.

Damage due to studded tire wear on asphalt pavement is irreversible, and its repair is costly. On the basis of estimates by the Washington Department of Transportation (WSDOT), the annual cost of asphalt pavement damage due to studded tire wear is between \$7.8 million and \$11.3 million [4]. The annual cost of studded tire wear damage along the state highways of Oregon is reported to be around \$7 million per year [5]. In Alaska, the cost to repair studded tire wear related pavement damage has reached around \$5 million each year [6]. Therefore, there is a practical need to reduce studded tire wear to improve pavement performance, provide safer transportation, and save on pavement repair costs.

This study attempted to determine the relevant materials and mix design variables needed to develop a wear-resistant asphalt mix in order to reduce the studded tire wear associated traffic accidents and repair/rehabilitation costs.

Chapter 2. Literature Review

2.1. Background

Studded tires were first used in Finland in 1958 to increase traction on ice and snow [7]. They became popular in the U.S. beginning in the 1960s [8-10]. Originally, studs were fabricated from tungsten carbide cores that had a wear pattern similar to that of rubber tires. Given the positive effects that studded tires have on improving traction, their application has continued to increase in cold region countries. However, the effects of the extensive use of these tires and on pavement wear, noise, and air pollution have prompted many states in the U.S. and other countries to restrict their use [11].

In order to control their protrusion, the weight and depth of studs were modified, e.g. the protrusion of the studs was decreased from 0.087 inches to 0.059 inches and their weight was limited to 0.067 ounces [12]. In the 1980s, Bridgestone in Japan first manufactured stud less winter tires, termed Blizzak. They had microscopic cells that provided better grip on the road. Studies have shown that these tires increase traction comparably to studded tires. In addition, a new type of stud fabricated with lightweight metals and plastic jackets was utilized in Scandinavian countries in the 1990s. They also reduced pavement wear [13].

2.2. Effects of Studded Tires on Pavement

Several studies have been conducted to evaluate the effects of studded tires, with most focusing on pavement wear. The mechanisms of the effects of studded tires on pavement were studied by Angerinos et al. [12]. They found that as the studded tire moves over the pavement, its spikes transfer energy to the pavement through the contact points of the studded tires. These spikes can scratch the pavement, and punching action can occur between the contact points of the studded tires. The punching action leads to rutting and raveling of the pavement, caused by

disintegration of the surface layer. One Finnish study in the 1960s showed that a passenger car with four studded tires could ravel about 10 kg of pavement material in a decade [14]. Subsequent studies have shown that with the improvements in the protrusion and weight of studs, this value has decreased to about 2.5 kg. Note, however, that increases in traffic volumes during recent years diminish the net effects of stud improvements.

The rutting caused by studded tire is different from rutting typically caused by heavy traffic loads (permanent deformation) in two ways. First, studded tires cause raveling of the pavement surface material, removing it from the pavement surface layer. This is different from typical rutting, in which materials are displaced and consolidated. Second, studded tire wear is typically caused by passenger cars that have a narrow wheel path (around 60 inches) in comparison to those of heavy vehicles (around 70 inches) [15].

The Oregon Department of Transportation conducted an extensive study on studded tire wear on pavements. This study was conducted in two phases that were completed in 1995 and 2014 [16]. It made use of the Pavement Management Database to extract yearly rutting data for highways that experienced studded tire wear. In addition, studded tire traffic data were collected through a phone survey performed by Portland State University. On the basis of traffic data and studded tire and rut depth measurements, the rate of studded tire depth per studded tire pass was calculated. The results showed that studded tire wear is more severe in asphalt pavements than in Portland Cement Concrete (PCC) pavements. In addition, factors such as protrusion, weight, number of studs per tire, and driving speed were found to have a significant effect on studded tire wear.

2.3. Effect of Mix Design Factors on Asphalt Pavement Wear

Several studies have been conducted to optimize pavement mix design to achieve wearresistant pavements [7]. The results of these studies showed that stone matrix asphalt (SMA) and mixes with a high percentage of coarse aggregates have better studded wear resistance than conventional hot mix asphalt (HMA) [17]. Fromm et al. [18] conducted a comprehensive study along Hwy 400 in Toronto, Canada. Several types of mixes were used to pave this highway, with the percentages of coarse and fine aggregates and the types of aggregate being the main variables. Rutting was measured after the first winter, and results showed that hard volcanic and synthetic stones were less prone to wear than sedimentary aggregates. In addition, mixes with high percentages of coarse aggregates showed less wear than other mixes. Fromm et al. also observed that studded wear was initiated with fines migration, followed by the loss of coarse matrix support, which led to raveling.

Results from a study conducted by the Alaska Department of Transportation and Public Facilities showed that the use of rubber-modified HMA could reduce both permanent deformation and studded wear of asphalt pavement [19]. Granulated crumb rubber was added to asphalt mixes at 2 percent of the mix by weight, and rutting was measured with a road surface profiler. The results showed that the rubber-modified asphalt pavements performed better than conventional mixes.

2.4. Noise and Air Pollution

An additional concern with the use of studded tires is associated air and noise pollution. Recent studies have shown that studded tires cause noise levels that are 4.8 to 6.4 dB higher than those from conventional tires [6]. In addition, raveling of fine aggregates from pavement that is caused by studded tire wear has a negative effect on air quality near highways.

2.5. Comparisons between Studded Tires and Studless Winter Tires

Three major studies have evaluated the differences in traction among the various types of tires used in wintery conditions. The first one, completed by the Finnish National Road Administration (FinnRA), showed that studded tires had higher friction on ice than studless winter tires. In addition, vehicles with these tires had shorter breaking distances in lock-braking conditions [13].

The second study, by the State of Alaska, compared the starting and stopping distances of vehicles with lightweight studded tires, standard studded tires, and studless winter tires on ice and snow surfaces. The results showed that studded tires (standard and lightweight studs) had better traction for both starting and stopping distances [6].

The results of a study by Scheibe et al. [20] for WSDOT showed that studded tires had the best traction on ice near freezing temperature. However, with a decrease in temperature, the effect was found to decrease. In addition, on dry pavements, studded tires showed less traction than studless winter tires and all-season tires.

2.6. <u>Studded Tire Regulations and Restrictions</u>

Given the detrimental effects of studded tire on pavements, several states have limited their use to specific time periods. Table 2.1 shows the time restrictions in the U.S., based on the results of a survey conducted by the University of Alaska, Anchorage, in 2005 and a follow-up study by the Vermont Agency of Transportation in 2011 [6, 21]. Several countries such as Finland, Sweden, and Canada have also imposed seasonal restrictions. Alternatively, some countries such as Germany and Japan have banned the use of studded tires altogether.

State	Regulation	State	Regulation
Alabama	Prohibited	Montana	Oct 1 to May 31
Alaska	Sept 15 to May 1	Nebraska	Nov 1 to April 3
Arizona	Oct1 to May 3	Nevada	Oct 1 to April 30
Arkansas	Nov 1 to April 1	New Hampshire	No Restrictions
California	Nov 1 to April 30	New Jersey	Nov 15 to April 3
Colorado	No Restriction	New Mexico	No restrictions
Connecticut	Nov 15 to April 30	New York	Oct 16 to April 30
Delaware	Oct 15 to April 15	North Carolina	No restrictions
DC	Oct 15 to April 15	North Dakota	Oct 15 to April 15
Florida	Prohibited	Ohio	Nov1 to April 15
Georgia	Safety requirement	Oklahoma	Nov1 to April 3
Hawaii	Prohibited	Oregon	Nov1 to April 3
Idaho	Oct 1 to April 30	Pennsylvania	Nov1 to April 15
Illinois	Prohibited	Rhode Island	Nov1 to April 3
Indiana	Oct 1 to May 3	South Carolina	Oct 1 to April 30
Iowa	Nov 1 to April 3	South Dakota	Oct 1 to April 30
Kansas	Nov 1 to April 15	Tennessee	Oct 1 to April 15
Kentucky	No restrictions	Texas	Prohibited
Louisiana	Prohibited	Utah	Oct 15 to March 31
Maine	Oct 1 to April 30	Vermont	No restrictions
Maryland	Prohibited	Virginia	Oct 15 to April 15
Massachusetts	Nov 2 to April 30	Washington	Nov 2 to March 31
Michigan	Prohibited	West Virginia	Nov 1 to April 15
Minnesota	Prohibited	Wisconsin	Prohibited
Mississippi	Prohibited	Wyoming	No Restrictions
Missouri	Nov 2 to March 31		

Table 2.1 State regulation on studded tire use [21].

Chapter 3. Objectives of Study

The main objective of this study was to determine the mix design properties of asphalt mixes that affect studded tire wear. The effects of those factors on conventional rutting (plastic deformation) of asphalt was also evaluated. A detailed statistical analysis was conducted to study the influence of mix design variables on maximum tire wear depth and mass loss.

The properties that improve studded tire wear resistance while not negatively effecting the plastic deformation resistance of asphalt mixes were identified through statistical analysis. The study considered several mix design factors that could potentially have significant effects on the studded tire wear resistance properties of asphalt materials. These included aggregate gradation (open-dense), aggregate source, nominal maximum aggregate size, and asphalt binder type. Five types of mixes were designed in the first stage to consider the above factors. Subsequently, for each mix, secondary factors that can affect studded tire wear—such as asphalt binder content, rubber modification and the percentage of fine aggregate—were modified. Detailed information on the mix design is presented in Chapter 4. That chapter also presents detailed information on the testing procedure. The studded tire wear resistance of the designed mixes was evaluated by tire wear tests, and mixes were compared in terms of wear depth and mass loss after the tests.

Chapter 5 presents the results of laboratory tests. The results relating to studded tire wear were analyzed by using statistical analysis to identify the effects of mix design properties. In addition, conventional rutting resistance (plastic deformation) was evaluated by using the flow number and dynamic modulus of the mixes.

Chapter 4. Mix Design and Laboratory Tests

This chapter presents the mix design and laboratory test procedures of mixes, including flow number, dynamic modulus, and studded wear tests.

4.1. <u>Mix Design</u>

To evaluate studded tire wear resistance, asphalt mixes were fabricated with local materials from Washington and Idaho. The literature review suggested that aggregate type, aggregate gradation, and asphalt binder are the main factors that affect the studded tire wear resistance of asphalt mixes. To evaluate the effects of gradation, four types of gradation were used to prepare asphalt mix samples. Figure 4.1 shows the gradation of those mixes.

Figure 4.1 Gradation of mixes

Gradation 1 was a coarse dense-graded mix with a nominal maximum aggregate size (NMAS) of 12.5 mm. It complied with WSDOT recommendations for the gradation of dense-graded asphalt mixes. Gradation 2 was similar to gradation 1 but with more fine aggregates (passing the No.4) categorized as a fine dense-graded mix. Gradation 3 was a dense-graded mix

with an NMAS of 4.75 mm. In addition, one porous asphalt mix was used as an open-graded mix.

Five groups of mixes, as shown in Table 4.1 were chosen. These mixes included two types of aggregate (local basalt and relatively soft quaternary alluvium), four types of asphalt binder (PG 64-28, PG 64-22, rubber modified PG 64-22, and rubber modified PG 64-28), and four gradations. In addition, for some mixes, higher asphalt content, and/or crumb-rubber asphalt, and/or with more fine aggregate were used for comparison.

4.2. <u>Rutting Performance Tests of Asphalt Mixes</u>

Although rutting and studded wear distresses are measured with the same procedure in the field, rutting is related to the plastic deformation of asphalt mixes, whereas studded wear is caused by the ravelling of aggregates from the surface layer of the pavement. Asphalt materials with good studded tire wear resistance should maintain sufficient rutting performance. Therefore, the rutting resistance of mixes was evaluated by using dynamic modulus and flow number tests. Dynamic modulus is a good indicator of the stiffness of mixes, which has been shown to correlate well with cracking and rutting resistance. In addition, the flow number is a good measure of the plastic deformation of asphalt mixes.

Table 4.1	Test	design	matrix
-----------	------	--------	--------

		M	ix A		Mix		Mix C		Mix D		Mix E
	I: normal	II: with higher AC%	III: with more fine agg.	IV: with Crumb- rubber	I: normal	II: with more fine agg.	normal	I: normal	II: with higher AC%	III: with Crumb- rubber	Porous HMA
Mix ID	A1	A2	A3	A4	B1	В2	С	D1	D2	D3	Porous
Aggregate Source	Basalt	Basalt	Basalt	Basalt	Basalt	Basalt	Quaternary Alluvium	Basalt	Basalt	Basalt	Basalt
Mixture Gradation	Coarse- Dense	Coarse- Dense	Fine- Dense	Coarse- Dense	Coarse- Dense	Fine- Dense	Fine-Dense	Dense	Dense	Dense	Open- Graded
Gradation	1	1	2	1	1	2	2	3	3	3	Porous
Asphalt Binder Type	PG 64-28	PG 64-28	PG 64-28	PG 64-28 (10% Rubber)	PG 64-22	PG 64-22	PG 64-28	PG 64-22	PG 64-22	PG 64- 22 (10% Rubber)	PG 70-22
Binder Content	5.10%	5.60%	5.30%	5.30%	5.10%	5.10%	5.10%	6.80%	7.30%	6.80%	4.10%
Nominal Maximum Aggregate Size (NMAS)	12.5mm	12.5mm	12.5mm	12.5mm	12.5mm	12.5mm	12.5mm	4.75mm	4.75mm	4.75mm	12.5mm
Maximum Thermotical Specific Gravity of HMA (G _{mm}), gr/cm ³	2.614	2.592	2.595	2.600	2.605	2.593	2.472	2.595	2.578	2.590	2.650

5.2.1 Dynamic Modulus and the Flow Number

The dynamic modulus test was conducted in accordance with AASHTO T 378-17. The test was performed on specimens that were fabricated by a Pine-AFG1 Superpave gyratory compactor and were compacted to a target height of 170 mm and a diameter of 150 mm, with an air voids level of 7 ± 0.5 percent for dense-graded mixes and an air void level of 20 ± 1 percent for porous asphalt mixes. After compaction, the specimens were cored and cut to a size of 150 mm high and 100 mm in diameter. The theoretical maximum specific gravity (G_{mm}) and bulk specific gravity of specimens were measured in accordance with AASHTO T209 and AASHTO T166, respectively.

The prepared samples were tested by using the Asphalt Mixture Performance Tester (AMPT). The temperatures used for the dynamic modulus test were 40° F, 70° F, 100° F, and 130° F, and at each temperature, six different loading frequencies—25, 10, 5, 1, 0.5, 0.1 Hz—were applied. A minimum of two specimens for each mix were fabricated and tested to confirm the results.

The flow number test was performed by using a loading cycle of 1.0 second, which consisted of a 0.1-second haversine load followed by a 0.9-second rest at a testing temperature of 130°F. The flow number is the number of load repetitions when the permanent deformation rate reaches a minimum or strain reaches the tertiary stage after initial consolidation and a secondary constant strain rate. This test is typically conducted after the dynamic modulus test. The flow number is automatically calculated and recorded with the Simple Performance Tester software. This protocol was in accordance with AASHTO TP378-17, the Standard Method of Test for Determining the Dynamic Modulus and Flow Number for Hot Mix Asphalt (HMA) Using the Asphalt Mixture Performance Tester (AMPT). Note that according to AASHTO standard

recommendations, the flow number test should be conducted with high-temperature performance mix grades, but in this study the test was performed at a constant temperature of 54° C for purposes of comparison.

4.3. <u>Studded Tire Wear Resistance Test</u>

The wear resistance of the mixes was determined by using the Asphalt Pavement Analyzer (APA) Jr., as shown in Figure 4.2 A, at a testing temperature of 5°C. The loading wheels had rubber tires with studs to apply adjustable loads on the asphalt mixture specimen, as shown in Figure 4.2 A. To observe the wear behavior of the asphalt mixture, a loading force of 100lb was applied to the samples to simulate actual traffic loading. The wear depth (in mm) and mass loss (in grams) of each specimen after 8,000 wear cycles were used as the wear resistance performance indicators for the asphalt mixtures. Note that six specimens were tested for each mix.

Figure 4.2 Asphalt Pavement Analyzer (APA) Jr. with studded loading wheels

Chapter 5. Test Results

This chapter presents the results of laboratory tests on the different types of mixes.

5.1. <u>Rutting Performance</u>

Figure 5.1 shows the results of the flow number test. As shown, an increase in asphalt binder content (mixes A2 and D2) decreased the flow number and accordingly increased the potential for plastic deformation for both dense-graded mixes with an NMAS of 12.5 mm and 4.75 mm (mix types A and D). In addition, the use of rubber modified asphalt binder (mixes A4 and D3) increased the flow number that correlates with better rutting resistance. The porous HMA showed the lowest flow number, which could have been due to the high air void content of this mix. Moreover, the increase in the percentage of fine aggregates (mixes A3 and B2) resulted in a reduced flow number and an increased potential for plastic deformation. The interlocking potential of the fine aggregate was less than that of the coarse aggregate, and it made the movement of aggregate under destructive load much easier.

Figure 5.1 Flow number, cycles

Figure 5.2 to Figure 5.4 show the results of the dynamic modulus test at low, intermediate, and high time-temperature levels. As shown, mixes with rubber-modified asphalt

binder (mixes A4 and D3) had less stiffness at low time-temperature levels, whereas, those mixes showed high stiffness at high time-temperature levels. This is indicative of the elastic behavior of rubber. In addition, an increase in asphalt binder content decreased the stiffness of mixes (mixes A2 and D2) at all tested levels, and this decrease was prominent at high temperatures. This can be attributed to the dominant effect of the asphalt binder in asphalt mixes at high temperatures. Moreover, the increase in fine aggregate percentage in dense-graded mixes (mixes A3 and B2) increased the dynamic modulus of mixes at intermediate and high time-temperature levels.

Figure 5.2 Dynamic modulus at low time-temperature level (40°F, 25Hz)

Figure 5.3 Dynamic modulus at intermediate time-temperature level (70°F, 1Hz)

Figure 5.4 Dynamic modulus at high time-temperature level (100°F, 0.1Hz)

5.2. Studded Tire Wear Resistance

250

Figure 5.5 shows the evolution of wear depth during the studded tire test. The porous HMA had the highest studded tire wear depth among the mixes. Mixes A1, B1, C, and D1 also showed comparable wear depth.

Moreover, the addition of rubber increased the wear depth for the coarse dense-graded mix with an NMAS of 12.5mm (mix A4) and decreased the wear depth for mix type D with a 4.75 mm NMAS (mix D3). The results also showed that an increase in asphalt binder decreased the wear depth for both the coarse dense-graded mix (mix A2) and the dense-graded mix with an NMAS of 4.75 mm (mix D2).

In addition, the results showed high fluctuation, which correlated with the rough surface of the HMA. This fluctuation was greater for porous asphalt with its high porosity on the surface.

Figure 5.5 Studded wear depth

5.3. <u>Statistical Analysis</u>

An analysis of variance (ANOVA) was performed on the maximum wear depth and mass loss results to evaluate the effects of different mix design properties on the wear resistance of the asphalt mixes. First, an ANOVA test was conducted with a 0.05 significance level to identify the overall differences among mixes. Subsequently, post-hoc tests were performed to extract meaningful differences among the mixes. The results are presented in Appendix A. Sections A.1 and A.2 give the post-hoc results for maximum wear depth and mass loss, respectively.

Figure 5.6 shows the average maximum wear depth from the studded tire tests. Porous HMA had the highest maximum wear depth among the mixes. Although the increase in asphalt binder was observed to decrease the maximum wear depth for the coarse dense-graded mix (mixes A1 and A2), the post-hoc results showed no significant difference between the two. On the other hand, the use of rubber-modified asphalt binder appeared to slightly decrease the wear depth for the dense-graded mix with an NMAS of 4.75 mm (mixes D1 to D3). However, analyses did not show a statistically significant difference. Statistical analyses also showed no significant difference in the maximum wear depth among mix types A, B, C, and D.

Note that for the dense-graded mixes, the maximum difference in wear depth observed was between mix A1 and D3 and was less than 0.5 mm. This value is less than one third the measurable field depth of 1.59 mm (1/16 in). It appears that 8,000 loading cycles may not have been sufficient to induce measurable wear. It would be necessary to increase that number in future studies. Regardless, our study is useful in highlighting the potential of adding crumbrubber for 4.75 mm NMAS to increase wear resistance.

Figure 5.6 Maximum wear depth, mm

Figure 5.7 shows the mass loss results after the studded wear test. The porous HMA had a higher mass loss than the dense graded mixes. Statistical analyses showed no significant difference among mix types A, B, C, and D. This means that asphalt binder type, gradation, and aggregate type were not significant factors in the mass loss of studded wear test.

In addition, post-hoc test results (Appendix A.2) revealed that the utilization of rubber modified asphalt binder (up to 10 percent rubber) did not have a significant effect on studded tire wear mass loss for both coarse dense-graded and dense-graded mixes with an NMAS of 4.75 mm (types A and D). The increase of fine aggregate percentage in coarse dense-graded mixes (mix types A and B) also did not change the mass loss significantly. In addition, a significant difference in mass loss observed between the A1 and A2 mixes indicated that an increase of asphalt binder reduced the mass loss in the coarse dense-graded mixes. However, an increase of asphalt binder content did not show a statistically significant decrease in the mass loss of the dense-graded mixes with an NMAS of 4.75 mm (mixes D1 and D2).

Figure 5.7 Mass loss after the studded tire test

Chapter 6. Summary and Conclusions

Studded tires are used in the United States and many countries to increase traction between the tire and the pavement during winter weather. Although their use has undeniable safety effects, they can cause severe pavement damage. This study evaluated the factors in the mix design for asphalt mixes that can reduce studded tire wear without affecting other performances. Different types of mixes were evaluated in terms of studded tire wear depth, mass loss, and permanent rutting deformation through laboratory tests. The following conclusions can be drawn.

- The porous HMA showed more rutting (permanent deformation) and studded tire wear than dense-graded mixes, which indicates the porous HMA is not an appropriate alternative for regions with no limitation on studded tire use.
- An increase in asphalt binder content reduced studded tire wear, but it can also increase the rutting potential (permanent deformation) of asphalt mixes. Therefore, it can be a good solution to reduce studded tire wear in cold climate regions, where rutting is not the predominant distress.
- Asphalt binder, the percentage of fine aggregate, nominal maximum aggregate size, aggregate type, and rubber modification of asphalt binder did not have a significant influence on the studded tire wear test results.
- In this study, 8,000 cycles of loading were used to evaluate studded tire wear, and results indicated that this number of load repetitions was not adequate to capture significant differences among mixes. Therefore, this number should be calibrated on the basis of the field performance of asphalt mixes in terms of studded wear.

Chapter 7. References

- 1. Anderson, K.W., et al., *Wear resistant pavement study*. 2009, Washington (State). Dept. of Transportation.
- 2. Chan, C.-Y., et al., *Effects of asphalt pavement conditions on traffic accidents in tennessee utilizing pavement management system.* 2009.
- 3. Fwa, T., H. Pasindu, and G. Ong, *Critical rut depth for pavement maintenance based on vehicle skidding and hydroplaning consideration*. Journal of transportation engineering, 2011. **138**(4): p. 423-429.
- 4. *Technical Brief: Estimate of Annual Studded Tire Damage to Asphalt Pavements*, W.S.D.o. Transportation, Editor. 2012: Olympia.
- 5. Malik, M.G., *Studded Tires in Oregon: Analysis of Pavement Wear and Cost of Mitigation*. 2000: Financial and Economic Analysis Unit, Financial Services, Central Services Division, Oregon Department of Transportation.
- 6. Zubeck, H., et al., *Socio-Economic Effects of Studded Tire Use in Alaska*. Final Report. University of Alaska Anchorage, 2004. **156**.
- 7. Rosengren, A.e., *An Investigation Concerning Studded Tires with Special Reference to Pavement Wear, Based on Literature Studies.* 1969.
- 8. Rosenthal, P., et al., *Evaluation of studded tires: Performance data and pavement wear measurement*. NCHRP Report, 1969(61).
- 9. Smith, P. and R. Schonfeld, *STUDIES OF STUDDED-TIRE DAMAGE AND PERFORMANCE IN ONTARIO, WINTER 1969-70.* 1970.
- 10. Smith, P. and R. Schonfeld, *Pavement Wear Due to Studded Tires and the Economic Consequences in Ontario.* 1970.
- 11. Tremblay, J.P. and J. Fitch, *Impacts of Studded Tires on Pavement and Associated Socioeconomics*. 2011.
- 12. Angerinos, M.J., et al., *A Synthesis on Studded Tires*. Washington State Transportation Center (TRAC). Report No. WARD, 1999. **471**: p. 52.
- 13. Leppänen, A., *Final results of road traffic in Winter project: socioeconomic effects of Winter maintenance and studded tires.* Transportation Research Record: Journal of the Transportation Research Board, 1996(1533): p. 27-31.
- 14. Unhola, T., *Studded Tires the Finish Way*. Technical Research Centre of Finland, Communities and Infrastructure, 1997.
- 15. Brunette, B. and J. Lundy, *Use and effects of studded tires on Oregon pavements*. Transportation Research Record: Journal of the Transportation Research Board, 1996(1536): p. 64-72.
- 16. Shippen, N., M. Kennedy, and L.S. Pennington, *Review of Studded Tires in Oregon*. 2014.

- 17. Wen, H., S. Wu, and S. Bhusal, *Performance evaluation of asphalt mixes containing steel slag aggregate as a measure to resist studded tire wear*. Journal of Materials in Civil Engineering, 2015. **28**(5): p. 04015191.
- 18. Fromm, H. and J. Corkill. An evaluation of surface course mixes designed to resist studded tire wear. in Association of Asphalt Paving Technologists Proc. 1971.
- 19. Bingham, N., S. Saboundjian, and B. Brunette, *Use of rubber-modified hot-mix asphalt to reduce studded tire wear and plastic deformation*. Alaska Dept. of Transportation, Juneau, AK, 2010.
- 20. Scheibe, R.R., P.M. Engineer, and K.C. Kirkland, *An overview of studded and studless tire traction and safety*. 2002.
- Jason, P., et al., Impacts of Studded Tires on Pavement and Associated Socioeconomics Final Report. Federal Highway Administration Division Office Federal Building Montpelier, VT, 2011. 5602.

Appendix A

A.1 Post-Hoc test on Maximum Wear Depth

				95% Confid	ence
				Interval	
				Lower	Upper
(I) Mix		Std. Error	Sig.	Bound	Bound
A1	A2	0.08745	0.060	-0.0069	0.5969
	A3	0.08745	0.430	-0.0969	0.5069
	A4	0.08745	1.000	-0.3319	0.2719
	B1	0.08745	0.989	-0.2069	0.3969
	B2	0.08745	0.649	-0.1269	0.4769
	С	0.08745	0.144	-0.0419	0.5619
	D1	0.08745	0.274	-0.0719	0.5319
	D2	0.08745	0.236	-0.0644	0.5394
	D3	0.08745	0.009	0.0606	0.6644
	Porous	0.08745	0.000	-1.0644	-0.4606
A2	A1	0.08745	0.060	-0.5969	0.0069
	A3	0.08745	0.993	-0.3919	0.2119
	A4	0.08745	0.026	-0.6269	-0.0231
	B1	0.08745	0.465	-0.5019	0.1019
	B2	0.08745	0.947	-0.4219	0.1819
	С	0.08745	1.000	-0.3369	0.2669
	D1	0.08745	1.000	-0.3669	0.2369
	D2	0.08745	1.000	-0.3594	0.2444
	D3	0.08745	0.999	-0.2344	0.3694
	Porous	0.08745	0.000	-1.3594	-0.7556
A3	A1	0.08745	0.430	-0.5069	0.0969
	A2	0.08745	0.993	-0.2119	0.3919
	A4	0.08745	0.248	-0.5369	0.0669
	B1	0.08745	0.970	-0.4119	0.1919
	B2	0.08745	1.000	-0.3319	0.2719
	С	0.08745	1.000	-0.2469	0.3569
	D1	0.08745	1.000	-0.2769	0.3269

D30.087450.771-0.14440.4594Porous0.087450.000-1.2694-0.6656A4A10.087451.000-0.27190.3319A20.087450.0260.02310.6269A30.087450.248-0.06690.5369B10.087450.430-0.09690.5069B20.087450.430-0.01190.5919D10.087450.144-0.01190.5619D20.087450.121-0.03440.5694D30.087450.0030.09060.6944D40.087450.932-1.0344-0.4306B1A10.087450.909-0.39690.2069B20.087450.900-1.03440.5619D30.087450.999-0.39690.2069A10.087450.999-0.39690.2069A20.087450.970-1.01910.4119A30.087450.970-0.19190.4119A40.087450.932-0.42690.1769B20.087450.932-0.42690.1769B3A10.087450.932-0.42690.1769B40.087450.932-0.42690.1769B50.087450.932-0.22190.3819C0.087450.932-0.42690.1269D40.087450.937-0.18190.4219B40.087450.9470.649		D2	0.08745	1.000	-0.2694	0.3344
A4 A1 0.08745 1.000 -0.2719 0.3319 A2 0.08745 0.026 0.0211 0.6269 A3 0.08745 0.248 -0.0669 0.5369 B1 0.08745 0.932 -0.1769 0.4269 B2 0.08745 0.069 -0.0119 0.5069 C 0.08745 0.069 -0.0119 0.5069 D1 0.08745 0.144 -0.0419 0.5619 D2 0.08745 0.003 0.0906 0.6944 D3 0.08745 0.003 1.0344 0.4306 B2 0.08745 0.990 -1.0344 0.4306 B3 0.08745 0.903 -1.0344 0.4306 B4 0.08745 0.904 -1.0344 0.4306 B4 0.08745 0.997 -0.219 0.3819 A1 0.08745 0.997 -0.219 0.3819 B2 0.08745 0.997 -0.219 0.3819		D3	0.08745	0.771	-0.1444	0.4594
A2 0.08745 0.026 0.0231 0.6269 A3 0.08745 0.248 0.0669 0.5369 B1 0.08745 0.932 -0.1769 0.4269 B2 0.08745 0.430 -0.0119 0.5919 D1 0.08745 0.144 -0.0119 0.5919 D1 0.08745 0.121 -0.0344 0.5694 D2 0.08745 0.003 0.0906 0.6944 D3 0.08745 0.003 0.0906 0.6944 Porous 0.08745 0.003 0.0906 0.6944 A1 0.08745 0.989 -0.3969 0.2069 A2 0.08745 0.989 -0.3969 0.2069 A3 0.08745 0.997 -0.219 0.3819 C 0.08745 0.997 -0.219 0.3819 C 0.08745 0.997 -0.219 0.3819 D1 0.08745 0.894 0.1669 0.4669		Porous	0.08745	0.000	-1.2694	-0.6656
A3 0.08745 0.248 -0.06699 0.53699 B1 0.08745 0.932 -0.1769 0.4269 B2 0.08745 0.430 -0.0969 0.5019 C 0.08745 0.069 -0.0119 0.5919 D1 0.08745 0.144 -0.0419 0.5619 D2 0.08745 0.030 0.0904 0.6944 D3 0.08745 0.030 0.0906 0.6944 Porous 0.08745 0.030 1.0344 -0.4306 B4 0.08745 0.989 -0.3969 0.2099 A2 0.08745 0.989 -0.1919 0.4119 A4 0.08745 0.970 -0.1919 0.4199 A4 0.08745 0.997 -0.219 0.3819 C 0.08745 0.997 -0.219 0.3619 D2 0.08745 0.894 -0.1699 0.4669 D3 0.08745 0.894 -0.1694 0.4219 <	A4	A1	0.08745	1.000	-0.2719	0.3319
B10.087450.9320.17690.4269B20.087450.430-0.09690.5069C0.087450.069-0.01190.5919D10.087450.144-0.04190.5619D20.087450.0030.09060.6944D30.087450.0001.03440.4306Porous0.087450.0001.03440.4306A10.087450.969-0.39690.2069A20.087450.969-0.11990.5119A30.087450.970-0.19190.4119A40.087450.932-0.42690.1769B20.087450.997-0.22190.3819C0.087450.858-0.15940.4444D30.087450.858-0.15940.4444D30.087450.858-0.15940.4269D10.087450.858-0.15940.4269D20.087450.858-0.15940.4269D30.087450.800-1.15940.5556B2A10.087450.947-0.18190.4219A30.087450.997-0.38190.2219A40.087450.997-0.38190.2219C0.087450.997-0.38190.2219A30.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.3869<		A2	0.08745	0.026	0.0231	0.6269
B20.087450.4300.09690.5069C0.087450.069-0.01190.5919D10.087450.144-0.04190.5619D20.087450.121-0.03440.5694D30.087450.0030.90600.6944Porous0.087450.000-1.0344-0.4306B1A10.087450.989-0.39690.2069A20.087450.989-0.39690.2069A30.087450.970-0.11190.5119A40.087450.932-0.42690.1769B20.087450.997-0.22190.3819C0.087450.894-0.16690.4369D10.087450.894-0.16690.4369D20.087450.8580.15940.4444D30.087450.894-0.16690.4369D40.087450.894-0.16690.4369D20.087450.8580.15940.4219A30.087450.947-0.18190.4219A30.087450.947-0.18190.4219A40.087450.997-0.38190.2219C0.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219C0.087450.997-0.38190.2219A40.087450.997-0.38190.3669<		A3	0.08745	0.248	-0.0669	0.5369
C0.087450.069-0.01190.5919D10.087450.144-0.04190.5619D20.087450.121-0.03440.5694D30.087450.0030.09060.6944Porous0.087450.000-1.0344-0.4306B1A10.087450.989-0.39690.2069A20.087450.989-0.39690.2069A30.087450.989-0.11910.4119A40.087450.932-0.42690.1769B20.087450.997-0.22190.3819C0.087450.894-0.16690.4369D10.087450.894-0.16690.4369D20.087450.894-0.16690.4369D20.087450.894-0.16690.4369D20.087450.894-0.16690.4369D20.087450.900-1.15940.5556B2A10.087450.901-1.15940.1269A10.087450.947-0.18190.4219A30.087450.907-0.38190.2219A10.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.221		B1	0.08745	0.932	-0.1769	0.4269
Image: bit of the section of the se		B2	0.08745	0.430	-0.0969	0.5069
D20.087450.121-0.03440.5694D30.087450.0030.09060.6944Porous0.087450.000-1.0344-0.4306B1A10.087450.989-0.39690.2069A20.087450.989-0.10190.2019A30.087450.970-0.19190.4119A40.087450.932-0.42690.1769B20.087450.997-0.22190.3819C0.087450.894-0.16690.4669D10.087450.858-0.15940.4444D30.087450.858-0.15940.4444D30.087450.649-1.15940.5566Porous0.087450.649-0.47690.1269A10.087450.997-0.21190.3319A10.087450.649-0.47690.1269Porous0.087450.997-0.18190.4219A30.087450.997-0.38190.2219A10.087450.997-0.38190.2219A10.087450.997-0.38190.2219A10.087450.997-0.38190.2219A10.087450.997-0.38190.3669A10.087450.997-0.21690.3669A10.087450.997-0.21690.3669A10.087450.997-0.21690.3669A10.087451.000-0.24690.3669<		С	0.08745	0.069	-0.0119	0.5919
D30.087450.0030.09060.6944Porous0.087450.000-1.0344-0.4306B1A10.087450.989-0.39690.2069A20.087450.465-0.10190.5019A30.087450.970-0.19190.4119A40.087450.932-0.42690.1769B20.087450.997-0.22190.3819C0.087450.894-0.16690.4669D10.087450.894-0.16690.4444D30.087450.858-0.15940.4444D30.087450.600-1.1594-0.5556B2A10.087450.649-0.47690.1269A30.087450.997-0.38190.4219A30.087450.430-0.50690.1269B2A10.087450.649-0.17190.3319A40.087450.997-0.38190.2219A30.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219C0.087450.997-0.38190.2219C0.087450.997-0.38190.2219C0.087450.997-0.38190.2219C0.087450.997-0.38190.2219C0.087450.995-0.21690.3669D10.087450.995-0.2169<		D1	0.08745	0.144	-0.0419	0.5619
Porous0.087450.0001.03440.4306B1A10.087450.9890.39690.2069A20.087450.465-0.10190.5019A30.087450.970-0.19190.4119A40.087450.932-0.42690.1769B20.087450.997-0.22190.3819C0.087450.721-0.13690.4669D10.087450.894-0.16690.4369D20.087450.858-0.15940.4444D30.087450.609-1.15940.5556Porous0.087450.649-0.47690.1269A30.087450.649-0.47690.1269A30.087450.947-0.18190.4219A30.087450.997-0.38190.2219A40.087450.997-0.38190.2219A30.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219A40.087450.997-0.38190.2219C0.087451.000-0.24690.3669D10.087451.000-0.23940.3644D30.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.500-0.21940.3644		D2	0.08745	0.121	-0.0344	0.5694
B1 A1 0.08745 0.989 -0.3969 0.2069 A2 0.08745 0.465 -0.1019 0.5019 A3 0.08745 0.970 -0.1919 0.4119 A4 0.08745 0.932 -0.4269 0.1769 B2 0.08745 0.997 -0.2219 0.3819 C 0.08745 0.894 -0.1369 0.4669 D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.649 -0.4769 0.1269 A1 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.997 -0.3819 0.2219 A4 0.08745 0.997 -0.2169 0.3		D3	0.08745	0.003	0.0906	0.6944
A2 0.08745 0.465 -0.1019 0.5019 A3 0.08745 0.970 -0.1919 0.4119 A4 0.08745 0.932 -0.4269 0.1769 B2 0.08745 0.997 -0.2219 0.3819 C 0.08745 0.894 -0.1669 0.4669 D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.894 -0.1669 0.4444 D3 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.894 -0.0344 0.5694 Porous 0.08745 0.649 -0.4769 0.1269 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.997 -0.3819 0.2219		Porous	0.08745	0.000	-1.0344	-0.4306
A3 0.08745 0.970 -0.1919 0.4119 A4 0.08745 0.932 -0.4269 0.1769 B2 0.08745 0.997 -0.2219 0.3819 C 0.08745 0.997 -0.1369 0.4669 D1 0.08745 0.894 -0.1369 0.4669 D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.649 -0.4769 0.1269 A1 0.08745 0.947 -0.1819 0.4219 A3 0.08745 1.000 -0.2719 0.3319 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.2169 0.3869 D1 0.08745 1.000 -0.2169 0.3644	B1	A1	0.08745	0.989	-0.3969	0.2069
A4 0.08745 0.932 0.4269 0.1769 B2 0.08745 0.997 -0.2219 0.3819 C 0.08745 0.721 -0.1369 0.4669 D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.858 -0.1594 0.5694 Porous 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.649 -0.1794 0.5556 B2 A1 0.08745 0.907 -0.1819 0.4219 A3 0.08745 0.997 -0.3819 0.2219 A4 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3869 D1 0.08745 0.995 -0.2169 0.3644 D3 0.08745 1.000 -0.2394 0		A2	0.08745	0.465	-0.1019	0.5019
B2 0.08745 0.997 -0.2219 0.3819 C 0.08745 0.721 -0.1369 0.4669 D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.649 -0.1759 0.1269 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.947 -0.1819 0.4219 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3869 D1 0.08745 1.000 -0.2394 0.3644 D3 0.08745 1.000 -0.2394 0.3644		A3	0.08745	0.970	-0.1919	0.4119
C 0.08745 0.721 -0.1369 0.4669 D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.649 -1.1594 0.5556 B2 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.430 -0.2719 0.3319 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 1.000 -0.2469 0.3669 D1 0.08745 1.000 -0.2469 0.3644 D2 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394		A4	0.08745	0.932	-0.4269	0.1769
D1 0.08745 0.894 -0.1669 0.4369 D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.000 -1.1594 -0.5556 B2 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.947 -0.1819 0.4219 A4 0.08745 0.947 -0.1819 0.4219 A3 0.08745 0.947 -0.1819 0.4219 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3669 D1 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394 <t< td=""><td></td><td>B2</td><td>0.08745</td><td>0.997</td><td>-0.2219</td><td>0.3819</td></t<>		B2	0.08745	0.997	-0.2219	0.3819
D2 0.08745 0.858 -0.1594 0.4444 D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.000 -1.1594 -0.5556 B2 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 1.000 -0.2719 0.3319 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3869 D1 0.08745 1.000 -0.2469 0.3569 D2 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 D3 0.08745 0.500 -1.2394 -0.6356		С	0.08745	0.721	-0.1369	0.4669
D3 0.08745 0.121 -0.0344 0.5694 Porous 0.08745 0.000 -1.1594 -0.5556 B2 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 1.000 -0.2719 0.3319 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3669 D1 0.08745 1.000 -0.2469 0.3569 D2 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394 -0.6356		D1	0.08745	0.894	-0.1669	0.4369
Porous 0.08745 0.000 -1.1594 -0.5556 B2 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 1.000 -0.2719 0.3319 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3869 D1 0.08745 1.000 -0.2469 0.3569 D2 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394 -0.6356		D2	0.08745	0.858	-0.1594	0.4444
B2 A1 0.08745 0.649 -0.4769 0.1269 A2 0.08745 0.947 -0.1819 0.4219 A3 0.08745 1.000 -0.2719 0.3319 A4 0.08745 0.430 -0.5069 0.0969 B1 0.08745 0.997 -0.3819 0.2219 C 0.08745 0.995 -0.2169 0.3869 D1 0.08745 1.000 -0.2249 0.3569 D2 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394 -0.6356		D3	0.08745	0.121	-0.0344	0.5694
A20.087450.947-0.18190.4219A30.087451.000-0.27190.3319A40.087450.430-0.50690.0969B10.087450.997-0.38190.2219C0.087450.995-0.21690.3869D10.087451.000-0.24690.3569D20.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.000-1.2394-0.6356		Porous	0.08745	0.000	-1.1594	-0.5556
A30.087451.000-0.27190.3319A40.087450.430-0.50690.0969B10.087450.997-0.38190.2219C0.087450.995-0.21690.3869D10.087451.000-0.24690.3569D20.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.000-1.2394-0.6356	B2	A1	0.08745	0.649	-0.4769	0.1269
A40.087450.430-0.50690.0969B10.087450.997-0.38190.2219C0.087450.995-0.21690.3869D10.087451.000-0.24690.3569D20.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.000-1.2394-0.6356		A2	0.08745	0.947	-0.1819	0.4219
B10.087450.997-0.38190.2219C0.087450.995-0.21690.3869D10.087451.000-0.24690.3569D20.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.000-1.2394-0.6356		A3	0.08745	1.000	-0.2719	0.3319
C0.087450.995-0.21690.3869D10.087451.000-0.24690.3569D20.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.000-1.2394-0.6356		A4	0.08745	0.430	-0.5069	0.0969
D10.087451.000-0.24690.3569D20.087451.000-0.23940.3644D30.087450.557-0.11440.4894Porous0.087450.000-1.2394-0.6356		B1	0.08745	0.997	-0.3819	0.2219
D2 0.08745 1.000 -0.2394 0.3644 D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394 -0.6356		С	0.08745	0.995	-0.2169	0.3869
D3 0.08745 0.557 -0.1144 0.4894 Porous 0.08745 0.000 -1.2394 -0.6356		D1	0.08745	1.000	-0.2469	0.3569
Porous 0.08745 0.000 -1.2394 -0.6356		D2	0.08745	1.000	-0.2394	0.3644
		D3	0.08745	0.557	-0.1144	0.4894
C A1 0.08745 0.144 -0.5619 0.0419		Porous	0.08745	0.000	-1.2394	-0.6356
	С	A1	0.08745	0.144	-0.5619	0.0419

	A2	0.08745	1.000	-0.2669	0.3369
	A3	0.08745	1.000	-0.3569	0.2469
	A4	0.08745	0.069	-0.5919	0.0119
	B1	0.08745	0.721	-0.4669	0.1369
	B2	0.08745	0.995	-0.3869	0.2169
	D1	0.08745	1.000	-0.3319	0.2719
	D2	0.08745	1.000	-0.3244	0.2794
	D3	0.08745	0.981	-0.1994	0.4044
	Porous	0.08745	0.000	-1.3244	-0.7206
D1	A1	0.08745	0.274	-0.5319	0.0719
	A2	0.08745	1.000	-0.2369	0.3669
	A3	0.08745	1.000	-0.3269	0.2769
	A4	0.08745	0.144	-0.5619	0.0419
	B1	0.08745	0.894	-0.4369	0.1669
	B2	0.08745	1.000	-0.3569	0.2469
	С	0.08745	1.000	-0.2719	0.3319
	D2	0.08745	1.000	-0.2944	0.3094
	D3	0.08745	0.904	-0.1694	0.4344
	Porous	0.08745	0.000	-1.2944	-0.6906
D2	A1	0.08745	0.236	-0.5394	0.0644
	A2	0.08745	1.000	-0.2444	0.3594
	A3	0.08745	1.000	-0.3344	0.2694
	A4	0.08745	0.121	-0.5694	0.0344
	B1	0.08745	0.858	-0.4444	0.1594
	B2	0.08745	1.000	-0.3644	0.2394
	С	0.08745	1.000	-0.2794	0.3244
	D1	0.08745	1.000	-0.3094	0.2944
	D3	0.08745	0.932	-0.1769	0.4269
	Porous	0.08745	0.000	-1.3019	-0.6981
D3	A1	0.08745	0.009	-0.6644	-0.0606
	A2	0.08745	0.999	-0.3694	0.2344
	A3	0.08745	0.771	-0.4594	0.1444
	A4	0.08745	0.003	-0.6944	-0.0906
	B1	0.08745	0.121	-0.5694	0.0344

	B2	0.08745	0.557	-0.4894	0.1144
	С	0.08745	0.981	-0.4044	0.1994
	D1	0.08745	0.904	-0.4344	0.1694
	D2	0.08745	0.932	-0.4269	0.1769
	Porous	0.08745	0.000	-1.4269	-0.8231
Porous	A1	0.08745	0.000	0.4606	1.0644
	A2	0.08745	0.000	0.7556	1.3594
	A3	0.08745	0.000	0.6656	1.2694
	A4	0.08745	0.000	0.4306	1.0344
	B1	0.08745	0.000	0.5556	1.1594
	B2	0.08745	0.000	0.6356	1.2394
	С	0.08745	0.000	0.7206	1.3244
	D1	0.08745	0.000	0.6906	1.2944
	D2	0.08745	0.000	0.6981	1.3019
	D3	0.08745	0.000	0.8231	1.4269

A.2 Pos-Hoc Test on Studded Tire Mass Loss

				95% Confidence	
				Interval	
				Lower	Upper
		Std. Error	Sig.	Bound	Bound
A1	A2	0.2308	0.021	0.088	1.012
	A3	0.2308	0.283	-0.712	0.212
	A4	0.2308	0.316	-0.696	0.229
	B1	0.2308	0.615	-0.579	0.346
	B2	0.2308	0.118	-0.829	0.096
	С	0.2308	0.430	-0.646	0.279
	D1	0.2308	0.719	-0.379	0.546
	D2	0.2308	0.253	-0.196	0.729
	D3	0.2308	0.719	-0.546	0.379
	Porous	0.2308	0.003	-1.179	-0.254
A2	A1	0.2308	0.021	-1.012	-0.088
	A3	0.2308	0.001	-1.262	-0.338
	A4	0.2308	0.001	-1.246	-0.321
	B1	0.2308	0.006	-1.129	-0.204
	B2	0.2308	0.000	-1.379	-0.454
	С	0.2308	0.002	-1.196	-0.271
	D1	0.2308	0.048	-0.929	-0.004
	D2	0.2308	0.225	-0.746	0.179
	D3	0.2308	0.008	-1.096	-0.171
	Porous	0.2308	0.000	-1.729	-0.804
A3	A1	0.2308	0.283	-0.212	0.712
	A2	0.2308	0.001	0.338	1.262
	A4	0.2308	0.943	-0.446	0.479
	B1	0.2308	0.566	-0.329	0.596
	B2	0.2308	0.615	-0.579	0.346
	С	0.2308	0.774	-0.396	0.529
	D1	0.2308	0.154	-0.129	0.796
	D2	0.2308	0.029	0.054	0.979

Porous0.23080.048-0.929-0.004A4A10.23080.316-0.2290.696A20.23080.0010.3211.246A30.23080.943-0.4790.446B10.23080.615-0.3460.579B20.23080.666-0.5960.329C0.23080.629-0.4120.512D10.23080.0350.0380.962D20.23080.0350.0380.962D30.23080.041-0.946-0.021Porous0.23080.615-0.3460.579A10.23080.615-0.3460.579A20.23080.615-0.3460.579A30.23080.615-0.5960.329A40.23080.615-0.5960.329A40.23080.615-0.5960.329D10.23080.615-0.5960.329A40.23080.615-0.5960.329D20.23080.615-0.5990.346D30.23080.102-0.0790.846D30.23080.102-0.0790.846D30.23080.118-0.0860.829A40.23080.615-0.3460.579A50.23080.118-0.0210.712A30.23080.615-0.3460.579A50.23080.615-0.3460.579 <th></th> <th>D3</th> <th>0.2308</th> <th>0.473</th> <th>-0.296</th> <th>0.629</th>		D3	0.2308	0.473	-0.296	0.629
A2 0.2308 0.001 0.321 1.246 A3 0.2308 0.943 -0.479 0.446 B1 0.2308 0.615 -0.346 0.579 B2 0.2308 0.829 -0.412 0.512 D1 0.2308 0.176 -0.146 0.779 D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.041 -0.946 -0.021 Porous 0.2308 0.041 -0.946 -0.021 D2 0.2308 0.041 -0.946 -0.021 Porous 0.2308 0.615 -0.346 0.579 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.596 0.329 D1 0.2308 0.102 -0.162 0.138 D2		Porous	0.2308	0.048	-0.929	-0.004
A3 0.2308 0.943 -0.479 0.446 B1 0.2308 0.615 -0.346 0.579 B2 0.2308 0.566 -0.596 0.329 C 0.2308 0.829 -0.412 0.512 D1 0.2308 0.176 -0.146 0.779 D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.016 -0.146 0.779 D2 0.2308 0.016 -0.312 0.612 Porous 0.2308 0.011 -0.946 -0.021 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.615 -0.346 0.579 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.579 0.346 D1 0.2308 0.102 -0.079 0.846 D2 0.230	A4	A1	0.2308	0.316	-0.229	0.696
B1 0.2308 0.615 -0.346 0.579 B2 0.2308 0.566 -0.596 0.329 C 0.2308 0.829 -0.412 0.512 D1 0.2308 0.035 0.038 0.962 D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.518 -0.312 0.612 Porous 0.2308 0.041 -0.946 -0.021 B1 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.615 -0.346 0.579 A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.596 0.329 D1 0.2308 0.774 -0.529 0.396 D2 0.2308 0.102 -0.138 0.615 D3 0.2308 0.012 1.062 -0.138 D3 <td>A2</td> <td>0.2308</td> <td>0.001</td> <td>0.321</td> <td>1.246</td>		A2	0.2308	0.001	0.321	1.246
B2 0.2308 0.566 -0.596 0.329 C 0.2308 0.829 -0.412 0.512 D1 0.2308 0.176 -0.146 0.779 D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.518 -0.312 0.612 Porous 0.2308 0.041 -0.946 -0.021 B1 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.529 0.396 D1 0.2308 0.774 -0.529 0.396 D1 0.2308 0.102 -0.079 0.846 D2 0.2308 0.102 -1.062 -0.138 Porous 0.2308 0.118 -0.096 0.829		A3	0.2308	0.943	-0.479	0.446
C 0.2308 0.829 -0.412 0.512 D1 0.2308 0.035 0.038 0.962 D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.518 -0.312 0.612 Porous 0.2308 0.041 -0.946 -0.021 B1 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.566 -0.596 0.329 A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.596 0.329 A4 0.2308 0.774 -0.529 0.396 D1 0.2308 0.774 -0.529 0.396 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.102 -0.079 0.846 D3 0.2308 0.118 -0.021 -0.138 M2 0.2308 0.012 -1.062 -0.138 M3 </td <td></td> <td>B1</td> <td>0.2308</td> <td>0.615</td> <td>-0.346</td> <td>0.579</td>		B1	0.2308	0.615	-0.346	0.579
D1 0.2308 0.176 -0.146 0.779 D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.518 -0.312 0.612 Porous 0.2308 0.041 -0.946 -0.021 B1 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.666 -0.596 0.329 A3 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.596 0.329 A4 0.2308 0.615 -0.599 0.346 B2 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.118 -0.096 0.829 A1 0.2308 0.118 -0.021 0.138 A2 </td <td></td> <td>B2</td> <td>0.2308</td> <td>0.566</td> <td>-0.596</td> <td>0.329</td>		B2	0.2308	0.566	-0.596	0.329
D2 0.2308 0.035 0.038 0.962 D3 0.2308 0.518 -0.312 0.612 Porous 0.2308 0.041 -0.946 -0.021 B1 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.066 0.204 1.129 A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.579 0.346 B2 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.102 -1.062 -0.138 Porous 0.2308 0.118 -0.096 0.829 A1 0.2308 0.615 -0.346 0.579		С	0.2308	0.829	-0.412	0.512
D30.23080.518-0.3120.612Porous0.23080.041-0.946-0.021B1A10.23080.615-0.3460.579A20.23080.0060.2041.129A30.23080.566-0.5960.329A40.23080.615-0.5790.346B20.23080.615-0.5790.346B20.23080.714-0.5290.396D10.23080.390-0.2620.662D20.23080.102-0.0790.846D30.23080.012-1.062-0.138B2A10.23080.012-1.062-0.138A10.23080.615-0.3460.579A20.23080.012-1.062-0.138B2A10.23080.012-1.0620.596A20.23080.012-0.3460.579A40.23080.615-0.3460.579A40.23080.615-0.3460.579A40.23080.615-0.3460.579A40.23080.566-0.3290.596B10.23080.615-0.0120.912C0.23080.056-0.0120.912D20.23080.0060.1711.096D30.23080.225-0.1790.746D30.23080.135-0.8120.112D30.23080.135-0		D1	0.2308	0.176	-0.146	0.779
Porous 0.2308 0.041 -0.946 -0.021 B1 A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.006 0.204 1.129 A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.615 -0.579 0.346 B2 0.2308 0.774 -0.529 0.396 D1 0.2308 0.774 -0.529 0.396 D2 0.2308 0.774 -0.529 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.102 -0.138 0.496 Porous 0.2308 0.012 1.062 -0.138 A1 0.2308 0.012 -0.346 0.579 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.329 0.596 B		D2	0.2308	0.035	0.038	0.962
A1 0.2308 0.615 -0.346 0.579 A2 0.2308 0.006 0.204 1.129 A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.283 -0.712 0.212 C 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.102 -0.079 0.846 D3 0.2308 0.102 -0.079 0.846 D3 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.615 -0.346 0.579 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.346 0.596 B		D3	0.2308	0.518	-0.312	0.612
A2 0.2308 0.006 0.204 1.129 A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.283 -0.712 0.212 C 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.102 -0.079 0.846 D3 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.012 -1.062 0.138 A2 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.346 0.579 A4 0.2308 0.632 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2		Porous	0.2308	0.041	-0.946	-0.021
A3 0.2308 0.566 -0.596 0.329 A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.283 -0.712 0.212 C 0.2308 0.774 -0.529 0.396 D1 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.886 -0.429 0.496 Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.346 0.579 A4 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 <td>B1</td> <td>A1</td> <td>0.2308</td> <td>0.615</td> <td>-0.346</td> <td>0.579</td>	B1	A1	0.2308	0.615	-0.346	0.579
A4 0.2308 0.615 -0.579 0.346 B2 0.2308 0.283 -0.712 0.212 C 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.012 -0.079 0.846 D3 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.012 -1.062 -0.138 A3 0.2308 0.012 -1.062 0.829 A4 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.008 0.171 1.096 D3		A2	0.2308	0.006	0.204	1.129
B2 0.2308 0.283 -0.712 0.212 C 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.886 -0.429 0.496 Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.615 -0.346 0.579 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.666 -0.329 0.596 B1 0.2308 0.630 -0.279 0.646 D1 0.2308 0.430 -0.279 0.646 D2 0.2308 0.008 0.171 1.096 D2 0.2308 0.025 -0.179 0.746 D2 0.2308 0.225 -0.179 0.746 D3 <td></td> <td>A3</td> <td>0.2308</td> <td>0.566</td> <td>-0.596</td> <td>0.329</td>		A3	0.2308	0.566	-0.596	0.329
C 0.2308 0.774 -0.529 0.396 D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.886 -0.429 0.496 Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.012 -1.062 -0.138 A2 0.2308 0.012 -1.062 -0.138 A3 0.2308 0.010 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porou		A4	0.2308	0.615	-0.579	0.346
D1 0.2308 0.390 -0.262 0.662 D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.886 -0.429 0.496 Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.000 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		B2	0.2308	0.283	-0.712	0.212
D2 0.2308 0.102 -0.079 0.846 D3 0.2308 0.886 -0.429 0.496 Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.000 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.329 0.596 B1 0.2308 0.430 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		С	0.2308	0.774	-0.529	0.396
D3 0.2308 0.886 -0.429 0.496 Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.000 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.008 0.171 1.096 D2 0.2308 0.025 -0.179 0.746 D3 0.2308 0.135 -0.812 0.112 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		D1	0.2308	0.390	-0.262	0.662
Porous 0.2308 0.012 -1.062 -0.138 B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.000 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		D2	0.2308	0.102	-0.079	0.846
B2 A1 0.2308 0.118 -0.096 0.829 A2 0.2308 0.000 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.430 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.430 -0.279 0.646		D3	0.2308	0.886	-0.429	0.496
A2 0.2308 0.000 0.454 1.379 A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.430 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.135 -0.812 0.112 Porous 0.2308 0.430 -0.279 0.646		Porous	0.2308	0.012	-1.062	-0.138
A3 0.2308 0.615 -0.346 0.579 A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646	B2	A1	0.2308	0.118	-0.096	0.829
A4 0.2308 0.566 -0.329 0.596 B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		A2	0.2308	0.000	0.454	1.379
B1 0.2308 0.283 -0.212 0.712 C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		A3	0.2308	0.615	-0.346	0.579
C 0.2308 0.430 -0.279 0.646 D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		A4	0.2308	0.566	-0.329	0.596
D1 0.2308 0.056 -0.012 0.912 D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		B1	0.2308	0.283	-0.212	0.712
D2 0.2308 0.008 0.171 1.096 D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		С	0.2308	0.430	-0.279	0.646
D3 0.2308 0.225 -0.179 0.746 Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		D1	0.2308	0.056	-0.012	0.912
Porous 0.2308 0.135 -0.812 0.112 C A1 0.2308 0.430 -0.279 0.646		D2	0.2308	0.008	0.171	1.096
C A1 0.2308 0.430 -0.279 0.646		D3	0.2308	0.225	-0.179	0.746
		Porous	0.2308	0.135	-0.812	0.112
A2 0.2308 0.002 0.271 1.196	С	A1	0.2308	0.430	-0.279	0.646
		A2	0.2308	0.002	0.271	1.196

	A3	0.2308	0.774	-0.529	0.396
	A4	0.2308	0.829	-0.512	0.412
	B1	0.2308	0.774	-0.396	0.529
	B2	0.2308	0.430	-0.646	0.279
	D1	0.2308	0.253	-0.196	0.729
	D2	0.2308	0.056	-0.012	0.912
	D3	0.2308	0.666	-0.362	0.562
	Porous	0.2308	0.025	-0.996	-0.071
D1	A1	0.2308	0.719	-0.546	0.379
	A2	0.2308	0.048	0.004	0.929
	A3	0.2308	0.154	-0.796	0.129
	A4	0.2308	0.176	-0.779	0.146
	B1	0.2308	0.390	-0.662	0.262
	B2	0.2308	0.056	-0.912	0.012
	С	0.2308	0.253	-0.729	0.196
	D2	0.2308	0.430	-0.279	0.646
	D3	0.2308	0.473	-0.629	0.296
	Porous	0.2308	0.001	-1.262	-0.338
D2	A1	0.2308	0.253	-0.729	0.196
	A2	0.2308	0.225	-0.179	0.746
	A3	0.2308	0.029	-0.979	-0.054
	A4	0.2308	0.035	-0.962	-0.038
	B1	0.2308	0.102	-0.846	0.079
	B2	0.2308	0.008	-1.096	-0.171
	С	0.2308	0.056	-0.912	0.012
	D1	0.2308	0.430	-0.646	0.279
	D3	0.2308	0.135	-0.812	0.112
	Porous	0.2308	0.000	-1.446	-0.521
D3	A1	0.2308	0.719	-0.379	0.546
	A2	0.2308	0.008	0.171	1.096
	A3	0.2308	0.473	-0.629	0.296
	A4	0.2308	0.518	-0.612	0.312
	B1	0.2308	0.886	-0.496	0.429
	B2	0.2308	0.225	-0.746	0.179

	С	0.2308	0.666	-0.562	0.362
	D1	0.2308	0.473	-0.296	0.629
	D2	0.2308	0.135	-0.112	0.812
	Porous	0.2308	0.008	-1.096	-0.171
Porous	A1	0.2308	0.003	0.254	1.179
	A2	0.2308	0.000	0.804	1.729
	A3	0.2308	0.048	0.004	0.929
	A4	0.2308	0.041	0.021	0.946
	B1	0.2308	0.012	0.138	1.062
	B2	0.2308	0.135	-0.112	0.812
	С	0.2308	0.025	0.071	0.996
	D1	0.2308	0.001	0.338	1.262
	D2	0.2308	0.000	0.521	1.446
	D3	0.2308	0.008	0.171	1.096