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Executive Summary 

 

Cities and state Departments of Transportation (DOTs) struggle to collect and use bicycle 

and pedestrian data in effective and meaningful ways. Monitoring non-motorized traffic is still in 

its infancy compared to the well-developed practice of monitoring motorized traffic. The goal of 

this project was to provide guidance for improving manual bicycle and pedestrian count 

programs and investigate the feasibility of new, cutting-edge sensor technology. To this end, five 

independent studies were pursued to: 

1. Evaluate the state-of-the-practice of manual bicycle and pedestrian count programs, 

2. Assess the error associated with manual count programs, 

3. Develop a process for using manual count data for safety analysis, 

4. Explore the feasibility of using moving Bluetooth sensors to collect bicycle and 

pedestrian data, and 

5. Investigate the potential for installing Bluetooth sensors on public buses to gain better 

understanding of pedestrian interaction with public transportation. 

For the first study, an online questionnaire was sent to transportation specialists across 

the country, including the Bicycle and Pedestrian Coordinator for each state Department of 

Transportation (DOT). There were 71 responses received from 25 states. Eleven communities 

were contacted for phone interviews. Information about community-volunteers, scheduling and 

logistics, data collection techniques, and reasons for conducting manual counts were attained 

through the questionnaire. The respondents reported many communities are not using automatic 

counters, not using adjustment factors, counting infrequently, for short two hour periods, and 

rarely for more than one day. Although occasionally or regularly conducting manual counts has a 
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variety of benefits, it is not clear how the resulting snapshot counts can be used for some of the 

reasons the survey respondents claimed were motivating their count programs. For example, it is 

not readily apparent how such counts can be used for analyzing trends year-to-year. On the other 

hand, some of the stated reasons for conducting manual counts seem compatible with the 

activities underway. For example, a popular reason cited by survey respondents was to “improve 

community-wide infrastructure, signage, and paint markings” and another reason given was to 

“provide opportunities for public engagement and outreach.”  

For the second study, measurement error was assessed through a controlled field 

experiment with 25 counters at five intersections. Lower measurement error rates were observed 

when using a 4-movement data collection technique compared to a more complicated 12-

movement technique; however, the differences were not statistically significant. The overall 

median absolute percent error for the 12-movement technique was 27% and 7% for bicyclists 

and pedestrians, respectively. The field experiment showed no consistent increases in 

measurement error when counters were assigned to collect additional information about passing 

travelers, such as sex of traveler or whether bicyclists wore helmets.  

For the third study, a new method was developed to evaluate bicycle infrastructure plans 

in terms of exposure to dangerous situations. A typology of 23 dangerous situations for bicyclists 

was identified through a literature review. Exposure indicators were defined. A geographic 

information system (GIS) tool was created to analyze some of the dangerous situations and 

provide a means to compare proposed improvement projects. The tool and process are 

demonstrated for a case study community. The case study results suggest that the proposed 

bicycle master plan would decrease exposure for various dangerous situations. 
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For the fourth study, we explored the feasibility of using moving Bluetooth sensors to 

collect bicycle and pedestrian data. Fifty three people were provided a smartphone app that 

tracked their location via global positioning systems (GPS) every seven seconds for 10 days. The 

app also collected, via Bluetooth, the media access control address (MAC address) of any 

intercepted device within 100 feet. The intent of the study was twofold, first to explore the 

potential of using this passive data collection technology to replace traditional travel diaries. The 

study also provided a means to collect a richer data set of travel patterns by matching intercepted 

MAC addresses across the city, perhaps as a precursor to the data that might be collected in the 

future through vehicle-to-vehicle communications. Every night the participants logged into a 

website to verify information about their travel. They were asked to confirm trip segments, trip 

purpose, and trip mode, all of which had been inferred through algorithms we developed for the 

study. Our model predicted mode with 77% accuracy and purpose with 54% accuracy. Over 

3,000 devices were intercepted via Bluetooth and recorded over 300,000 GPS points. By 

matching MAC addresses across town, our data processing algorithms identified over 600 trips, 

most of which were determined to be pedestrian trips on the University of Idaho campus. 

For the fifth study, smartphones with the GPS/Bluetooth app were placed on buses 

traveling between the University of Washington campus and South Lake Union Neighborhood in 

Seattle. During the study period 11,041 devices were intercepted. After data processing we 

determined that 403 bus riders were intercepted. Boarding and alighting locations were 

determined for the intercepted riders. This study showed that the number of passengers carrying 

active wireless devices is sufficient to provide a sizable sample of the population, and that the 

boarding and alighting location of passengers can be inferred from detection time and GPS 

location. 
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Chapter 1 Introduction 

1.1 Problem Statement 

Cities and state Departments of Transportation (DOTs) struggle to collect and use bicycle 

and pedestrian data in effective and meaningful ways. Monitoring non-motorized traffic is still in 

its infancy compared to the well-developed practice of monitoring motorized traffic. In the last 

few years there has been an explosion of citizen-volunteer programs to manually count bicycle 

and pedestrian volumes. These “grass-roots” efforts to improve bicycle and pedestrian data 

collection have been motivated by concerns about the environment, community livability, 

obesity, and personal safety. There are exciting opportunities for using these data for 

transportation planning purposes in addition to the benefits of increased citizen engagement, but 

there are also a number of challenges because the count durations are usually very short 

(typically only two hours), sporadic, and sometimes inconsistent in terms of when, where, and 

who is collecting the data. In the last few years there have also been significant advances in 

sensor technology which have greatly increased the possibilities for automated data collection; 

but these methods also pose a number of challenges that need to be overcome, including 

counting error due to occlusion, cost, and the limitations of low-fidelity information compared to 

a human counter that can collect information about direction of travel, sex of traveler, helmet 

use, etc.  

1.2 Project Objectives, Research Approach, and Report Organization 

The overall goal of this project was to provide guidance for improving manual bicycle 

and pedestrian count programs and investigate the feasibility of new, cutting-edge sensor 

technology. To this end, the following five project objectives were pursued: 
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 Evaluate the state-of-the-practice of manual bicycle and pedestrian count 

programs, 

 Assess the error associated with manual count programs, 

 Develop a process for using count data for safety analysis, 

 Explore the feasibility of using moving Bluetooth sensors to collect bicycle and 

pedestrian data, and 

 Investigate the potential for installing Bluetooth sensors on public buses to gain 

better understanding of pedestrian interaction with public transportation. 

This project was led by researchers at the University of Idaho (UI) and the University of 

Washington (UW). The UI team worked on objectives 1 to 4 and the UW team worked on 

objective 5.  

The chapters of this report address each objective as follows. Chapter 2 describes the 

evaluation of manual bicycle and pedestrian count programs. An online survey was sent to the 

Bicycle and Pedestrian Coordinator for all 50 state DOTs. Chapter 2 also presents the results of 

an assessment of the error associated with manual count programs. Chapters 3 demonstrates how 

manual counts can be spatially extrapolated to estimate bicycle demand throughout a 

community. Chapter 4 describes the new process that was developed to use the demand 

estimation for safety analysis. Chapter 5 presents the UI teams study of moving Bluetooth 

sensors. The moving sensors were given to 50 study participants for a week in the fall of 2012 

and spring of 2013. Chapter 6 describes the UW team’s study of moving Bluetooth sensors. 

Sensors were placed on buses as they traveled around the UW campus and to downtown Seattle. 
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Chapter 3 Evaluation of Manual Count Programs 

2.1 Introduction  

Walking and bicycling are increasingly recognized as sustainable modes of transportation 

(Buehler and Pucher 2011). Throughout the United States there has been a surge in community-

volunteer manual count programs to collect bicycle and pedestrian traffic volume data. The 

volunteers are provided clipboards, clickers, computer tablets, or some other method to tally 

volumes of non-motorized travelers that pass by a location during a certain time period. 

Communities are using manual count programs as a low cost and flexible way to gather data 

while providing an engaging means for public participation.    

In the United States, manual count programs are conducted and coordinated by various 

entities, such as cities, counties, state departments of transportation, and advocacy groups. For 

example, the Washington State Department of Transportation (WSDOT) has supervised a 

community-volunteer count program since 2008. The most recent WSDOT count involved 38 

jurisdictions, totaling more than 409 observations at intersections (Traffic Monitoring Guide 

2013). The California Department of Transportation recently funded an online data-

clearinghouse for local communities to upload and share data from their independent count 

programs (Huff & Brozen, 2014).  

The National Bicycle and Pedestrian Documentation Project (NBPD), a collaborative 

effort by Alta Planning+Design and the Institute of Transportation Engineers, is a pioneer in 

manual counts (Los Angeles County Bicycle Coalition 2013). The NBPD webpage provides 

count forms, recommendations for choosing count locations, and a presentation for training 

community members. The NBPD recommends conducting counts four times per year, once for 
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every season, for two hours in the morning (7:00am-9:00am) and two hours in the evening 

(4:00pm-6:00pm). 

Manual count programs continue to proliferate as communities increasingly turn to non-

motorized transportation as a means to establish healthy, livable communities (Forsyth and 

Oakes 2015; Ryan 2013). Consequently, there is substantial work underway to better understand 

the issues and challenges related to bicycle and pedestrian traffic counts (Griffin et al. 2014). 

Much of the work has focused on understanding daily and annual patterns and the impact of 

temperature and weather (Aultman-Hall et al. 2009), with the goal of developing adjustment 

factors that can be used to adjust (or inflate) short-duration counts to annual volumes (El Esawey 

et al. 2013; Figliozzi et al. 2014; Lindsey et al. 2013). Communities with permanent automatic 

counters can create community-specific adjustment factors from a year’s worth of continuous 

data. Alternatively, communities can use factors developed elsewhere, such as the generic factors 

provided on the NBPD website (NBPD 2014). However, Nordback et al. (Nordback et al. 2013) 

concluded that counts obtained over a very short duration (i.e. only a few hours) cannot be 

adjusted reliably to estimate annual volumes and they warn against using counts from less than 

one week.  

Count error (i.e. measurement error) incurred by volunteer-counters is another possible 

challenge associated with manual count programs. Diogenes et al. (Diogenes et al. 2007) 

conducted an error assessment for pedestrian counts collected by contracted staff from a “private 

consulting firm specializing in data collection” and reported error rates ranging from 8% to 25%. 

Their study did not investigate if community-volunteers would exhibit a higher error rate or if 

error increases when volunteers are expected to collect additional information, such as direction 
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of travel, sex of the traveler, or the approximate age of the traveler. The implications that effect 

measurement error depend largely on the reasons for collecting the count data. 

There is little known about why communities are conducting manual counts, nor how 

volunteers are being trained and instructed. The Federal Highway Administration sponsored a 

study to assess the state-of-the-practice of bicycle and pedestrian data collection to help craft the 

new chapter on non-motorized transportation in the new Traffic Monitoring Guide (USDOT 

2011). However, the study was not focused on manual count programs and most of the final 

report deals with automatic counting technologies. The study included a poll of transportation 

specialists that reported the most common reason for collecting bicycle and pedestrian data was 

project evaluation (before and after studies) and safety analyses. It is not clear if manual counts 

that involve community-volunteers are done for the same reasons. Schneider et al. (Schneider et 

al. 2005) conducted a similar state-of-the-practice questionnaire concerning all aspects of bicycle 

and pedestrian data collection, including automatic count technology, intercept surveys, and 

infrastructure inventories. They profiled 29 communities, 6 of which reported conducting manual 

counts, but it seems they were referring to counts done by staff, not volunteers. In fact, one 

community spokesperson noted two staff members are typically assigned to count at low volume 

intersections and three staff members are often assigned to heavy traffic intersections.      

Therefore, the intent of this study was twofold; (1) to gain a better understanding of how 

and why communities are conducting manual counts and (2) to assess the error that might occur 

for different manual count techniques. An online questionnaire was emailed to transportation 

specialists across the USA and received 71 responses from 25 states. Eleven communities were 

contacted for phone interviews. The error assessment involved a controlled field experiment with 

25 counters at 5 intersections.  
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2.2 Background 

There are various techniques a community can use to count bicyclists and pedestrians. 

The most basic approach is to simply tally all non-motorized travelers who pass by a certain 

point, regardless of method of travel or direction of movement. Another approach is to keep a 

separate tally for “bicyclists”, “pedestrians”, and “other” for particular travel movements. Figure 

2.1 shows various movements that can be captured by volunteer-counters. Screenline counts are 

conducted mid-segment, while the other techniques collect data at intersections. The NBPD 

provides forms for a screenline count and a 12-movement count, while WSDOT uses the 4-

movement leaving technique.  

 

 
Figure 2.1 Schematic of different count techniques.    

 

Community volunteers are often assigned to collect additional information, such as sex of 

the traveler, the approximate age, and group size. The additional information can be tallied using 

unique markings or by providing separate boxes on the count form. The NBPD forms provide 

separate boxes for tallying male and female pedestrians, and suggest tallying bicyclists on 

sidewalks. Schneider et al. (2005) reported that one community profiled in the their study has 

assigned their staff to collect additional information about in-line skaters, scooters, joggers, 
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people walking dogs, people walking with strollers, wheelchair users, bicyclists with helmets, 

and bicyclists riding in the proper direction.   

2.3 Methods 

The first part was an online questionnaire sent to practitioners across the country. The 

second part of this study was a controlled field observation to assess the measurement error 

exhibited by a group of volunteer counters. Both parts of the study were deemed exempt by the 

University of Idaho Institutional Review Board. 

2.3.1 Practitioner Questionnaire 

A 26-item questionnaire was created to gain a better understanding of why communities 

are conducting manual counts and how the counts are being collected. The questionnaire 

inquired about a variety of topics germane to manual bicycle and pedestrian count programs, 

including characteristics of community volunteers, count locations and other logistics, count 

forms and movements counted, availability of automated count equipment, use of adjustment 

factors and other resources, purposes of the counts, additional information collected while 

counting, and challenges and suggestions for improving manual counts. The questions (likert 

scale, open-ended, check box, and multiple choice) were based on the research team’s experience 

working with bicycle and pedestrian count programs, and feedback from professional 

consultants. A web-link to the questionnaire was emailed to the individual(s) that were identified 

as the Bicycle and Pedestrian Coordinator for every State Department of Transportation (DOT). 

The email requested the coordinators to forward the questionnaire to anyone working with 

manual bicycle and pedestrian count programs. Questionnaire respondents were invited to pass 

the questionnaire on as well (i.e. snowball sampling). A few selected communities were 

contacted by the researchers for open-ended phone interviews. 
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2.3.2 Error Assessment  

The error assessment was conducted in Moscow, Idaho (population 24,500), a 

community with a large amount of bicycling and walking due to the presence of the University 

of Idaho. The community has conducted manual counts every autumn for the past four years 

(2010-2013), involving approximately 30 community-volunteers annually. The pool of 

volunteers includes university students, retired community members, adolescents, and advocates 

for non-motorized transportation.  

In the present study, twenty-five university students were recruited to perform the counts. 

This participant pool was selected in order to replicate a typical group of counters for the 

community, and to minimize educational and age differences amongst the counters. None of the 

count participants had participated in any of the community’s official count events. Count 

participants engaged in classroom training sessions using the NBPD training presentation (11). 

The participants also performed a 1 hour practice count at their assigned location prior to the 

study.  

Count participants were randomized into five equal groups and assigned to count at a 

high volume intersection on two different occasions between 7:00-9:00 AM or 4:00-6:00 PM on 

a Tuesday, Wednesday, or Thursday over a two week time period during the spring. Count 

groups were assigned to use either a 4-movement leaving form or a 12-movement form during 

their manual counts, the order of which was randomized (Figure 2a and Figure 2b).  
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(a) 

 
(b) 

 

 
(c) 

 

Figure 2.2 Counting forms used for error assessment (a) 4-movement (b) 12-movement (c) 

enlarged tally key for assignment 5.  

 

If a group was assigned to a particular count form during their first session, they used the 

other form during their second session, so no group used the same form for both of their counts. 

Within each group, each counter was randomly assigned to record additional information about 

the travelers passing through the intersection. The five assignments were: 

 Assignment 1: method of travel and direction of travel 

 Assignment 2: method of travel, direction of travel, and sex of traveler 
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 Assignment 3: method of travel, direction of travel, sex of traveler, and bicyclist helmet use  

 Assignment 4: method of travel, direction of travel, sex of traveler, bicyclist helmet use, and if 

a bicyclist was riding on sidewalk or street (legal use)  

 Assignment 5: method of travel, direction of travel, sex of traveler, bicyclist helmet use, legal 

use, and if the person traveling through the intersection was an adult or child. 

 

The assignment information and ordering was determined based on observed frequency 

of each assignment during pilot testing. A block randomization technique was used for all 

randomizations (Kang et al. 2008). Figure 2c shows the key for the forms used in this study; 

count participants only used symbols that were applicable to their assignment. 

Two video recorders were placed at intersections to record all travelers. After the field 

count, two researchers tallied counts based on the video recordings and reconciled any 

differences between them by returning to the video segments. Absolute percent error (APE) was 

calculated as follows 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =  |
𝑇𝑜 − 𝑇𝑣

𝑇𝑣
| ∗ 100 

where To is the count observed in the field and Tv is the count obtained from the video recording. 

Data are reported in the results as median values and interquartile ranges because the raw 

data were not normally distributed. Wilcoxon-Mann-Whitney tests were then used to compare 

APE for the bicycle and pedestrian counts for the 4-movement leaving and 12-movement 

techniques. An α of 0.05 denotes the presence of statistically significant differences. SAS 9.3 

software was used for all statistical analyses.  

At the conclusion of the study, count participants were asked to complete a short 

debriefing survey to gather additional feedback about their experience.  
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2.4 Results 

2.4.1 Questionnaire and Interview Findings 

The online questionnaire received 71 responses from 25 states (Arizona, California, 

Connecticut, Georgia, Idaho, Indiana, Kansas, Louisiana, Maine, Massachusetts, Michigan, 

Minnesota, North Carolina, North Dakota, Nebraska, New Hampshire, New Mexico, Nevada, 

Ohio, Rhode Island, South Carolina, South Dakota, Vermont, Washington, and West Virginia). 

A little more than half of the respondents (n=47) said they have been involved with manual count 

programs in more than one community. These respondents primarily worked for Metropolitan 

Planning Organizations (32%), State DOT (23%), or consulting firms (11%). Fifty-three percent 

of them identified their organization as being highly involved with count programs, with the 

other 47% reporting their organization as having low involvement. 

The rest of the respondents (n=24) said they have been involved with manual counts in 

only one community. The single-community respondents were then asked additional questions; 

eleven communities were contacted for phone interviews. The single-community respondents 

came from communities of varying population size: less than 25,000 (25%), 25,000-50,000 

(21%), 50,000-100,000 (17%), and greater than 100,000 residents (37%). Sixty-seven percent of 

single-community respondents identified their involvement as being “highly involved” with 

manual bicycle and pedestrian counts, while the other 33% reporting their involvement as “low.” 

Most of the single-community respondents said their count programs began recently, with 

responses such as 2012 (21%), 2009 (17%), 2010 (8%), and 2007 (8%). 

An additional 21 responses were excluded from the analyses because they reported not 

having any involvement with a manual bicycle and pedestrian count program. 
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2.4.2 Community-Volunteer Characteristics and Count Locations 

The single-community respondents (n=24) were asked questions about their community’s 

most recent count event, including questions seeking to better understand the composition of 

community volunteers. The majority of respondents (83%) suggested that only a few or none of 

their volunteers were minors. About half of the respondents (46%) said seniors participated in 

their most recent count and 4% said that seniors comprised the majority of the counters. Most of 

the respondents (71%) reported the involvement of “first time” counters and 21% said “first 

time” counters were the majority of their volunteers. Thirty-three percent of the respondents 

stated the majority of their volunteers were from bicycle and pedestrian advocacy groups. Many 

of the respondents (63%) reported paid staff was also involved with the count, but only 8% 

reported their community participants were paid.  

The single-community respondents reported counting an average of 15 locations for their 

most recent count, lasting for 4 hours per day, presumably for 2 hours in the morning and 2 hours 

in the afternoon. In order to get a sense of geographic spread, a few of the communities 

contacted by phone were asked for additional information about their count locations. For 

illustration, Figure 2.3 shows the count locations for the most recent count for a small 

community and large city. Both communities had about 25 locations. The small community, 

Moscow, Idaho, exhibits a much higher density of count locations per square mile. The large 

city, Seattle, Washington, has the advantage of six permanent automatic counters (one permanent 

counter only detects bicyclists and the other five were installed in 2013).  
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(a) 

 
 

(b) 

Figure 2.3 Count locations for (a) Moscow, Idaho and (b) Seattle, Washington. 

 

2.4.3 Count Techniques and Schedule  

All respondents were asked about the movements typically counted. It was reported that 

the following count techniques are used: screenline (38%), 4-movement approaching the 

intersection (16%), 4-movement leaving the intersection (7%), 12-movement (30%), total count 

without information about movement direction (16%), and some other movement that was not 

presented as an option (1%). Eleven percent of respondents did not know what types of forms are 

used or what movements are typically counted. Most of the respondents said their counters were 

assigned to collect additional information. Table 2.1 shows the additional information collected 

for each count technique.  
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Sixty percent of the respondents reported their most recent count or the typical count 

lasted for just one day, 9% reported durations of two consecutive days, 17% reported three 

consecutive days, and 13% did not know. Respondents stated that counts are typically conduct 

on the following days: Monday (21%), Tuesday (69%), Wednesday (68%), Thursday (69%), 

Friday (20%), Saturday (45%), Sunday (17%), and 13% of respondents suggested they did not 

know. Counts occur during the autumn (63%), spring (33%), summer (8%), winter (0%), or on 

demand (13%). Eight percent of the respondents were unsure in what season their counts 

typically took place.  

 

Table 2.1 Additional information collected with different count techniques according to 

survey respondents. 

Information 

collected 

Screenline 

(%, n=27) 

4-movement 

approaching  

(%, n=11) 

4-movement 

leaving  

(%, n=5) 

12-movement 

(%, n=21) 

Count without 

movement information, 

(%, n=11) 

Count Only 4 32 27 16 13 

Sex 23 16 18 18 33 

Helmet 26 16 27 13 20 

Legal Use 23 21 18 29 7 

Age 21 16 9 18 20 

Other 4 0 0 5 7 

Note: Some respondents reported using multiple count techniques. 

 

2.4.4 Adjustment Factors, NBPD Resources, and Training 

Ninety-two percent of the single-community respondents reported not using automatic 

counters and none of the remaining 8% who said they use automatic counters said they use them 

to create temporal adjustment factors. Likewise, only a few respondents (19%) who have worked 

with multiple communities reported using automatic counters and none said they use the 
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automatic counters to create adjustment factors. Furthermore, only 4 communities reported using 

the NBPD adjustment factors. 

Other NBPD resources are commonly used. Seventy two percent of the respondents 

reported using NBPD count forms, recommendations about when and where to count, or training 

material. Respondents said training community-volunteers typically involved providing 

instructional handouts (51%), giving a PowerPoint presentation (38%), or conducting a live 

demonstration (28%). 

2.4.5 Purpose of the Count 

Respondents were asked about the reasons and purpose of conducting manual counts in 

three different ways. First, they were asked through an opened-ended question to provide reasons 

for conducting manual counts. This was a required question, so every respondent had to provide 

an answer to be able to proceed with the questionnaire. A few respondents simply said they 

collect the data for the purpose of providing it to someone else, such as a State DOT or advocacy 

group. Many of the respondents provided detailed and thoughtful responses. Responses included, 

planning for infrastructure improvements, analyzing trends year-to-year, and applying for grants.   

Later in the questionnaire, respondents were asked a second time what they use count 

data for; they were shown a list of reasons for conducting manual counts and asked to identify 

which reasons from the list they believed to be valid and useful. This was followed by the third 

method of inquiry whereby respondents were shown the same list again and asked to select one 

reason as the most important reason. Table 2.2 shows the results from these questions.  

The single-community respondents reported submitting their data to advocacy groups 

(33%) and/or the State DOT (29%). The respondents were not asked the reason for submitting 

data to other organizations. 
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Table 2.2 Survey respondent’s reasons for collecting manual count data. 

Reasons for conducting counts 

Selected as 

Most Important 

Reason (%) 

Identified as a  

Valid and Useful 

Reason (%) 

Improving community-wide infrastructure, signage, and 

paint markings 
27 66 

Analyzing trends year-to-year 23 79 

Raising awareness about bicycle and pedestrian activity 18 89 

Assessing safety concerns 15 65 

Providing public engagement and outreach 5 69 

Applying for grants 4 76 

Determining the percentage of bicyclists and pedestrians that 

travel throughout the community 
4 69 

Validating travel demand models 3 59 

Improving location-specific infrastructure, signage, and paint 

markings 
0 78 

Measuring physical activity 0 47 

Making adjustment to traffic signal timing 0 44 

Making comparisons with other communities 0 40 

Assessing economic vitality 0 36 

 

2.4.6 Challenges and Suggestions for Improvement 

Recruiting volunteers is a problem, as 47% of respondents mentioned needing more 

people to participate in manual counts when asked with an open-ended question about the 

challenges facing their manual count programs. Other responses included concerns about count 

error (22%), lack of funding for manual count programs (18%), the time involved to train 

volunteers and organize count events (16%), and the limitations of short-duration counts (12%). 
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When asked about the quality of volunteer training efforts, 38% of single-community 

respondents thought their current training techniques were sufficient, and 25% stated training 

should be improved to ensure quality control. This differs from the respondents who have been 

involved with multiple communities—only 17% thought training was sufficient, while 45% 

thought more and better training is needed to ensure accurate counts.  

2.4.7 Observed Error 

Across the five intersections, 348 bicyclists and 1,838 pedestrians were counted (only 8 

were children). The overall APE for counting bicyclists and pedestrians with the 4-movement 

leaving technique was 11% and 4%, respectively; whereas, the overall median absolute error 

percentage for counting bicyclists and pedestrians with 12-movement technique was 27% and 

7% respectively. The APE differences between the 4- and 12-movement techniques were 

significantly different for bicycles (P<0.05), but not pedestrians (P=0.051). After removing the 

data for two participants who admitted to erroneously counting bicyclists that walked their bikes 

as “pedestrians”, the difference between the 4- and 12-movement techniques was no longer 

statistically significant for bicycles (P=0.069). In other words, despite a greater APE for the 12-

movement technique, the apparent differences might be due to random chance. Table 2.3 

presents error rates between the 4-movement leaving technique and 12-movement technique for 

each assignment level.  
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Table 2.3 Field study median absolute percent error. 

    Median Absolute Percent Error (Interquartile Range) (%) 

Count 

Assignment 

 Bicyclists  Pedestrians 

  Count Males Females Helmet Sidewalk   Count Males Females 

4-Movement Leaving Technique 

1  17 (38) - - - -  3 (26) - - 

2  11 (33) 8 (46) 38 (61) - -  5 (19) 6 (18) 7 (23) 

3  17 (24) 13 (35) 25 (63) 32 (49) -  5 (19) 5 (16) 10 (21) 

4  8 (5) 0 (5) 25 (54) 11 (134) 100 (87)  4 (18) 2 (20) 6 (19) 

5  11 (20) 7 (34) 67 (66) 8 (111) 15 (143)  4 (6) 2 (11) 4 (3) 

12-Movement Technique 

1  30 (51) - - - -  8 (9) - - 

2  27 (57) 15 (62) 73 (105) - -  7 (9) 9 (7) 15 (10) 

3  28 (29) 14 (12) 91 (201) 9 (26) -  7 (23) 6 (21) 15 (22) 

4  26 (24) 11(13) 100 (119) 15 (30) 18 (106)  7 (20) 8 (11) 9 (26) 

5   30 (34) 14 (41) 100 (100) 14 (30) 13 (88)   8 (11) 7 (10) 13 (17) 

Note: - = count not assigned. 

2.5 Discussion 

The intent of this study was to assess the error that might occur for different manual 

count techniques, and to gain a better understanding of how and why communities are 

conducting manual counts. The results from the error assessment and findings from the 

practitioner survey reveal a number of important implications.  

Foremost, this study confirms the presence of error in manual bicycle and pedestrian 

counts. We hypothesized that the 12-movement technique would exhibit more error than the 4-

movement leaving technique, but surprisingly, the differences were not statistically significant. A 

likely explanation for the lack of statistically significant differences between the two techniques 
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is related to the large variability in measurement error between the counters. For example, the 

absolute percent errors for pedestrians ranged from 0 to 38% and 1 to 28% for the 4- and 12-way 

techniques, respectively. Therefore, the magnitude of measurement errors made by the counters 

is highly variable, irrespective of the technique used. 

We had assumed the 12-movement technique was more cumbersome since it requires 

counters to more carefully track each traveler’s movement through the intersection. However, in 

the debriefing survey a participant from the study noted that both techniques require the counter 

to wait for travelers to complete their entire movement before a tally can be made. Perhaps, error 

is incurred as counters wait for slow travelers to cross one crosswalk, and then another 

crosswalk, and then finally complete their movement all in the same time while other bicyclists 

and pedestrians have traveled through the intersection. For this reason, the 4-movement 

approaching technique might be more user-friendly and less prone to error since volunteer 

counters can immediately tally a traveler without needing to track any further movement. Future 

research should investigate the error associated with the 4-movement approaching technique.  

The survey respondents stated the techniques most commonly used are the screenline and 

12-movment techniques. Presumably, the advantage of the screenline technique is how user-

friendly it can be for volunteers. The results of the survey suggest that communities often 

combine screenline counts with assignments to collect additional information. This study did not 

assess the error associated with screenline counts. Future research should fill this gap. The 

advantage of the 12-movement technique is the extra information gathered about direction of 

travel. Those extra data can be especially useful for validating travel demand models or making 

inferences about corridor flow, and origin and destination patterns.  
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Prior to the error assessment, we suspected error would increase when counters are 

assigned to collect additional information. Surprisingly, there was no apparent difference in error 

across the assignment levels for additional information. If a community desires to collect 

additional information, they might consider using the key presented in Figure 2c. Conversely, 

participants in our study reported that assignments to collect additional information were onerous 

and frustrating. For this reason, a community might want to save their volunteers the burden of 

collecting additional information.  

Many of the questionnaire respondents stated that volunteer counters are assigned to 

collect information about the sex of the traveler. The error assessment appears to show greater 

error in determining the sex of bicyclists when compared to determining the sex of a pedestrian. 

This was likely because bicyclists traveled much faster and often wore additional equipment and 

clothing (e.g., helmet, sunglasses). Our study occurred during the spring; future research could 

investigate if the error in determining sex is more or less pronounced during cooler or warmer 

temperatures.  

According to the survey, community-volunteers are often “first time counters.” This 

might be another source of error. Manual count programs seem to be new (most programs in the 

survey started within the last five years), so there is possibility that communities will begin to 

have repeat-volunteers. However, the survey respondents cited recruiting and retaining 

volunteers as the biggest problem they encounter, and most of the participants from the error 

assessment stated in the debriefing survey that a two-hour count was long and boring. These 

findings highlight another possible source of error—fatigue. Diogenes et al. (2002) observed 

greater error at the beginning and end of counting, which they attributed to unfamiliarity and 

fatigue, respectively. Many count programs involve members of bicycle and pedestrian advocacy 
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groups, who might demonstrate greater stamina and, perhaps, exhibit less error. However, one 

community leader who was interviewed expressed concern that advocates might inflate count 

numbers in hopes of sending a stronger message to city council about walking and bicycling 

prevalence.  

The error incurred by counters is possibly overshadowed by unreliability that is inherent 

to counting programs that are infrequent, cover a very short-duration, and cannot be compared 

with data from nearby permanent automatic counters. Most respondents reported counting for 

only one day and many reported counting only once per year. Counting in this manner provides 

merely a “snapshot” of non-motorized transportation and is highly susceptible to non-recurring 

variation. For example, it is possible a snapshot has occurred, unbeknownst to the counters, when 

a mothers’ group was walking by or during a large sale at a nearby retail center. Such variation is 

highly unpredictable. Variation due to weather, on the other hand, can be accounted for by 

making comparisons with continuous data obtained from automatic counters. However, very few 

survey respondents reported having or using permanent automatic counters. Nor did many 

respondents report using the NBPD adjustment factors. It is possible communities don’t need to 

make temporal adjustments; it largely depends on their reasons for collecting manual count data.  

Some of the reasons cited by the survey respondents for conducting manual counts seem 

unrealistic and possibly flawed. Through an opened-ended question we asked respondents to 

provide their own list of reasons for conducting short-duration manual counts. Next, we provided 

a list of reasons and asked respondents to identify those they believed to be valid and useful. It 

turned out that the respondent list and our list were fairly similar. In our list we intentionally 

included a few reasons we believed to be flawed. For example, it is not clear how short-duration 

manual counts, from a few intersections, can be used for “determining the percentage of 
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bicyclists and pedestrians that travel throughout the community”, yet more than two-thirds of the 

survey respondents identified that as a valid and useful reason. Likewise, it is not readily 

apparent how a handful of snapshot counts can be used to “measure physical activity rates”, yet 

nearly half the respondents identified that as a valid and useful reason. Another possibly 

debatable reason that was cited (to “make comparisons with other communities”) is most likely 

impossible because count-totals depend on when, where, and how many locations were involved. 

Finally, a reason frequently provided by respondents and selected by many as “the most 

important reason” is to “analyze trends year-to-year”. However, it is doubtful that reliable trends 

can be identified using short-duration sporadic counts, especially if automatic continuous 

counters are not nearby and available for making seasonal and temporal adjustments. 

Some of the other reasons cited by the survey respondents seem more realistic. For 

example, the reason that was selected by the most respondents as the “most important reason” to 

conduct manual counts is “improving community-wide infrastructure, signage, and paint 

markings”. Although this reason is somewhat vague, it is easy to imagine how snapshot data 

might be useful for comparing the magnitude of non-motorized traffic at different intersections 

across a community. Likewise, it is conceivable that manual counts can play an important role 

for “validating travel demand models.” Manual counts can also serve an important starting point 

for further analyses to “assess safety concerns”, “make adjustments to traffic signal timing”, and 

“assess economic activity”. 

Error in count data has little or no bearing for some of the key reasons identified by 

respondents. For example, “providing an opportunity for public engagement and outreach” is an 

important reason to establish a manual count program, yet success can be achieved regardless of 
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the data accuracy. Likewise, “raising awareness about bicycle and pedestrian activity” and 

“applying for grants” are somewhat independent of the actual data that is collected.  

Nevertheless, researchers and practitioners should continue to develop strategies to 

reduce error, resolve concerns about reliability, and find meaningful ways to use the data. It is 

possible that better training programs for community volunteers could improve error rates. Error 

rates might be reduced by saturating an intersection with multiple counters and averaging the 

results; in which case, count program managers would need to balance the tradeoff of improving 

accuracy at the cost of reducing geographic coverage. A noteworthy characteristic of 

community-volunteer count programs is the unique opportunity to simultaneously collect data at 

locations throughout a community. Traditional traffic monitoring programs for vehicle traffic 

usually do not achieve synchronized counting at so many locations. Researchers should seek 

ways to take advantage of the wide geographic snapshot obtained during manual count events. 

Large communities might consider concentrating counters in specific neighborhoods to capture 

greater count density per mile.  

Finally, researchers and practitioners should explore what steps are needed to expand 

count events for more consecutive days and more periodically throughout the year. Strategies 

should be developed to determine the optimal schedule to increase reliability. Researchers should 

continue to look for innovative, low cost alternatives to traditional permanent counters, such as 

using existing municipal cameras at intersections and other locations, taking advantage of 

existing inductive loops, and coordinating with vehicle traffic monitoring programs.    
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2.6 Conclusion 

Using community-volunteers to collect manual bicycle and pedestrian counts can be a 

low cost strategy to collect sustainable transportation data while providing a means for public 

engagement. The first part of this study involved an online survey to identify how and why 

communities are conducting manual counts. The respondents were not a random representative 

sample across the country, nevertheless there was fairly broad response and the findings provide 

an instructive description of current practices. The respondents reported many communities are 

not using automatic counters, not using adjustment factors, counting infrequently, for short two-

hour periods, and rarely for more than one day. It is not clear how the resulting snapshot counts 

can be used for some of the reasons the survey respondents claimed were motivating their count 

programs. For example, it is not readily apparent how such counts can be used for analyzing 

trends year-to-year. On the other hand, some of the stated reasons for conducting manual counts 

seem compatible with the activities underway. For example, a popular reason cited by survey 

respondents was to “improve community-wide infrastructure, signage, and paint markings” and 

another reason given was to “provide opportunities for public engagement and outreach.” Count 

program managers should conduct a careful self-assessment of their capabilities, limitations, and 

goals to clearly define their purpose for conducting manual count programs that involve 

community-volunteers. In particular count program managers should decide if they are striving 

to have a public involvement activity that produces count data as a byproduct, or vice-versa, or a 

program that strives to achieve both goals equally. 

The second part of this study used a controlled field experiment to assess error exhibited 

by a group of counters. Statistical inferences are limited to the particulars of the study, yet the 

essential results are reasonably transferable. The assessment found a slight difference in absolute 
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percent error between counts collected using the 4-movement leaving technique and the more 

complicated 12-movement technique; however, the differences were not statistically significant. 

It is worth noting that the accuracy of counts were highly variable between participants, 

regardless of the technique used. Since the 12-movement technique provides substantially richer 

data without degrading accuracy, manual count program managers should consider using the 12-

movement technique. This study also showed no apparent increase in error when counters were 

assigned to collect additional information about passing travelers. However, feedback from study 

participants suggests the task of collecting additional information can be burdensome. 

Furthermore, a survey of practitioners showed that although many count programs assign their 

volunteers to collect additional information, the data that are typically collected, such as sex of 

traveler and helmet use, do not seem to correspond with the reasons given for conducting manual 

counts. Consequently, manual count program managers should forego collecting additional 

information during scheduled count events and instead focus on taking advantage of the 

opportunity to simultaneously collect count data across a wide geographic area. Perhaps, 

additional information, such as helmet use, could be collected by staff when time permits or as 

needed. 

 

  



26 

 

  



27 

Chapter 5 Estimating Bicycle Demand 

3.1 Introduction 

Bicycle volume data is scarce, but there are efforts underway to increase data collection. 

The National Bicycle and Pedestrian Documentation Project (NBPD) is a coordinated effort that 

aims to provide a consistent model of bike and walk data collection methods and ongoing data 

collection (National Bicycle and Pedestrian Documentation Project, 2014). The Project has been 

successful at increasing what scarce data is available. Data collection methods consist of two 

basic types: automatic bicycle counters and manual count programs. Automatic counters provide 

continuous data but these systems require up front capital outlays of $2,000 to $10,000 

(Nordback et al., 2013) and thus are rare and concentrated to main routes. Manual data collection 

is lower cost and more flexible, and an increasingly popular method is citizen-volunteer manual 

count programs which typically involve providing citizen-volunteers with clipboards to 

simultaneously collect data at several locations. The counts are typically conducted one or two 

times a year during peak travel periods to create a “snapshot” of bicycle and pedestrian travel 

throughout the community. For example, the NBPD recommends conducting counts four times 

per year, once for every season, for two hours in the morning (7:00am-9:00am) and two hours in 

the evening (4:00pm-6:00pm). 

Count programs are coordinated and conducted by entities at various levels. For example, 

the Washington State Department of Transportation (WSDOT) has supervised a citizen-

volunteer count program since 2008. The most recent WSDOT count involved 38 jurisdictions 

and more than 409 observations at intersections (Cascade Bicycle Club, 2013). The California 

Department of Transportation recently funded an online data-clearinghouse for local 
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communities throughout southern California to upload and share their data from their count 

programs (Huff, 2014). 

Our research was conducted with data from Bellingham, WA, where the city administers 

a volunteer data collection program as part of a statewide effort coordinated by the Washington 

State Department of Transportation. Bellingham was selected because it has one of the most 

robust bicycle volume data sets in the Pacific Northwest, and because it is a relatively isolated 

urban area rather than a large metropolis with complex travel patterns. The City of Bellingham 

has participated in WSDOT’s citizen-volunteer count program every year since 2006, when five 

locations were counted. Over time the count has expanded and by 2013, 18 locations were 

counted (Cascade Bicycle Club, 2013). Figure 3.1 displays the distribution of the count locations 

and relative bicycle volumes observed.  

Data collection points are located at street intersections and intersections of streets and 

trails, in several cases the locations have been moved due to construction. Pedestrians and 

cyclists are counted as they leave the intersection. Each intersection was counted for two hours in 

the morning (7-9 AM) and evening (4-6 PM), typically in late September or early October. The 

18 locations are spread out geographically and fairly diverse in terms of the functional 

classification of the intersecting streets, such as Arterial/Local or Trail/Arterial. For each 

collection point, bicycle data from all available years was averaged. 
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Figure 3.1 Two-hour AM bicycle count average for 2006-2013. 

 

3.2 Spatial Extrapolation of Manual Counts 

Traffic volume data collected at specific points can be used to estimate network-wide 

volumes, this is done by spatially extrapolating the data. We use a method called origin-

destination (OD) centrality, which is based on a modified form of stress centrality and was 

successfully utilized by McDaniel et al. (2014) to estimate bicycle volumes throughout Moscow, 

ID (population 23,800). The method has three basic steps: 1) the transportation network is 

characterized in terms of preferred bicycle paths between locations, 2) land use information is 

used to create origins and destinations and respective multipliers that represent a magnitude of 

“trip potential” between origin-destination pairs, and 3) regression is used to spatially extrapolate 

count data from the actual count locations to all links and nodes network-wide.  
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The use of regression modelling and manual count data to predict bicycle volumes for 

unobserved locations based on characteristics is not new. Other researchers have used adjacent 

land use, number of vehicle lanes, vehicle speed limit, and width of the bike lane (Griswold et 

al., 2011). For example, Jones et al. (2010) developed a regression model (R2 = 0.47) for NBPD 

data consisting of three explanatory variables: (1) total footage of off-street paths within 0.5 

mile, (2) employment density within 0.25 mile, and (3) population density within 0.25 mile.  

OD centrality has several features which make it attractive. Compared with other bicycle 

volume estimation methods it is relatively simple, which allows for the option of modifying the 

network to create alternative scenarios. It also effectively provides a means to spatially 

extrapolate count data throughout an entire street and trail network, which provides volume 

detail on all street and trail segments, as well as individual turn movements, allowing us to 

analyze specific types of situations.  

 

Figure 3.2 Two hour count spatially extrapolated throughout Moscow, ID. 

Source: McDaniel et al. (2014) 
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For our case study we utilized GIS parcel, employment and school attendance data 

provided by the city of Bellingham. For origins, the inputs of residents per parcel were used. For 

destinations, employees per parcel, employment data, and parcel size were inputs. A limit of 5 

miles was placed on bicycle travel. GIS files provided by the City of Bellingham were modified 

to create the bicycle transportation network, with GIS attributes comprising bicycle impedance 

inputs. 10% of the citizen count data was withheld and used for calibration. Spatial extrapolation 

was completed once for 2-hour AM volumes and again for 2-hour PM volumes. The output from 

this step was a network-wide bicycle 2-hour volume for AM, and another for PM volume. 

 

3.3 Temporal Extrapolation of Network-Wide Two-Hour Volume 

While citizen-volunteer counts are short-duration, bicycle traffic fluctuates depending on 

the time-of-day, day-of-week, and season. Emerging research has demonstrated the possibility of 

temporally extrapolating short duration count data to estimate average volumes. This research 

typically relies on automatic bicycle counters that can collect continuous data; figures 2.3 

through 2.5 depict the findings of how bicycle travel fluctuates over time in various situations.  

The goal of temporal extrapolation is to estimate Average Annual Daily Bicyclists 

(AADB), which represents the total annual number of bicyclists passing a point divided by 365 

days. This extrapolation is conducted using adjustment factors that convert short term count data 

into AADB figures. Adjustment factors for short term counts are an emerging phenomenon, and 

there are few available to cover diverse climatic zones, facility types, and travel patterns in 

different cities. 

For the case study in this project, off the shelf adjustment factors were not available. 

Adjustment factors were created for Bellingham, WA by adapting factors available from four 
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sources and local knowledge. The first source, the NBPD, provides adjustment factors for three 

climatic zones called: Long Winter Short Summer, Moderate Climate, and Very Hot 

Summer/Mild Winter (NBPD, 2009). The second source is a report prepared by Nordback et al. 

(2013) for the Colorado Department of Transportation. The report provides a variety of 

adjustment factors for recreational trails, suburban streets, and urban streets throughout 

Colorado. The third source of adjustment factors is found in the US DOT’s Traffic Monitoring 

Guide (2013) for Minneapolis, Minnesota. The fourth source of adjustment factors is the work by 

Miranda-Moreno et al., (2013) that included adjustment factors for five North American cities, 

including Vancouver, B.C. and Portland, OR, but unfortunately did not include a full year. 

Adjustment factors also vary by facility types (or classes), such as “path” or “pedestrian district” 

(National Bicycle and Pedestrian Documentation Project, 2009), or “utilitarian”, “recreational”, 

or “mixed” (Miranda-Moreno et al., 2013).  
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Figure 3.3 Hour of the day patterns on a shared use path in Colorado.  

Source: Colorado Department of Transportation, cited in the Traffic Monitoring Guide (2013). 

 

Figure 3.4 Day of the week patterns for a shared use path in Colorado. 

Source: Colorado Department of Transportation, cited in the Traffic Monitoring Guide (2013). 
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Figure 3.5 Monthly patterns for six shared use paths in Minneapolis, MN.  

Source: Greg Lindsey, University of Minnesota, cited in the Traffic Monitoring Guide (2013). 

 

The available adjustment factors outlined above were adapted to reflect Bellingham’s 

climate characterized by a rainy fall, winter, and spring, but a dry and mild summer. Table 3.1 

summarizes the sources and adaptations, and the adjustment factors used in the case study are 

listed in table 2.2. The factors were checked against the NBPD factors created with data from 

Minneapolis, Vancouver and Portland, as well as by the NBPD. For the case study only certain 

factors are used; the complete list of adjustment factors is shown for illustration.   
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Table 3.1 Summary of adaptations to adjustment factors. 

Factor Facility Source(s) 

2 Hour 

Street 

Adapted from average time of day patterns for bicyclists in Minneapolis MN (Traffic 
Monitoring Guide p. 4-22, fig. 4-12, 2013) and NBPD count adjustment factors for a 
pedestrian district 7-9AM and 4-6PM (NBPD 2009) 

Trail 

Adapted from hour-of-day factors created for the Colorado’s Cherry Creek Trail 
shared-use path for a weekday October-May (Traffic Monitoring Guide, p. 4-21, fig. 4-
11, 2013) and NBPD count adjustment factors for a path 7-9AM and 4-6PM (NBPD 
2009) 

Day of 
Week 

Street Adapted from Nordback et al. (p. 107, fig. 56, 2013) commute patterns: low weekend, 
low monthly variation 

Trail Adapted from Nordback et al. (p. 107, fig. 56, 2013) front-range non-commute 
patterns: high weekend, low monthly variation 

Month 

Street 
Adapted from Cherry Creek Trail monthly factors (Traffic Monitoring Guide pp. 4-24 to 
4-25, fig. 4-14 and 4-15, 2013). Adjusted similar to monthly trail factors but with 
increased travel in the winter months and reduced in summer months 

Trail 

Adapted from Cherry Creek Trail monthly factors (Traffic Monitoring Guide pp. 4-24 to 
4-25, fig. 4-14 and 4-15, 2013). Adjusted to reflect increased winter months due to 
less snowfall in Bellingham, slower spring increase due to rain, higher peak in late 
summer due to lack of intense summer heat, rapid drop in fall due to rainy season 

 

Table 3.2 Adjustment factors for AADB used in the case study. 

 2-Hour Day of Week Month 

Class AM PM S M T W T F S J F M A M J J A S O N D 

Street 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.1 0.1 1.4 1.4 1.3 1.1 0.9 0.8 0.7 0.7 0.8 1.0 1.5 1.5 

Trail 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 1.7 1.7 1.5 1.3 1.0 0.8 0.6 0.6 0.7 1.1 1.7 1.7 

 

The adjustment factors are applied to the two-hour volumes to obtain AADB as follows: 

𝐴𝐴𝐷𝐵 = [(
𝑉𝐴𝑀

𝑘𝐴𝑀,𝐶
+

𝑉𝑃𝑀

𝑘𝑃𝑀,𝐶
) /2] ∗ 𝐹𝑑𝑎𝑦,𝐶 ∗ 𝐹𝑚𝑜𝑛𝑡ℎ,𝐶            

where 

       𝑉𝐴𝑀  = AM 2-hour bicycle volume, 

       𝑉𝑃𝑀  = PM 2-hour bicycle volume, 

𝑘𝐴𝑀,𝐶 = AM 2-hour adjustment factor for class C,  

𝑘𝑃𝑀,𝐶 = PM 2-hour adjustment factor for class C,  
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       𝐹𝑑𝑎𝑦,𝐶 = day of the week adjustment factor for class C, and 

   𝐹𝑚𝑜𝑛𝑡ℎ,𝐶 = month adjustment factor for class C. 

3.4 Results 

The most important aspect of the OD centrality method is that it produces specific AADB 

values for every link and every turn movement throughout the network. This can be displayed in 

map form, as shown in figure 3.6, to depict order-of-magnitude AADB. Practitioners, citizens, 

and other decision-makers can use maps like these to visualize, discuss, and compare the merits 

of different proposals. 

Origin and destination multipliers were kept fixed, so the total, study-wide bicycle 

volume is fixed and the change in AADB is merely a shift from travel on certain facilities to 

other facilities. (Although McDaniel et al. (2014) suggest OD centrality can be used to forecast 

future growth-scenarios by changing the residential and commercial land use input.) 

 

 

Scenario 1                                                             Scenario 2 

                            Figure 3.6 Estimated AADB for Scenario 1 and Scenario 2. 
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As an example, Scenario 2 includes extending a shared use path from the south-west into 

downtown. Not surprisingly, Figure 3.6 shows a decrease in AADB along the parallel arterial 

because those trips would be shifted to the new shared use path. Practitioners could use maps 

like these to encourage community dialogue and determine where capital investment funding 

should be allocated to ensure adequate capacity or improve linkages.  

It should be noted that the specific AADB values are rough estimates and the only way to 

obtain true AADB is by installing and using a continuous counter for the entire year. 

Consequently, AADB estimation, regardless of the method, can only be roughly validated and 

the most straight forward method is to simply use local expert knowledge. For the case study, 

and for scenario planning in general, this level of accuracy is adequate. A potential data 

collection scenario that could be accomplished within a limited budget would be a manual count 

program at many locations simultaneously, combined with automated counters that provide 

continuous data collection at key locations and adjustment factors specific to that locale. 

3.5 Conclusion 

The growing interest in bicycling is spurring additional count efforts such as volunteer 

programs and automatic counters. The data from these programs can be extrapolated spatially 

and temporally to estimate bicycle volumes network-wide. The output is data rich in that it 

provides volume and turn movement estimates for every link and intersection, respectively. This 

can provide important information for communities that are making infrastructure improvement 

decisions, establishing a community vision for future capital improvements, and more. The map 

outputs can be useful in encouraging public dialogue, and for identifying missing links. The next 

chapter will demonstrate how these results can be used for quantifying dangerous situation 

exposure in scenario analysis. 
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Chapter 6 Analysis of Dangerous Situations for Bicyclists 

4.1 Introduction 

In the United States, cyclists are 12 times more likely than automobile occupants to be 

killed per distance traveled (Pucher and Dijkstra, 2003). Arguably, the higher rate is inflated for 

various reasons, including the fact that most cycling occurs in urban areas where the possibility 

of accidents is intrinsically higher. Another reason is that cyclists are simply more exposed to 

danger and do not have the protection that comes from being inside an automobile with seatbelts 

and airbags (Hurst, 2010). Furthermore, the exposure for bicyclists is prolonged in terms of 

travel time for distance traveled. Nevertheless, even when compared with other industrialized 

nations, cycling in the U.S. is relatively more dangerous. Pucher and Dijkstra (2003) report that 

the U.S. rate of fatalities from cycling is double that of Germany and triple that of the 

Netherlands, both in terms of number of trips and in distance travelled. For non-fatal accidents, 

cyclists in the U.S. are eight times more likely to suffer an injury than German cyclists and about 

30 times more likely than Dutch cyclists (Pucher and Dijkstra, 2003). 

Many U.S. communities are aggressively trying to make cycling safer. They are devising 

ambitious bicycle improvement plans that will construct new shared-use paths and significantly 

increase the mileage of on-street bike lanes. One challenge, however, is to determine which 

projects should be prioritized. For highway and other road projects there are well-established 

techniques for benefit-cost analysis. Often engineers and planners can use Safety Performance 

Functions (SPF) to predict the expected number of automobile crashes for a given location based 

on the location’s characteristics. Then, they can compare how different improvement scenarios 

might reduce accident rates using Crash Modification Factors (CMF) (Highway Safety Manual, 



39 

2010). Unfortunately, the lack of robust bicycle accident data makes it difficult to create 

statistically sound SPFs and CMFs for bicycle infrastructure planning and project prioritization.  

Bicycle accident data is sparse for various reasons. Foremost, since few people use their 

bicycle for daily travel, very few accidents occur compared to automobile accidents (in absolute 

terms). Bicycle accidents are less likely to be reported since they often do not incur insurance 

claims or traffic violations. Schimek (2014) suggests that as many as 89% of bicycle accidents 

go unreported and he further notes that even if reported, the police documentation often lacks the 

details that are necessary to create SPFs and CMFs. Recently, Nordback et al. (2014) created 

what is apparently the first and only SPF for bicycles for a U.S. city. They did not create CMFs 

and their SPF is for a specific city and situation; so while their work is an important step in the 

right direction, the state-of-the practice still has a long way to go. 

This paper presents a method for comparing the safety aspects of proposed improvement 

scenarios without requiring elaborate accident data or SPFs. We begin by describing two case 

study scenarios. The first scenario represents the current conditions for a community and the 

second scenario is a proposed bicycle master plan. Next, we introduce a “typology of dangerous 

situations for bicyclists.” The typology is a first-of-its-kind attempt to enumerate for bicycle 

infrastructure planning what safety analysts call situational antecedents. The typology consists of 

23 dangerous situations that we identified through a literature review and serves a valuable 

contribution to the practice as a framework for future research. Next, we describe how a 

community can define exposure indicators for these dangerous situations. For illustration, we 

present example indicators and demonstrate the analysis. The analysis is done using a geographic 

information system (GIS) tool that we programmed using open-source Python scripting. The GIS 

tool, instructions, and example data can be obtained from the authors. Engineers and planners 
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can use the results from the GIS analysis to compare projects and communicate the impact of 

infrastructure investments to elected officials, the general public, and other stakeholders. 

4.2 Case Study Scenarios  

For demonstration, consider the Bicycle Master Plan (BMP) proposed for Bellingham, 

WA (population 80,885). The Bellingham BMP includes 184 projects that would create more 

than 130 miles of new bicycle facilities. The estimated cost to implement the entire plan is 

$20,452,398 (City of Bellingham, 2013).  

Numerous scenarios with different combinations of projects could be analyzed for 

dangerous situation exposure. For simplicity, we analyzed two scenarios for this paper. Scenario 

1 is the existing system and scenario 2 is a modified version of the BMP with new trails, bike 

lanes, and bicycle boulevards. Bicycle boulevards are high volume bicycle routes on roads with 

low vehicle speed limits and stops signs favoring the through movement for bicycles. Figure 4.1 

shows the bike lanes and trails for the scenarios.   
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Figure 4.1 Bicycle network for existing scenario 1 and proposed scenario 2. 

 

The analysis presented in this paper requires Annual Average Daily Traffic (AADT) and 

Annual Average Daily Bicycles (AADB) for every scenario. These can be obtained through any 

means, including travel demand models (Ortúzar, J. and L. Willumsen, 2011). Techniques for 

estimating AADB are not as advanced and robust as for automobiles, but in recent years 

significant strides have been made to improve AADB estimation (Liu. et al., 2012). For this 

paper, AADB was estimated using the approach developed by McDaniel et al. (McDaniel et al., 

2014), but any method could be used. Figure 4.2 shows the estimated AADB for scenario 1 and 

the change in AADB expected under scenario 2. AADB is expected to increase for some 

locations and decrease for other locations. The travel demand model predicted a shift in AADB 

toward new bike lanes and bicycle boulevards.   
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(a) 

 

(b) 

 

Figure 4.2 Case study (a) scenario 1 AADB (b) scenario 2 change in AADB.  

 

4.3 Dangerous Situation Typology 

An important contribution from this paper is the dangerous situation typology outlined in 

this section. We created the typology with the intent to enumerate common, distinct, and 

definitive situational antecedents for bicycle accidents. The list of 23 dangerous situations that 

we identified is based on a scan of the literature and careful deliberation. Some of the situations 

are dangerous for overlapping reasons and can be resolved mutually through a single mitigation 

strategy; for others, mitigation would require choosing between trade-offs.  
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All of the dangerous situations are subject to personal interpretation. Different bicyclists, 

with different levels of skill and experience, would certainly have their own definition of 

“dangerous” for each situation. For a few situations there is substantial debate and disagreement 

on what is safe and what is not safe. For example, some bicyclists might have enormous 

tolerance for vehicle traffic while others have little or no tolerance for certain situations. 

Nevertheless, our goal was to identify a set of situations that a community could define in a 

meaningful way. 

Table 4.1 lists the dangerous situations we identified. Many are well-known and regularly 

discussed, such as the “right hook” situation or “dooring”. We tried to identify names that are 

concise and descriptive for easy conversation. The accompanying references are intended as a 

general starting point for further investigation. The remainder of this section summarizes key 

aspects for each situation, highlighting defining thresholds where possible. The dangerous 

situations can be organized into five categories:  

 Traffic characteristics along street segments (Dangerous Situations 1-2), 

 Physical conditions along street segments (Dangerous Situations 3-10),  

 Intersection and network movement (Dangerous Situations 11-16),  

 Cyclist behavior (Dangerous Situations 17-21), and 

 Environmental factors (Dangerous Situations 22-23).  

  

4.3.1 Traffic Characteristics Along Street Segments 

The first dangerous situation is hazardous mixed cycling. Mixed cycling is commonly 

defined as cycling without a painted or physical separation from motorized vehicles; 

“hazardous”, on the other hand, is not as easy to define. In fact, for the past thirty years there has 

been ongoing, and often polarizing, debate about the hazards of mixed cycling (Mapes, 2009). 

Nevertheless, both sides of the debate would agree that most people have a particular, albeit 

elusive, tolerance for (1) vehicle volume, (2) vehicle speed, and (3) percent of heavy vehicles. 
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Considerable research has investigated the dangers associated with these three traffic 

characteristics. 

Traffic volume is often considered the single most important correlate of accidents and 

accident severity (Allen-Munley et al., 2004). Schepers et al. (2011) designate 8,000 AADT as a 

cutoff threshold for what one might consider hazardous. The Dutch Design Manual for Bicycle 

Traffic (CROW Manual) has various thresholds, including 4,000 AADT to demarcate an 

undesirable level of traffic (CROW, 2007).  

Vehicle speed also shows correlation with injury severity and fatalities (Klop and 

Khattak, 1999). Kim et al., (2007) reports that if vehicle speeds exceed 50 mph (80 km/h), the 

death rate for bicyclists increases sixteen-fold. They suggest mixed cycling should be avoided if 

the speed limit is 30 mph (50 km/h) or more.  

Percent of heavy vehicles (trucks, buses, and large vans) is another defining characteristic 

of hazardous traffic because they have less maneuverability and more blind spots. Harkey and 

Stewart (Harkey and Stewart, 1997) recommend communities avoid having mixed cycling when 

there is a high percentage of heavy vehicles, but they do not provide a defining threshold.   

Hazardous separated cycling, in the form of bike lanes or buffered bike lanes is 

intended to eliminate, or at least diminish, danger. Essentially separated cycling raises the 

thresholds that define “hazardous” for vehicle volume, vehicle speed, and percent of heavy 

vehicles. Reynolds et al. (2009) report for their study that bike lanes “consistently [reduced] 

injury rate, collision frequency or crash rates by about 50%.” Nevertheless, there is some 

evidence that separated cycling can introduce new dangers. One concern is that the separation, 

especially if it is merely a painted line, gives a false sense of protection to both driver and cyclist, 

thus discouraging attentive travel for both parties (Van Houten and Seiderman, 2005). Parkin and 
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Meyers (2010) showed that drivers give less lateral space to cyclists in a bike lane compared to 

mixed cycling. The false sense of security is particularly problematic at intersections (Lusk et al., 

2011).  



46 

Table 4.1 Dangerous situations for bicyclists. 

Dangerous Situation Description References 

1 
Hazardous mixed 

cycling 

Cycling in vehicle travel lane with high 

vehicle volume, speed, and/or percent heavy 

vehicle. 

Schepers et al., 2011; CROW 2007; Kim et 

al., 2007; Allen-Munley et al., 2004; Klop and 

Khattak, 1999. 

2 
Hazardous 

separated cycling 

Cycling in bike lane or cycle track with high 

vehicle volume, speed, and/or percent heavy 

vehicle. 

Parkin and Meyers, 2010; Reynolds et al., 

2009; Lusk et al., 2011; Van Houten and 

Seiderman, 2005. 

3 Cramped space 
Narrow roads without a bike lane or 

shoulder. 

Vandenbulcke 2011; Harkey and Stewart, 

1997. 

4 Excessive space Wide roads without a bike lane. Allen-Munley et al., 2004; Hunter et al., 1999. 

5 Dooring 
Street segments with on-street parking and 

high parking turnover. 
Tilahun et al., 2007. 

6 Driveways 
Street segments with frequent or unexpected 

access points. 
Räsänen and Summala, 1998. 

7 Railroad tracks Crossing or riding alongside railroad tracks. Teschke et al. 2012. 

8 Poor pavement Pot holes and abrupt uneven surfaces. - 

9 Winding road Frequent and/or sudden sharp curves. Kim et al., 2007. 

10 Steep hills Hilly terrain and/or steep grades. Teschke et al., 2012, Klop and Khattak, 1999. 

11 
Hazardous 

crossing 

Crossing a road with high vehicle volume, 

speed, and/or percent heavy vehicle. 
CROW, 2007; Summala et al., 1996. 

12 Oncoming cross 
Oncoming left-turning vehicles cut off 

through movement bicyclists. 
Shepers et al., 2014; Summala et al., 1996. 

13 Right hook 
Right-turning vehicle conflicts with through 

movement cyclist. 

Furth et al., 2014; Schimek, 2014; Weigand, 

2008; McCarthy and Gilbert, 1996. 

14 Left sneak 

For left turn, sneaking across travel lanes, 

waiting for a gap in oncoming traffic, and 

sneaking in front of oncoming. 

Hunter et al., 1999; Wachtel and Lewiston, 

1994. 

15 
Complicated 

intersection 

Navigating for example, five point 

intersections or roundabouts. 
Daniels et al., 2009. 

16 Bikeway gap Discontinuity in bicycle network. 
Mekuria et al., 2012; Krizek and Roland, 

2005. 

17 
Wrong-way 

riding 
Cycling the wrong-way. Hunter et al., 1999; Summala et al., 1996. 

18 Sidewalk riding Cycling on sidewalks. Schimek, 2014. 

19 
Safety in 

numbers 
Low cyclist volume. Nordback et al., 2014, Jacobsen, 2003. 

20 Crowded path High volume shared use paths. Teschke et al., 2012; CROW 2007. 

21 Reckless riding Riding behavior that is unsafe. Minikel 2012; Kim et al., 2007. 

22 Bad weather 
Inclement weather that decreases visibility 

and/or cyclist control. 
Kim et al., 2007. 

23 Darkness Insufficient lighting. Schimek, 2014; Reynolds et al., 2009. 
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4.3.2 Physical Conditions Along Street Segments 

Cramped space is dangerous when motorists are inclined to overtake cyclists. 

Vandenbulcke et al., (2013) suggest cramped space is the primary factor for increased accidents 

on bridges. Harkey and Stewart (1997) found drivers typically exhibit 6 ft (1.83m) of separation 

when overtaking bicyclists and recommend providing cyclists at least 4 ft (1.2m. On the other 

hand, excessive space can be unsafe also. Allen-Munley et al. (2004) found injuries were more 

severe on wide streets, perhaps because excess space encourages higher vehicle speeds and can 

give cyclists a false sense of security. Hunter et al. (1999) suggest “Lanes wider than 4.6 m [15 

ft] sometimes result in the [dangerous situation] of two motor vehicles side by side”.  

Dooring is the term cyclists use to describe being hit by a car door when riding next to 

on-street parking. Tilahun et al. (2007) found that cyclists are willing to add more than 9 minutes 

to a 20 minute commute to avoid on-street parking. Cycling next to parking can also be 

dangerous because of decreased sight distances. Driveways are dangerous because entering or 

exiting motorists often do not expect to see cyclists, or vice versa (Räsänen and Summala, 1998). 

The danger is exacerbated when combined with wrong-way riding and sidewalk riding. Allen-

Munley et al. (2004) found that 20% of collisions in their study occurred at driveways. 

Crossing railroad tracks can result in tire slippage or cause riders to swerve into traffic 

in an attempt to cross at safe angles (Teschke et al., 2012). Poor pavement quality is often 

included in bicycle suitability calculations; however we were not able to find any studies relating 

pavement quality to accidents. Winding roads can reduce sight distance and maneuverability. 

Kim et al. (2007) found accidents involving curving roads tend to be more severe. Steep hills 

can affect braking efficiency, sight distance, and speed differential between vehicles and cyclists. 



48 

Various studies have shown increased accident severity for grades greater than 4% (Allen-

Munley et al., 2004).  

4.3.3 Intersection and Network Movement 

Intersections are the greatest point of vehicle-bicycle interaction (Wang and Nihan, 

2004). Wachtel and Lewiston (1994) reported that 74% of collisions, in their study, occurred at 

intersections. The study by Schimek (2014) found that 81% of collisions occurred at 

intersections.  

Hazardous crossings can be mentally and physically demanding (Summala et al., 1996). 

Once again, “hazardous” is subjective and can be defined based on vehicle volume, vehicle 

speed, and percent heavy vehicle. The CROW manual (2007) defines the following thresholds: 

up to 800 passenger car equivalent per hour (pcu/h), crossability is considered “reasonable 

without a central traffic island”; from 800 to 1,600 pcu/h, crossability is “reasonable provided 

crossings can be made in two stages” with a central refuge island; from 1,600 to 2,000 pcu/h, 

crossability is “moderate to poor”; and above 2,000 pcu/h, crossability is “poor”. The CROW 

manual (2007) also recommends cross street speed limits should not exceed 20 mph (30 km/h) 

for uncontrolled intersections with a high volume of bicyclists. 

The oncoming cross is when oncoming vehicles turning left cut in front of bicyclists. In 

a study in Finland, it was found that 12% of vehicle-bicycle collisions involved an oncoming 

cross ( Räsänen and Summala, 1998). In the U.S., Schimek (2014) found that 9% of vehicle-

bicycle collisions involved a oncoming cross, the highest of any specific intersection movement. 

One remedy offered by Shepers et al. (2011) is to provide a left-turn lane in the oncoming 

direction, even if not warranted for vehicle needs, to give oncoming drivers “extra time to slow 

down and notice cyclists”.  



49 

The infamous right hook is the situation where a right turning vehicle collides with a 

straight moving bicyclist. In a London study, one-third of fatal collisions occurred because of 

this situation (vehicles in Great Britain drive on the left side of the road, so it is a “left hook”) 

(McCarthy and Gilbert, 1996). In an US study, 6% of bicycle collisions were right hook 

collisions (Schimek, 2014). There are several strategies to reduce right hook collisions, including 

advanced stop lines and special traffic signals (Weigard, 2008). For pedestrians, Furth et al. 

(2014) note that some states have thresholds (e.g. 250 right-turning veh/hr in Massachusetts) that 

trigger recommendations for special infrastructure, but no state has similar thresholds for 

bicyclists. In the Netherlands special accommodations are provided for bicyclists when there are 

more than 150 right turning vehicles per hour (Furth et al., 2014). 

The left sneak is dangerous for three reasons: first, there is the danger of sneaking across 

travel lanes in order to make a left turn; second, there is the risk of being rear-ended while 

waiting to turn left; and third, is the danger from sneaking through a gap in oncoming traffic to 

complete the turn. Hunter et al. (1999) found that 6% of bicycle collisions in Austin, TX 

involved cyclists attempting to turn left. At some locations, cyclists crossed multiple lanes at 

once. Their study summarized observed left turns as follows: 44% “did so like a motor vehicle 

with proper lane destination positioning,” 8% “with improper lane destination positioning”, 17% 

“made pedestrian style left turns, where the cyclist would ride all the way to the intersection and 

then use the crosswalk to get across the street like a pedestrian” (Hunter et al., 1999).  

Complicated intersections, which include 5-leg intersections, one-way/two-way 

intersections, and roundabouts, can be dangerous to navigate (Daniels et al., 2009). Bikeway 

gaps often occur at intersections where bike lanes terminate and do not continue on the other 

side. Although little research has investigated safety issues associated with gaps, Krizek et al. 
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(2005) and Mekuria et al. (2012) suggest discontinuities introduce high levels of stress and 

discomfort.  

4.3.4 Cyclist Behavior 

Wrong-way riding is dangerous because it increases the possibility of head-on 

collisions, which are usually more severe. It also increases the possibility of broadside collisions 

because motorists entering or exiting a street often do not look in the direction of wrong-way 

riders (Summala et al., 1996). Note that wrong-way riding is not the same as “contraflow” or 

“facing traffic cycling”, where cycling against vehicle traffic is permitted and intentional. 

Contraflow riding on low volume, low speed roads is relatively safe due to increased opportunity 

for cyclists and motorists to see each other and react (Kim et al., 2007). In the Netherlands, 

contraflow bike lanes are frequently installed to preempt wrong-way riding (CROW, 2007). Alta 

Planning + Design (2004) found that “sharrows” can reduce wrong-way riding by as much as 

80%. Hunter et al. (1999) found that wrong-way riding was more prevalent on streets without a 

bike lane, suggesting bike lanes encourage proper riding. Sidewalk riding increases risk of 

collision with motorists at crosswalks and driveways, as well as with pedestrians. Schimek 

(2014) found 77% of injured sidewalk riders were going the “wrong way”.  

Safety in numbers is the term for the empirically observed phenomena that accident risk 

decreases as the number of cyclists increases (Elvik et al., 2009). Jacobsen (2003) found the non-

linear relationship can be fit with a power exponent of 0.4, which translates to about a one-third 

increase in injuries for a doubling of cyclists. Nordback et al. (2014) found that signalized 

intersections with fewer than 200 AADB have substantially higher collisions per cyclist, while 

intersections with greater than 600 AADB have very low risk. On the other hand, crowded 

shared-use paths are dangerous due to potential conflict with other bicyclists or pedestrians. 
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Teschke et al. (2012) suggest shared-use paths are more dangerous than bike-only paths and 

cycle tracks. The CROW manual (2007) recommends separating bicyclists with paint markings 

if the pedestrian flow rate is greater than 100 pedestrians per hour and separating with a physical 

barrier if the pedestrian flow rate is greater than 200 pedestrians per hour.  

Reckless riding includes alcohol consumption, aggressive behavior, distracted cycling, 

and other unsafe practices. Minikel (2012) reports for a Berkley dataset, police found 41% 

cyclist at fault, 54% motorist at fault, and the remaining 5% no-fault. Bicyclist intoxication 

increases severity of head injuries (Kim et al., 2007).  

4.3.5 Environmental Factors 

Kim et al. (2007) found that bad weather, i.e. “rain, snow, fog, etc.,” increase the 

probability of fatality by 128% and suggest reduced visibility and traction are to blame. They 

also found darkness increases the probability of fatality by 110%. Schimek (2014) estimates that 

crashes in low-light conditions account for 20% of injuries and 47% of fatalities in the U.S. 

Reynolds et al. (2009) report that street lighting on rural roads reduced the rate of cyclists' 

injuries by half.  

4.4 Analysis and Results 

4.4.1 Defining and Assessing Dangerous Situation Thresholds 

The first step for a community is to define thresholds for the dangerous situations they 

would like to analyze. For example, the threshold for “hazardous mixed cycling” might be: a 

street without a bike lane, with AADT > 3,000 AADT, speed limit > 30 mph, and percent heavy 

vehicle > 5%. A community should define their own community-specific thresholds for their 

needs, circumstances, and desires, taking into consideration the proportion of older adults, 

children, and novice riders in their community. A small rural community might define 
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“hazardous traffic” considerably different than a large urban community with a long tradition of 

bicycling. Furthermore, a community might decide to have more than one threshold for a 

particular dangerous situation. Geller (2007) suggested there are four types of bicyclists: (1) 

“Strong and Fearless”, (2) “Enthused and Confident”, (3) “Interested but Concerned”, (4) “No 

Way No How.” He further postulates the majority (60%) of bicyclists are Interested but 

Concerned. A community might want to define their thresholds for this type of bicyclist. The 

thresholds should be defined based on public input, local experience, and findings from research. 

The next step for the community is to use our GIS tool to asses the dangerous situation 

thresholds for various bicycle infrastructure improvement scenarios. The tool requires two input 

files. The first is a textfile with threshold values. The tool is fully modifiable, so a community 

could add and remove thresholds or change how thresholds are interpreted by the tool. The 

second input is a GIS street network with AADT, AADB and any other attributes that the user 

may need for their thresholds. AADT and AADB can be obtained through any travel demand 

forecasting model or some other process. The tool calculates an exposure indicator for every 

dangerous situation by checking threshold conditions for every street segment and intersection. 

The calculation takes 3 seconds on a standard laptop computer for the case study network, which 

has 4,379 street segments and 3,271 intersections.  

For the case study, we defined thresholds for 12 dangerous situations. Some of the 

dangerous situations not analyzed would most likely require special GIS data. For example, 

analysis of “sidewalk riding” would most likely involve GIS data about the presence of 

sidewalks. The case study used commonly available street attributes, including lane width, speed 

limit, presence of bike lane, percent heavy vehicle, slope, access point frequency, and on-street 

parking turnover rate (The last two were derived from functional classification and adjacent land 
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use. Slope was calculated using a digital elevation map.). It might not be possible to analyze 

some dangerous situations using GIS, such as “bad weather” and “reckless riding”; however, 

there is no obvious reason why these situations would need to be analyzed when comparing 

infrastructure scenarios, since they are primarily mitigated through education and enforcement 

programs.  

4.4.2 Dangerous Situation Exposure 

The results from the case study are shown Table 4.2 and Table 4.3. Table 4.2 shows 

exposure along street segments in terms of bicycle miles traveled (BMT). The GIS tool 

calculates BMT by multiplying street segment length times AADB. Column 2 shows the 

thresholds used for the analysis. The resulting indicator values (columns 3 and 4) represent 

dangerous situation exposure and provide a means for comparing scenarios (columns 5 and 6). 

The indicator values are not a prediction of accidents and should not be construed to represent 

actual conflict numbers. For example, “hazardous mixed cycling” is calculated by summing 

BMT across every street segment that meets the threshold conditions, but since some cycling 

would occur when traffic volumes are not hazardous the value cannot be expected to represent 

the true BMT of hazardous mixed cycling. Furthermore, the exposure indicators rely heavily on 

the output from travel demand models which only produce order-of-magnitude estimates.  
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Table 4.2 Dangerous situation exposure along street segments. 

Dangerous 

Situation 
Conditions and Thresholds 

Scenario 1: 

Existing 

Conditions 

(BMT) 

Scenario 2: 

w/Proposed 

Improvements 

(BMT) 

Change 

(BMT) 

Percent 

Change 

(%) 

Hazardous mixed 

cycling 

mixed cycling, 

>3,000 AADT, 

>30 mph, 

>5% heavy vehicle 

11,437 5,138 -6,299 -55 

Hazardous 

separated cycling 

separated cycling, 

>8,000 AADT, 

>50 mph, 

>10% heavy vehicle 

4,860 9,953 +5,093 +105 

Cramped space 

mixed cycling, 

lane and shoulder width < 12 ft, 

>1,000 AADT, 

>20 mph, 

1,349 1,059 -290 -21 

Excessive space 
mixed cycling, 

lane and shoulder width > 15 ft 
8,684 3,232 -5,452 -63 

Dooring 
on street parking, 

turnover > 4 per hour 
13,545 13,186 -359 -3 

Driveways access points > 30 per mile 16,592 17,324 +732 +4 

Steep hills grade > 4% 9,680 9,832 +152 +2 

Safety in numbers < 200 AADB 40,503 41,003 +500 +1 

Wrong-way riding wrong-way riding occurrence 252 236 -16 -6 

 

Table 4.2 shows a 55% decrease to “mixed cycling in hazardous traffic”. However, this is 

accompanied by a much larger (105%) increase in “separated cycling in hazardous traffic”. This 

peculiar result is because some roadways simply changed categories with the provision of new 

bike lanes. In other words, in scenario 1 the BMT was counted as mixed cycling, while in 

scenario 2 the BMT was counted as separated cycling, and despite higher thresholds, the BMT 

was still deemed hazardous. Furthermore, the travel demand model may have shifted some 

cyclists to roadways with new bike lanes despite the hazardous conditions. Nevertheless, overall 

cycling in hazardous traffic (the sum of both situations) decreased by 1,206 BMT, which can be 
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attributed to bike lanes alleviating danger and new bike boulevards and trails shifting cyclists 

away from hazardous conditions.  

Cycling in “cramped space” decreased by 21%. This is because new bicycle facilities 

attracted cyclists away from narrow streets. Cycling in “excessive space” showed an even greater 

decrease (63%). Some of the decrease can also be attributed to route shifts incurred by new bike 

lanes and trails. However, much of the decrease is simply from providing bike lanes since 

“excessive space” is only tallied for mixed cycling according to the case study thresholds. A 

community could choose to include additional thresholds for when a bike lane is present. 

“Dooring” showed a slight 3% decrease because new bicycle provisions elsewhere 

shifted cyclists away from bustling on-street parking. On the other hand, BMT for “driveways” 

increased by 4%. This is because scenario 2 provides numerous new bicycle boulevards that 

travel through residential neighborhoods, where access points are more frequent. BMT for “steep 

hills” increased by 2%, presumably because new bicycle facilities would persuade cyclists to ride 

up and down hills. Scenarios 2 concentrates cyclists along certain corridors. However, as a 

consequence, some streets would exhibit less cyclists, explaining the unfavorable 1% change for 

“safety in numbers”. “Wrong-way riding” decreased by 6% because, according to the travel 

demand model, new bicycle accommodations would discourage shortcuts.  

Table 4.3 summarizes exposure at intersections in terms of AADB. There is an increase 

for “hazardous crossings” of 5%. This is probably because cyclists were shifted to arterials with 

new bike lanes. The other situations showed modest decreases. An analyst could explore how the 

results might change under various threshold values. Likewise, it is possible to change how the 

indicators are calculated. For example, in the case study “hazardous crossings” was tallied if any 

of the three thresholds were exceeded, but an analyst might choose to only tally if all three of the 
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thresholds are exceeded. Through multiple executions of the tool, the analyst might discover new 

insights about the peculiars of certain locations in their community. Furthermore, they can make 

maps for specific dangerous situations like the one shown in Figure 4.3. The map shows 

locations where there is a high number of bicyclists going straight and vehicles turning right, i.e. 

the right hook dangerous situation. These locations can be visited and inspected in the field to 

gain a better understanding of the actual dangers.  

Table 4.3 Dangerous situation exposure at intersections. 

Dangerous 

Situation 
Conditions and Thresholds 

Scenario 1: 

Existing 

Conditions 

(AADB) 

Scenario 2: 

w/Proposed 

Improvements 

(AADB) 

Change 

(AADB) 

Percent 

Change 

(%) 

Hazardous 

crossing 

bicyclist traveling straight, 

cross street: 

  > 8,000 AADT, 

  > 50 mph, 

  > 10% heavy vehicle 

31,595 33,297 +1,702 +5 

Oncoming 

cross 

bicyclist traveling straight, 

oncoming left-turning AADT > 2,000  
45,577 42,516 -3,061 -7 

Right 

hook 

bicyclist traveling straight, 

right turning vehicles > 2,000 AADT 
51,603 47,737 -3,866 -7 

Left sneak 

bicyclist turning left, 

adjacent vehicles > 8,000 AADT 

oncoming vehicles > 8,000 AADT 

9,015 8,798 -217 -2 
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Figure 4.3 Map highlighting dangerous situation locations for the right hook. 

 

4.5 Conclusion 

This paper introduced a novel method for engineers and planners to evaluate projects for 

sketch-level scenario planning in terms of bicyclist exposure to dangerous situations. The results 

can be presented through tables, figures, and maps to elected officials, the general public, and 

other stakeholders at town hall meetings or other forums for deliberative decision-making. The 

method and tools are intuitive and easy to use.  

The dangerous situation typology provides a framework for future research. Perhaps 

SPFs could be developed based on exposure indicators by investigating correlation with bicycle 

accident data. Research should seek to develop thresholds for dangerous situations not included 
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in this study. For example, one possible approach to analyze “sidewalk riding” would be to 

assume that streets passing through areas of vibrant commercial activity, such as a lively Main 

Street or “Urban Village”, would have a percentage of sidewalk riding if there is not a bike lane. 

“Winding roads” might be analyzed through some sophisticated spatial GIS procedure. 

“Crowded path” could be analyzed with GIS data about painted center lines and pedestrian 

volumes. Finally, the tool could be enhanced through an optimization procedure that could 

identify high priority projects by minimizing dangerous situation exposure. 

  



59 

 

  



60 

Chapter 8 Passive Travel Data Collection  

5.1 Introduction 

Mobile devices such as cell phones, PDAs, and hands free audio devices are becoming 

pervasive in society as most individuals carry at least one of these with them everywhere they 

go. Many companies and researchers are recognizing the vast potential of this device network. 

For example, some companies are using the GPS information from smart phones to learn and 

report real time traffic conditions. Other researchers are using the GPS data from volunteers to 

replace travel diaries. 

One area that has not received as much attention is using the communicative power of 

Bluetooth devices. Most mobile devices have the ability to communicate with other devices via 

Bluetooth. In addition they are constantly scanning and noting all other Bluetooth devices within 

communication range (anywhere from 10 to 100 meters depending on the device). There are 

applications that allow devices to keep a record of all intercepted Bluetooth signals, via the 

intercepted devices unique 6-hex digit MAC address, as well as the time and location that the 

device was detected. If many phones across a city were collecting this data and uploading it to a 

central server there would be a wealth of information available for researchers and planners. The 

goal of this paper is to present a proof of concept for this data collection method. 

One possible application of this is learning what parts of the city have the most travelers. 

While there are many ways to get this information for car traffic, this Bluetooth network would 

also pick up pedestrians and bicyclists. Another potential would be to use the unique MAC 

address of intercepted devices to track travelers across space and time as they travel around the 

city. This could provide information on route selection, origin/destination demand, and travel 

speeds (which can be used to infer travel mode). 
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In addition to providing a wealth of information, this data collection system would be 

very cheap and easy to distribute. Rather than hiring individuals to go out into the city and count 

travelers or conduct surveys, this method crowd sources the data collection. Citizens throughout 

a city simply need to download an app on their smart phone, and then go about their lives as 

normal. The device would be scanning, recording, and uploading with no input from the owner. 

5.2 Background 

5.2.1 Passive GPS Travel Diaries 

Travel diaries have been used for decades by researchers to learn where, how, when, and 

why individuals are traveling. A travel diary allows for detailed reports on trips. However they 

are completely reliant on the effort and thoroughness of the volunteer. A common problem is 

individuals forgetting to record short trips, especially those part of a trip chain, or for volunteers 

to put off filling out the journal for a few days, by which time they have forgotten the details of 

the trip. 

Because travel diaries are reliant on volunteers to provide all the information, they are 

considered active feedback. Individuals carrying a Global Positioning System (GPS) enabled 

device that records their location, is a passive form of data collection that is much easier on the 

participant. All they have to do is remember to carry the GPS device with them. With this 

passive data collection there are no recall issues, as all the data is stored electronically. Also it 

takes much less effort from the participant, so researchers can conduct studies for longer time-

periods without having to worry about participant fatigue. For this reason GPS data collection 

has become quite popular in both movement science and travel engineering research. 

One drawback to GPS data collection is the data processing requirements. Thousands of 

data points per participant are recorded each day. Before this data can be used the trips have to 
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be identified, a challenge into which much research has been done. Once the trips are identified 

researchers often want to know the mode and purpose of the trip. This study tests predicting trip 

mode and purpose with multinomial logit models based on various parameters gathered from the 

GPS data, city road/path and bus networks, and city land use data. 

In 2014 Broach et al. performed a similar study that used a multinomial logit model to 

predict trip mode. However one difficulty they had was in gathering the ground truth data form 

individuals. Individuals weren’t asked information about their trips until the end of the study, by 

which time many had difficulty recalling their travel mode. This study aims to pick up where 

Broach et al. left off. Individuals will be asked for information about their trips within one to 

three days to try to avoid recall problems. Also this study will test trip purpose prediction in 

addition to mode prediction. 

 

5.2.2 Moving Bluetooth Detection 

The most common application of Bluetooth detection in traffic research is to gather travel 

time data along major corridors. Static Bluetooth sensors are placed at either end of a corridor, 

and record the MAC address of all cars with Bluetooth devices that drive by. If the same MAC 

address is then seen down road by the second sensor the travel time can be calculated. This use 

of static Bluetooth sensors has been researched and utilized extensively. Where much less 

research has been done, is the use of moving Bluetooth sensors. 

Wang at the University of Washington performed a small study where four individuals 

walked around campus for an hour with Bluetooth sensors. This gave a small scale look into 

what this type of data collection could provide. The results were promising. The busy parts of 

campus were clearly identified, as well as detecting a spike in traffic during the class change. In 
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addition many devices were detected more than once allowing for travel information to be 

obtained. 

Versichele et al used a moving Bluetooth sensor to predict crowd sizes at a bicycling race 

in Belgium. This paper used the Class of Device (COD) code, one of the pieces of information 

that sensors learn about detected devices similar to the MAC address. The COD tells the type of 

device that was detected. In this study, only phone detections were used as all others were 

assumed to be either redundant or static devices such as desktops. 

5.3 Method 

5.3.1 Field Experiment Overview 

For this experiment, 53 volunteers were given apps for android devices (either installed 

on their own phone or installed on a phone provided them for the experiment). This app records 

the phone’s location through use of Global Positioning Satellites (GPS) as well as any Bluetooth 

signals it detects. See Figure 5.1. This data is recorded once a second for three seconds every ten 

seconds. All this data is stored on the android phone until it connects to a WiFi signal when it 

uploads the data to a central server. The participants were instructed to simply carry these 

devices with them for 10-12 days going about their life as normal. 
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Figure 5.1 Android devices and Funf travel app. 

 

This data collection took place in and around Moscow, Idaho. Moscow is a small town 

with a population of 24,500 and contains the University of Idaho. Eight miles to the West is 

Pullman, Washington which is slightly larger and contains the University of Washington.  A 

large portion of our volunteers were students of the University of Idaho (36 of the 42 from whom 

we received data). 

An important aspect of the analysis was the development of an algorithm to process a 

stream of GPS points into individual trips or trip segments. The trip isolation algorithm was 

based on the density of point within a specified dwell radius defined by distance and time. Figure 

5.2 shows a schematic of the process.  
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Figure 5.2 Trip isolation to distinguish trip segments. 

 

5.3.2 GPS Data Collection 

Every seven seconds this app recorded the phones GPS location once a second for three 

seconds. The app then uploaded this data to servers whenever it was connected to WiFi. This 

GPS data was then analyzed and trips were identified. At the end of each day trips were uploaded 

to a website. Each volunteer was then asked to log in to the website and answer some questions 

about the trips they made that day. Figure 5.3 shows a screen shot of this website. Volunteers 

were asked to confirm that they did make the shown trip, if there were any inaccuracies with the 

displayed trip, what their mode was, and where they were coming from and traveling to. This 

was repeated every day for 10 days. We received usable data and confirmation from 37 of the 

volunteers giving a total of 294 trips; Table 5.1 shows a summary of the data collected. 
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Figure 5.3 Screenshot of data collection website. 
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Table 5.1 Summary of collected data. 

Mode Number of 

Trips 

Destination 

Purpose 

Number of 

Trips 

Bike 35 Home 91 

Bus 11 Other 71 

Drive 118 School 82 

Other 14 Shopping 13 

Walk 116 Work 37 

All modes 294 All Purposes 294 

 

 

5.3.3 Bluetooth Detection 

After collecting data for twelve days over three thousand devices were intercepted by the 

phones of the volunteers, recording over three hundred thousand data points. Next the reported 

COD codes of the intercepted devices were decoded to report the class of device. A large number 

of the intercepted devices were static devices like desktop computers. Static devices are 

unhelpful as they are not being carried by an individual, and therefore cannot be used to track 

and individuals movement. After keeping only the mobile devices, this still leaves over fifteen 

hundred unique devices and over thirty-six thousand data points. Table 5.2 below summarizes 

the collected data. 
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Table 5.2 Data summarized by device class. 

 

  

Device Class Unique Devices Data Points Mobile Device
Computer 1,278                     226,281         

Laptop 902                                   164,522                

Desktop workstation 317                                   58,702                   

Handheld PC / PDA (Clam Shell) 39                                      2,503                     Yes

Palm sized PC / PDA 16                                      145                         Yes

Server-class computer 1                                        288                         

Uncategorized 3                                        121                         

Audio / Video 1,037                     44,483           

Hands-free device 660                                   4,657                     Yes

Wearable headset device 203                                   2,503                     Yes

Set-top box 98                                      35,409                   

Video Display and Loudspeaker 31                                      324                         

Loudspeaker 20                                      365                         

Portable audio 13                                      107                         Yes

HiFi Audio Device 3                                        15                           

Uncategorized 9                                        1,103                     

Phone 574                         27,125           

Cellular 362                                   14,659                   Yes

Smart phone 206                                   12,149                   Yes

Wired modem or voice gateway 3                                        308                         

Cordless 2                                        8                             

Uncategorized 1                                        1                             

Imaging 76                           1,816             

Printer 70                                      1,728                     

Scanner 6                                        88                           

Peripheral 64                           362                 

Keyboard-Uncategorized device 13                                      67                           

Pointing device - Uncategorized device 17                                      71                           

Not Keyboard / Not Pointing Device - Gamepad 8                                        139                         

Not Keyboard / Not Pointing Device - Joystick 8                                        48                           

Pointing device - Digitizer tablet 3                                        14                           

Not Keyboard / Not Pointing Device - Uncategorized device 15                                      23                           

Toy - Robot 3                             8                     

Wearable - Wrist Watch 2                             39                   Yes

Miscellaneous 86                           2,514             

Uncategorized 154                         4,135             

Grand Total 3,274                    306,763       
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5.4 Results 

5.4.1 Predicting Mode and Trip Purpose from GPS data 

The predictive models used were multinomial logit models. This is an application of 

logistic regression used for categorical response data. Logistic regression is a generalized linear 

model used for binary response variables and takes the following form. 

𝑙𝑜𝑔 [
𝑃(𝑌𝑖 = 1)

𝑃(𝑌𝑖 = 0)
] = 𝛽0 + 𝛽1𝑥𝑖1

+ 𝛽2𝑥𝑖2
+ ⋯ + 𝛽𝑝𝑥𝑖𝑝

 

where Y is the response variable which equals either 1 or 0, the x’s are the explanatory variables, 

and the β’s are the coefficients predicted by regression analysis. To define multinomial logit 

models: suppose Yi=1, 2 … K denotes K categories, and let πi1, πi2 … πiK be the probabilities of 

each category. The multinomial logit model is then defined by the following equations. 

𝑙𝑜𝑔 [
𝜋𝑖2

𝜋𝑖1

] = 𝛽(2)
0

+ 𝛽(2)
1

𝑥𝑖1
+ 𝛽(2)

2
𝑥𝑖2

+ ⋯ + 𝛽(2)
𝑝

𝑥𝑖𝑝
 

𝑙𝑜𝑔 [
𝜋𝑖3

𝜋𝑖1

] = 𝛽(3)
0

+ 𝛽(3)
1

𝑥𝑖1
+ 𝛽(3)

2
𝑥𝑖2

+ ⋯ + 𝛽(3)
𝑝

𝑥𝑖𝑝
 

 

𝑙𝑜𝑔 [
𝜋𝑖𝐾

𝜋𝑖1

] = 𝛽(𝐾)
0

+ 𝛽(𝐾)
1

𝑥𝑖1
+ 𝛽(𝐾)

2
𝑥𝑖2

+ ⋯ + 𝛽(𝐾)
𝑝

𝑥𝑖𝑝
 

This is a series of logistic regression models where each one compares the probability of 

category 1, the reference category, to the probability of a different category. Some algebra to 

solve for the probabilities gives the following. 
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𝜋𝑖𝑐
=

𝑒𝜂𝑖𝑐

1 + ∑ 𝑒𝜂𝑖𝑡𝐾
𝑡=2

 

where  𝜂𝑖𝑐
= 𝛽(𝑐)

0
+ 𝛽(𝑐)

1
𝑥𝑖1

+ 𝛽(𝑐)
2

𝑥𝑖2
+ ⋯ + 𝛽(𝑐)

𝑝
𝑥𝑖𝑝

 

To create the models numerous variables were considered: day of the week, time of day 

in minutes, time period of day (morning, afternoon, evening, or night), trip duration, average 

speed, standard deviation of speed, number of stops, start latitude, start longitude, end latitude, 

end longitude, dwell time (time spent without moving) before trip, dwell time after trip, start land 

use, end land use, gps distance, percent of the trip that occurred on the street and path network, 

percent of the trip that occurred on a bus route (PercBus), percent of trip that occurred on a trail 

(PercTrail), distance.  

To predict mode, a multinomial logit model was used with the volunteers’ stated mode as 

the response variable. Forward selection based on the Aikaike information criterion (AIC) 

selected the following explanatory variables: average speed in miles per hour, standard deviation 

of speed, PercTrail, PercBus, and distance in miles. The model coefficients are shown in Table 

5.3; note that Drive is the reference category. Table 5.4 shows the number of trips whose mode 

this model correctly predicts as well as percentages correctly predicted. To account for model 

optimization, ten random iterations of 10-fold cross validation were performed. The column 

Cross-Percentage gives the prediction accuracy after accounting for model optimization. The 

model ended up predicting mode with a 77% accuracy. 
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Table 5.3 Mode prediction regression coefficients. 

Mode (Intercept) Average 

Speed 

Standard 

Deviation of 

Speed 

PercTrail PercBus Distance 

Bike 1.408 -0.117 -8% 781% 0.361 -0.223 

Bus -4.515 -0.201 19% 447% 3.081 0.121 

Other 0.338 -0.23 12% 275% 0.73 -0.199 

Walk 4.741 -0.521 21% 657% 0.575 -0.516 

 

 

Table 5.4 Mode prediction accuracy. 

Mode Correctly 

Predicted 

Incorrectly 

Predicted 

Percent 

Correct 

Cross-

Percent 

Drive 107 11 91% 89% 

Bike 14 21 40% 35% 

Bus 4 7 36% 29% 

Other 0 14 0% 0% 

Walk 107 9 92% 90% 

Total 232 62 79% 77% 

 

To predict purpose, a multinomial logit model was used with the volunteers’ stated 

destination as the response variable. Forward selection based on the Aikaike information 

criterion (AIC) selected the following explanatory variables: destination land use (EndLU) 

(commercial, residential, or recreational), time of day in minutes since midnight, start land use 

(StartLU) (commercial, mixed, residential, or recreational), destination longitude (EndLon), 

duration in minutes, number of stops, starting longitude (StartLon), and dwell time after the trip 
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(EndDwell). The model coefficients are shown in Table 2.7; note that Home is the reference 

category. Table 5 shows the number of trips whose purpose this model correctly predicts as well 

as percentages correctly predicted. To account for model optimization, ten random iterations of 

10-fold cross validation were performed. The column Cross-Percentage gives the prediction 

accuracy after accounting for model optimization. The model ended up predicting purpose with a 

54% accuracy. 

Table 5.5 Purpose prediction regression coefficients. 

Purpose (Intercept) EndLU 

Commercial 

EndLU 

Residential 

Minutes StartLU 

Mixed 

StartLU 

Recreational 

Other -17.233 -0.657 -2.083 2.47E-05 53.113 0.208 

School 465.422 317.192 313.949 -3.58E-

03 

-

16.885 

-56.137 

Shopping -7.033 237.577 233.978 4.65E-04 -6.633 -84.410 

Work -628.828 -0.930 -3.868 -4.49E-

03 

-8.239 -149.469 

 

Table 5.6 Purpose prediction regression coefficients (continued). 

Purpose StartLU 

Residential 

EndLon Duration NumStops StartLon EndDwell 

Other 2.166 10.268 -3.29E-03 0.037 -10.423 -8.29E-04 

School 1.981 31.762 4.89E-03 -0.205 -25.108 1.60E-04 

Shopping 0.922 9.293 -5.71E-04 0.032 -7.313 -2.58E-04 

Work 2.112 -6.875 -8.78E-03 -0.036 1.465 3.21E-04 
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Table 2.7 Purpose prediction accuracy. 

Purpose Correctly 

Predicted 

Incorrectly 

Predicted 

Percent 

Correct 

Cross-

Percent 

Home 69 22 76% 70% 

Other 34 37 48% 38% 

School 62 20 76% 72% 

Shopping 0 13 0% 0% 

Work 13 24 35% 23% 

Total 178 116 61% 54% 

 

5.4.2 Processing Bluetooth Data 

Below in Figure 5.4 you can see the location of each intercepted device during the study. 

(Note that this only shows Moscow, there were also data points going out to Pullman, Seattle, 

Lewiston, Sandpoint, and Spokane). Given that almost all our volunteers were students, it’s not 

surprising that most of the data points are on the University of Idaho campus (the South Western 

Quadrant of Moscow), however there are quite a few points from around the city. This figure 

gives a good idea of the high traffic areas in Moscow. 
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Figure 5.4 All intercepted devices. 

 

Another way to view the data is on a daily basis. Figure 5.5 shows all the intercepted 

devices on Friday May 2nd, 2014, while Figure 5.6 shows Saturday May 3rd, 2014. Note that on 

Friday most of the activity is on campus; this is as expected since students have classes on 

Friday. On Saturday, however, there is much less activity on campus and more in other parts of 

town, especially a couple noted recreational areas. 
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Figure 5.5 Bluetooth interception Friday May 2nd 2014. 

 

 

Figure 5.6 Bluetooth interception Saturday May 3rd 2014. 
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The data can also be viewed hourly. Figure 5.7 shows the number of intercepted mobile 

devices each hour. Note that the data peaks around 11 AM and then has a minimum around 2 

AM. This has more activity in the middle of the day than is usually seen because college students 

are constantly moving around between classes. 

 

 

Figure 5.7 Bluetooth detections by hour. 

 

If the MAC address of the intercepted devices is considered, as well as time and location, 

then movement of individual devices can be tracked. About half of the intercepted devices were 

seen more than once. This means that for these 721 devices we could detect movement by 

matching the two points where the device was detected. Figure 5.8 shows all thirty-five thousand 

tracks for these devices. Figure 5.9 shows the time and distance between these matched points 

(Figure 5.9 only shows times up to 1 hour and distances up to 3 miles). 
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Figure 1.8 Matched Bluetooth points. 

 

 

Figure 5.9 Distance vs time between matched points. 
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One goal with these matched points could be to identify trips. However, most of these 

matched points had long gaps of time between multiple sightings which makes it hard to 

determine that the device traveled directly from the first point to the second (they could have 

made significant detours that weren’t detected). Also, there were many times were a device was 

detected multiple times in the same location, so these matched points don’t create trips. A trip 

can be identified if a device is detected in at least two different places over a short period of time. 

This experiment detected almost 600 trips, all of which are shown in Figure 5.10. 

 

 

Figure 5.10 Identified trips. 
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5.5 Conclusion 

As a proof of concept this experiment was successful. With only 53 participants, there 

was quite a bit of useful information to be pulled from the Bluetooth detection data. High traffic 

areas (as well as how this changes from one day to the next), peak travel hours, and trips can all 

be identified. 

It’s worth noting that with only 53 participants (the majority of which were students on 

campus most of the day) the coverage area of the network is quite limited. For example, on 

Friday May 2nd there could have been quite a bit of traffic in Mountain View Park due to a 

parade, but if none of the participants were there then this would go undetected. In addition, 

while some trips were identified, it is difficult to tell what route was used as the individuals were 

only detected at the beginning and end of their trip. However, if there were more participants and 

a wider geographic distribution of participants both of these shortcomings would be reduced. 

In conclusion, this data collection method works and can provide a considerable amount 

of data for very little cost. 
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Chapter 9 Bluetooth Data Collection on Transit 

6.1 Introduction 

The synergistic relationship between non-motorized travel and public transit is both 

intuitive and well documented in research. Public transit use has been shown to be correlated 

with higher rates of non-motorized travel, and is recognized as a key determinant of the 

accessibility of an urban area by biking and walking modes (Besser & Dannenberg, 2005; 

Chanam & Moudon, 2006; Bachand-Marleau et al., 2011). A number of cities in the US have 

identified the role of transit in increasing the number and distance of trips accessible by active 

travel modes, and considered this interaction in planning transit and cycling facilities. For 

example, the city-wide Capitol Bikeshare program in Washington D.C. has placed a great deal of 

emphasis on transit connectivity, and the most recent user survey for the program indicates that 

approximately 64% of all trips began or ended at a metro station (LDA Consultants, 2015; 

Pucher & Buehler, 2008). However, despite the increasing emphasis on transit and non-

motorized mode integration over the last few years, enhancing this trend has not been prioritized 

to a large enough extent in policy making (Wang & Liu, 2013). 

A number of previous studies have suggested that better integration between non-

motorized modes and transit is a fundamental step toward increasing walking and cycling rates. 

For example, Lachapelle & Noland (2012) showed a statistically significant relationship between 

transit use and walking rates, and conclude that access to transit via non-motorized modes can 

result in more non-motorized trip chains and higher walking rates overall. Likewise, the analysis 

described in Martin & Shaheen (2014) suggests that coordination between transit and public bike 

sharing programs has the potential to both augment existing transit service and to reduce the 

reliance on transit for many users. Cheng & Liu (2012) evaluated factors that correspond to a 
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cyclist’s perceived convenience, and their findings indicate that the presence of “intra-transit” 

cyclist facilities is a key factor in a traveler’s decision to make cycling part of their commute. 

Some studies have addressed the need to identify the most cost effective improvements in terms 

of transit/cycling integration (e.g. Krizek & Stonebraker, 2011), but it is clear that such efforts 

can benefit from more detailed and accurate data describing local transit use patterns. 

The majority of past work in data acquisition for transit planning has been based on 

traveler surveys, which are known to be susceptible to stated preference bias and error 

(Wardman, 1988). In recent years, there has been a strong and growing interest in using 

passenger smart card and other automated fare collection (AFC) system data for data collection 

(Pelletier et al., 2011). However, smart card and other AFC systems are designed for a very 

specific purpose, and as such are not typically optimized for traveler data collection. Though 

some methods have been developed to extract meaningful information from AFC systems, this 

process generally involves the fusion of multiple data sources and can be quite complicated (e.g. 

Zhao et al., 2007; Ma et al., 2012). Because of this, though the majority of major transit agencies 

have already implemented some form of automated payment, many do not have a mature 

framework for extracting mobility patterns form the resulting data. Further, even with the 

growing popularity of AFC, many smaller and specialized transit agencies do not have the 

resources or financial incentive to adopt this technology. 

There has been significant recent interest in onboard mobile communication device 

sensing for transit data collection, which promises to address many of the shortcomings of 

survey or AFC based methods. In principle, multiple sensors are used to record the unique 

Bluetooth or Wi-Fi media access control (MAC) address for each wireless communication 

device at points along their travel route. By re-identifying a traveler at multiple locations over 
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time, it is possible to reconstruct entire trips and even compute travel speed. This technology has 

been used to some extent in a range of transportation applications, including corridor travel time 

estimation, pedestrian travel analysis, and vehicle origin-destination data collection (Bachmann 

et al., 2013; Malinovskiy et al. 2012; Blogg et al., 2010). Mobile MAC address sensing has also 

been applied to some extent in transit data collection. For example, Vassilis et al. (2013) showed 

that bus-mounted Bluetooth MAC address sensors can be used to infer traveler boarding and 

alighting locations and produce relatively detailed information about the temporal and spatial 

distribution of demand. Similarly, Canon-Lozano et al. (2013) demonstrated a web-service 

platform for origin-destination estimation based on static Bluetooth sensor data.  

Though previous work has addressed some of the difficulties inherent to mobile device 

MAC address sensing, a number of challenges remain. As pointed out in several studies (Canon-

Lozano et al., 2013; Malinovskiy et al., 2012), many individuals carry more than one wireless 

communications device, and a greater number choose to disable the Bluetooth and Wi-Fi 

capabilities of their device(s) when not in use. Additionally, GPS errors and extraneous 

detections are a constant concern, and a substantial amount of preprocessing work must be 

completed to insure that such observations are corrected or discarded. Thus, the focus of this 

project is demonstrating a set of methodologies to collect, process, and analyze wireless sensor-

based transit traveler data. 
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6.2 Methods 

6.2.1 Field Experiment Overview 

Field experiments were conducted on transit vehicles owned and operated by the 

University of Washington Transportation Services (UWTS). The University of Washington 

operates a small fleet of busses serving traffic between the UW Medical Center and Harborview 

Medical Center and various locations near the UW campus. A dedicated shuttle service also 

serves traffic between the South Lake Union Neighborhood and UW Medical Center. These 

services provide free and accessible travel for customers of the UW hospital facilities, many of 

whom rely on this service to access the care and medical attention they need. The data collected 

in this experiment will aid UWTS in assessing the efficiency, reliability and customer 

satisfaction of their services, and may be used for future service planning and funding 

applications. UWTS expressed a strong interest in improving passenger origin/destination 

estimates, and was eager to support data collection efforts.  

The Health Sciences Express (see Figure 6.1 (a)) provides transit services between the 

UW Medical Center and Harborview Medical Center, with stops at the UW Roosevelt Clinic and 

the UW Tower. UW faculty, staff, students, and medical center patients all have access to this 

service. Health Sciences Express buses depart UWMC every 15 minutes from 6 a.m. to 5:45 

p.m., Monday through Friday, excluding University holidays. The evening service is sponsored 

by Graduate Medical Education, and leaves UWMC at 6:15 p.m. and HMC at 7 p.m. The 

UW/Fred Hutch South Lake Union Shuttle (see Figure 6.1 (b)) consists of two routes, the 

UWMC to South Lake Union via Fred Hutch, and South Lake Union to Harborview. Both routes 

include stops at several additional locations, including medical research facilities. 
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(a) Health Sciences Express bus     (b) Shuttle 

Figure 6.1 Two types of transit services offered by UWTS. 

 

Two types of transit services offered by UWTS, South Lake Union Shuttle and Health 

Sciences Express, are shown above in Figure 6.1 ((a) and (b) respectively). This map was 

obtained from the UWTS real-time bus location mapping application, so the arrow and square 

icons in Figure 6.2 indicate the location and travel direction of in-service transit vehicles. Both of 

the routes shown below were equipped with sensors in this study, but the analysis and results are 

only presented for the Health Science Express route shown on the right in Figure 6.2.  
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(a) South Lake Union Shuttle    (b) Health Science Express 

 

Figure 6.2 UWTS transit routes (UWTS, 2015). 

 

The stop information for the Health Science Express route can be found in Table 6.1, which 

lists the location and building of each stop. There are a total of eight stops, including those that 

are used only for passenger drop off.  
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Table 6.1 UWTS bus and shuttle routes (UWTS, 2015). 

 

Field data collection was conducted in two separate events during the time periods from 

March to May, 2015, with each events lasting about two weeks. At any given time on a typical 

day of operation, there are 4 buses and 3 shuttles in service. All the buses and shuttles 

instrumented with Bluetooth/Wi-Fi detection devices which will be introduced in the following 

section. The detection devices are supplied with power through the bus electronic system in 

order to insure that the data collection period is not limited by battery life. 

6.2.2 Data Collection Hardware and Software 

Sensing hardware used in this experiment consists of a set of mobile phones running the 

Android operating system. For the mobile sensors, power adapters were connected directly to the 

transit vehicle power supply, and connected to the phones with a standard USB charging cable. 

Each stationary sensor was connected to an auxiliary battery to extend the deployment time, and 

placed inside a weather-proof box.  
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A mobile phone Application (app) was used to detect the Bluetooth and Wi-Fi devices 

within nearby spaces. The app used in this study was developed using the Funf in a Box (FIAB) 

platform, a simple application development tool which provides access to mobile device internal 

sensors. FIAB is part of the Funf Open Sensing Framework, an open source API designed to give 

application developers and researchers a set of tools for acquiring, processing, and managing 

Android mobile device sensor data (Aharony et al. 2011). To use FIAB, the user specifies the 

data collection parameters (e.g. sensor types, observation frequency, etc.) and a Dropbox folder, 

and an app is automatically generated to collect and upload data to the specified location. The 

application can then be downloaded directly or distributed through the Android Market. In this 

study, sensor data was collected and stored in device memory, and uploaded to Dropbox 

whenever the UW Wi-Fi network is available. Otherwise, data can be obtained data manually by 

connecting the mobile device to the laptop. The app creation interface is shown in Figure 6-3.  

Figure 6.3 Interface of the app creation process (FOSF, 2015). 
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In this study, the Bluetooth and Wi-Fi MAC addresses for all devices within sensing 

range are collected, as well as the GPS location of the data collection device. For Bluetooth 

detection, data is recorded for 10 seconds on 20 second intervals. For the Wi-Fi detection, data is 

recorded for 5 seconds on 20 second intervals. GPS location is recorded every 20 sections for a 

duration of 4 seconds. Battery status is also collected every 2 hours, though the devices were 

supplied with power through the bus electronic system. 

6.2.3 Sensor Placement 

As described previously, both mobile (bus-mounted) and static sensors were used in this 

data collection effort. Mobile sensors were positioned in near the driver’s seat in the bus and 

wired into the bus power supply, and so did not rely on the device battery for power. Static 

sensors were placed in weather-proof cases near bus stop locations, and so were equipped with 

auxiliary batteries to increase the operating time and reduce the need to recharge. Figure 6.4 

(below) shows the placement of the mobile sensors, which were plugged into a power adapter 

wired into the 24V power panel in the busses. Figure 6.5 shows the wiring and placement of the 

static sensor, in this case in a tree adjacent to a bus stop.  

 

Figure 6.4 Mobile sensor placement. 
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(a) Sensor with auxiliary battery        (b)  Sensor placement 

Figure 6.5 Static sensor setup and placement. 

 

6.2.4 Manual Data Collection 

For validation purposes, a number of volunteers were asked to ride the instrumented 

busses at various intervals throughout the data collection process. Volunteers were given 

instructions to board a bus at the UWMC stop, and record the number of boarding and alighting 

passengers at each stop over a ~ 1 hour period. Over the course of the data collection period, 

approximately 17 hours of manual count data was collected during the mid-day and peak time 

periods.  

Manual boarding counts were also collected by bus drivers on the South Lake Union 

shuttles, and made available to the research team by UWTS. These counts are collected as a 

regular course of operation, and provided a useful additional source of data for this project. 

6.2.5 GPS Data Collection 

The format of the GPS data recorded in the field experiment is illustrated in Table 6.2. 

This raw data contains a great deal of supporting information including detection id, accuracy, 

timestamp, and others, not all of which is useful in our analysis. Only the three pieces of 
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information that are used in subsequent analysis are shown in Table 6.3. The table shows the 

GPS location of the bus, represented by the latitude and longitude coordinates, and the time of 

observation. This data can be combined with the MAC address sensing information to determine 

the approximate location of each device at the time when it was detected. 

Table 6.2 Raw GPS data from mobile sensors. 

 

 

Table 6.3 GPS data retained for analysis. 

Latitude Longitude timestamp 

47.65241647 -122.304183 1425429196 

47.6525856 -122.305113 1425429196 

47.65241647 -122.304183 1425429216 

47.6499316 -122.309938 1425429216 

47.6498885 -122.309717 1425429219 

47.6498885 -122.309717 1425429219 

47.65241647 -122.304183 1425429236 

 

6.2.6 Bluetooth and Wi-Fi detection  

The raw Bluetooth detection data is shown in the Table 6-4 below, with identifying 

information censored for privacy reasons. The Wi-Fi dataset is very similar to the Bluetooth, and 
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so is not shown for brevity. This table includes the MAC address specific to each device, the 

name of the device given by the passenger, the timestamp of the detection, and others, not all of 

which was useful in our analysis. Some information such as “name” could be considered 

invasive, and because it is not useful for our study was deleted. Only the two most important 

information are retained: the timestamp of detection and the MAC address, as shown in Table 6-

5 (again, censored for privacy reasons). 

Table 6.4 Raw Bluetooth detection data. 

 

Table 6.5 Bluetooth data retained for analysis. 

MAC_ID timestamp 

B8:76:3F:XX: XX:XX 1425429217 

04:0C:CE: XX: XX: XX 1425429238 

18:83:31: XX: XX:XX 1425429239 

28:CF:E9: XX: XX: XX 1425429244 

18:83:31: XX:XX:XX 1425429257 

00:22:41: XX: XX: XX 1425429318 

00:1B:63: XX:XX:XX 1425429322 

00:1D:4F: XX:XX: XX 1425429325 
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6.2.7 Combination of GPS, Bluetooth and Wi-Fi Data 

The GPS, Bluetooth and Wi-Fi data are combined by matching the timestamp 

information in each data element. In many cases, an exact match between the timestamps will 

not be found due to differences in the observation intervals. In this case, each Bluetooth or Wi-Fi 

detection will be matched to the closest available GPS observation. An example of combined 

Bluetooth and GPS data is shown in Table 6.6. A unique proxy id code is used instead of the 

actual device MAC address for privacy reasons.  

Table 6.6 Combined Bluetooth and GPS data. 

BTtime GPStime Latitude Longitude ID 

1425430857 1425430856 47.65853 -122.318 1213 

1425431044 1425431036 47.65853 -122.318 1053 

1425431484 1425431476 47.60392 -122.323 1012 

1425431959 1425431956 47.60392 -122.323 639 

1425432606 1425432599 47.6529 -122.312 1273 

1425433343 1425433336 47.65579 -122.315 22 

1425434219 1425434219 47.64398 -122.322 39 

 

With the combined information, the location of each Bluetooth or Wi-Fi detection can be 

visualized in an ArcGIS map. Figure 6.6 shows the location of Bluetooth Detections onboard a 

single vehicle, bus #592. Figure 6.7 shows the location of Wi-Fi Detections onboard Bus #592. 

Most of the detections are along the bus routes, but several appear well outside the bus operating 

area. This indicates that some data pre-processing will be required before the data can be used 

for any analysis.  
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Figure 6.6 Bluetooth detections onboard bus #592. 

 

 

Figure 6.7 Wi-Fi detections onboard bus #592. 
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6.3 Results 

6.3.1 Data Processing 

The Bluetooth and Wi-Fi data collected in the field experiment contain a great number of 

errors and inconsistencies, and a certain amount of extraneous data was collected. For example, 

when a bus stops, the Bluetooth and Wi-Fi from both the passengers boarding the bus and the 

non-passengers who are near the bus will be detected. Clearly, this non-passenger data should be 

excluded from further analysis. In addition, some people may turn on or off their Bluetooth or 

Wi-Fi signal during the trip. In such cases, it is difficult to infer the boarding or alighting bus 

stop.  

Data processing was conducted to exclude confounding data from further analysis. The 

data cleaning process in this project contains three principle steps. The first step is to delete 

random detections. To do this, we rely on the fact that a passenger should be detected repeatedly 

during a bus trip. Thus, the MAC address with fewer than 3 detections were excluded from the 

final dataset. In this way, most of the random non-passenger data is removed be removed.  

In the second step, the data is processed to separate the trip rides from the detection 

records. Based on historical bus operating records, the running time between two bus stops is 

always above 60 seconds and the time from the initial stop to the last stop on a route is less than 

1.5 hours. Thus, in this project, if no two detections for a single device are more than 60 s apart, 

it is not considered a trip ride. Also, if the time difference between two detections is over 5400 s, 

they are considered to belong to two separate rides. All detections for a given device within the 

60 s and 5400 s windows are considered to belong to the same trip ride. After this step, the origin 

timestamp and destination timestamp for each trip, together with the origin location and 
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destination location, can be inferred. The resulting origin and destination are shown in Figure 6-

8. 

   

Figure 6.8 Passenger origins and destinations from Bluetooth detection data. 

 

The third step matches the origin and destination of riders to transit stop locations. In 

each trip, the initial and final timestamp and GPS location are recorded. The trips are selected 

only if the origins and destinations of rides are within 300 ft of known transit stop location. This 

step can delete the device trips which do not start and end at bus stops. To perform the data 

cleaning in this step, a bus stop location layer is first created in an ArcGIS map, as shown in 

Figure 6-9. The exact latitude and longitude coordinates of each bus stop are specified in the 

layer. Next, a spatial analysis is conducted using common GIS tools to select the data within bus 

stop areas. The results of data selection after step 3 are shown in Figure 6-10. The detected 

origins and destinations are now clustered around the bus stop location. 
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Figure 6.9 Bus stop locations. 

 

Figure 6.10 Distribution of detections near bus stop locations. 
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The number of samples remaining after each data cleaning step is shown in Table 6.7. 

The raw data contains 11041 devices and 58668 rides. After step 1, only 6476 devices and 14126 

rides are left. The number of devices is reduced by about 50% while the number of rides are 

reduced by 75%. This indicates that a great number of devices and are detected fewer than three 

times. Such devices are most likely other road users near the sensor on the bus, rather than the 

bus passengers. After filter step 2, only 1220 devices and 5426 rides remain. After filter step 3, 

only 403 rides are left. Those rides can be used for obtaining the origin and destination 

information. Note that, even though a great deal of data was discarded in due to the strict 

cleaning rules, the remaining dataset should be very reliable for inferring passenger origins and 

destinations. 

Table 6.7 Detection count after each data cleaning step. 

 Number of devices Number of Rides 

Raw Data 11041 58688 

After Filter 1 6476 14126 

After Filter 2 1220 5426 

After Filter 3 NA 403 

 

6.3.2 Data Analysis Results 

With the processed Bluetooth detection data, we plotted the number of detections at 

different time a single week. The results are shown in Figure 6.11. It shows that data were 

detected during day time when bus is in operation, with minimal variation from day to day.   
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Figure 6.11 Number of detections over time. 

The distribution of trip duration for the processed Bluetooth is shown in Figure 6.12. It is 

clear that the comparatively few longer duration trips were recorded, and that most of the trips 

are within 10 minutes.  
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Figure 6.12 Distribution of trip time duration. 

The origin-destination matrix for the processed Bluetooth data is shown in Table 6.8. The 

left-most column represents the origin bus stop, and the first row represents the destination. The 

color in the table represents the number of rides for each combination of origin and destination. 

The most popular trip is from the Roosevelt stop to the HVC stop, with 92 passengers boarding 

at the Roosevelt stop and alighting at the HVC stop. Other popular trips include HVC to 

Roosevelt, Hitchcock Hall to Cascade Tower, Lander Hall to Brooklyn, and UW Tower to 

Roosevelt. The percentage of trip for each origin-destination pair is estimated as shown in Table 

6-9. 

Table 6.8 Estimated origin-destination matrix (bus stops). 
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Table 6.9 Percentages of origin-destination trips (bus stops). 

 

The research team processed the Wi-Fi data on Bus #592 from April 27 to May 1. The same 

cleaning procedure was followed to process the raw data, and the resulting origin and destination 

points are shown in Figure 6.13. This shows that, similar to the Bluetooth data, the Wi-Fi trip 

starts/ends are clustered around the bus stops after cleaning is completed. The origin-destination 

matrix is calculated for the Wi-Fi data, shown in Table 6.10 and Table 6.11. In comparing the 

results from Bluetooth and Wi-Fi data, the origin-destination matrices appear somewhat similar. 

Based on Wi-Fi data, the most popular trip is from the Roosevelt stop to the HMC stop. Other 

popular routes include UW tower to HMC, HMC to Roosevelt and Cascade Tower, Lander Hall 

to Cascade Tower, Cascade Tower to UW Tower, and UW Tower to Roosevelt. 
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Figure 6.13 Origins and destinations from Wi-Fi data.  

 

Table 6.10 Estimated origin-destination matrix from Wi-Fi (bus stops). 
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Table 6.11 Percentages of origin-destination trips from Wi-Fi (bus stops). 

 

6.4 Discussion 

The results presented here are based on a subset of the total data collected, as collection 

efforts are ongoing. Further, though a sizable quantity of manual count data was obtained for 

verification and validation, these efforts are ongoing and so no results are presented here. That 

said, the methods and results described in this report provide a solid illustration of what is 

possible through wireless MAC address sensing. This study shows that the number of passengers 

carrying active wireless devices is sufficient to provide a sizable sample of the population, and 

that the boarding and alighting location of passengers can be inferred from detection time and 

GPS location. In communications with the UWTS, it is clear that they have a great deal of 

interest in obtaining low-cost origin destination data and time distribution of ridership. As noted 

previously, certain UWTS buses have manual data collection equipment which allow the driver 

to tabulate the boardings at each stop. Compared to this approach, MAC address sensing requires 

no effort on the part of the driver and provides both boarding and alighting location for a sample 

of passengers.  

There are some obvious technological and functional differences between Wi-Fi and 

Bluetooth sensing which must be considered in developing a data collection and analysis 

methodology. Most importantly, Wi-Fi has a longer detection range, and so a greater area is 

covered by each sensor. Though this results in a greater number of detections, it adds a 

significant amount of spatial uncertainty to the data. As a result, Wi-Fi data is much noisier than 
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Bluetooth data and contains a greater number of extraneous detections. This characteristic of 

longer detection range can be helpful in cases where a large area must be covered by a single 

sensor, for example, if a single device needs to cover a courtyard or parking lot. For on-board 

transit passenger detection, Bluetooth may provide more useable data. In any case, more work is 

needed to determine the optimal hardware type and configuration for different detection 

scenarios.  

One of the challenges that must be addressed in future work arises from the fact that 

extraneous detections are more likely to occur when there are a large number of non-passenger 

individuals near bus stop locations. Intuitively, it is likely that pedestrians and other non-

passenger travelers tend to appear in greater numbers near popular bus stops where the majority 

of passengers board and alight. Because of this, great care must be taken in the data cleaning step 

to avoid discarding useful data. This issue may be resolved through the use of more sophisticated 

data filtering methods, a topic that will be examined in greater detail as verification work is 

completed.  

 

6.5 Conclusion 

The work described in the section demonstrates a possible application of wireless MAC 

address sensing in transit data acquisition. A field experiment was designed and executed, and a 

set of data cleaning and processing methods were developed and applied to the field data. Based 

on the research team’s experiences, it is thought that the methods applied here can be expanded 

temporally and spatially to provide a robust and detailed source of data for transit planning and 

operations analysis. With high temporal resolution, low initial investment, and near real-time 
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monitoring, it is clear that wireless sensing has a number of potential advantages over 

conventional data collection methods. Additional advantages include: 

 Low hardware, software, and installation costs 

 Minimal maintenance of and access to hardware is required once it has been installed 

 Automated, wireless data acquisition and upload 

 Observed traveler behavior, as opposed to survey or other stated preference data 

One additional point that should be made with regard to the work described here is that 

wireless MAC address sensing is not limited to any one travel mode in particular, making 

integrated motor vehicle, non-motorized, and transit travel data collection possible. One can 

imagine a network of low cost sensors providing rich, real-time information about inter- and 

intra-mode travel patterns on a variety of on-road and active transportation facilities. 
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Chapter 11 Conclusions and Recommendations 

The goal of this project was to provide guidance for improving manual bicycle and 

pedestrian count programs and investigate the feasibility of new, cutting-edge sensor technology. 

To this end, five independent studies were pursued to: 

1. Evaluate the state-of-the-practice of manual bicycle and pedestrian count programs, 

2. Assess the error associated with manual count programs, 

3. Develop a process for using manual count data for safety analysis, 

4. Explore the feasibility of using moving Bluetooth sensors to collect bicycle and 

pedestrian data, and 

5. Investigate the potential for installing Bluetooth sensors on public buses to gain better 

understanding of pedestrian interaction with public transportation. 

Through an online survey of transportation specialists, including Bicycle and Pedestrian 

Coordinator for various state DOTSs, it is clear that many communities are using community-

volunteers to collect manual bicycle and pedestrian counts as a low cost strategy. Furthermore, 

the respondents reported many communities are not using automatic counters, not using 

adjustment factors, counting infrequently, for short 2 hour periods, and rarely for more than one 

day. Although occasionally or regularly conducting manual counts has a variety of benefits, it is 

not clear how the resulting snapshot counts can be used for some of the reasons the survey 

respondents claimed were motivating their count programs. Count program managers should 

conduct a careful self-assessment of their capabilities, limitations, and goals to clearly define 

their purpose for conducting manual count programs that involve community-volunteers. In 

particular count program managers should decide if they are striving to have a public 

involvement activity that produces count data as a byproduct, or vice-versa, or a program that 
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strives to achieve both goals equally. A community that lacks resources for permanent counters 

might conclude that manual counts with error are better than no counts at all.  

For the second part of this project a controlled field experiment found a slight difference 

in absolute percent error between different count techniques; however, the differences were not 

statistically significant. Nevertheless, since the 12-movement technique provides substantially 

richer data without degrading accuracy, manual count program managers should consider using 

the 12-movement technique. This study also showed no apparent increase in measurement error 

when counters were assigned to collect additional information about passing travelers. The 

survey of practitioners showed that many count programs assign their volunteers to collect 

additional information, and a few noted that sex of traveler and helmet use are used to measure 

the success of programs to encourage helmet use and increase bicycling among women. 

However, feedback from the participants in our count study suggests the task of collecting 

additional information can be burdensome. Manual count program managers might consider 

focusing count events that involve community-volunteers as an opportunity to simultaneously 

collect count data across a wide geographic area and, instead, collect additional information such 

as helmet use. Also, the data could be used by city staff on a different occasion when this 

information is needed to assess specific programs or for grant applications. 

For the third part of this project a new method was developed for engineers and planners 

to evaluate projects for sketch-level scenario planning in terms of bicyclist exposure to 

dangerous situations. The results from the new method can be presented through tables, figures, 

and maps to elected officials, the general public, and other stakeholders at town hall meetings or 

other forums for deliberative decision-making. The method and tools are intuitive and easy to 

use. Central to the new method is a typology of 23 dangerous situations for bicyclists that were 
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identified through a literature review. The dangerous situation typology provides a framework 

for future research. Perhaps SPFs could be developed based on exposure indicators by 

investigating correlation with bicycle accident data. Research should seek to develop thresholds 

for dangerous situations not included in this study. For example, one possible approach to 

analyze “sidewalk riding” would be to assume that streets passing through areas of vibrant 

commercial activity, such as a lively Main Street or “Urban Village”, would have a percentage of 

sidewalk riding if there is not a bike lane. “Winding roads” might be analyzed through some 

sophisticated spatial GIS procedure. “Crowded path” could be analyzed with GIS data about 

painted center lines and pedestrian volumes. Finally, the tool could be enhanced through an 

optimization procedure that could identify high priority projects by minimizing dangerous 

situation exposure.  

For the fourth study, we explored the feasibility of using moving Bluetooth sensors to 

collect bicycle and pedestrian data. Fifty three people were provided a smartphone app that 

tracked their location via global positioning systems (GPS) every seven seconds for 10 days. The 

app also collected, via Bluetooth, the media access control address (MAC address) of any 

intercepted device within 100 feet. The intent of the study was twofold, first to explore the 

potential of using this passive data collection technology to replace traditional travel diaries. The 

study also provided a means to collect a richer data set of travel patterns by matching intercepted 

MAC addresses across the city, perhaps as a precursor to the data that might be collected in the 

future through vehicle-to-vehicle communications. Every night the participants logged into a 

website to verify information about their travel. They were asked to confirm trip segments, trip 

purpose, and trip mode, all of which had been inferred through algorithms we developed for the 

study. Our model predicted mode with 77% accuracy and purpose with 54% accuracy. Over 
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3,000 devices were intercepted via Bluetooth and recorded over 300,000 GPS points. By 

matching MAC addresses across town, our data processing algorithms identified over 600 trips, 

most of which were determined to be pedestrian trips on the University of Idaho campus. 

For the fifth study, smartphones with the GPS/Bluetooth app were placed on buses 

traveling between the University of Washington campus and South Lake Union Neighborhood in 

Seattle. During the study period 11,041 devices were intercepted. After data processing we 

determined that 403 bus riders were intercepted. Boarding and alighting locations were 

determined for the intercepted riders. This study showed that the number of passengers carrying 

active wireless devices is sufficient to provide a sizable sample of the population, and that the 

boarding and alighting location of passengers can be inferred from detection time and GPS 

location. Based on the research team’s experiences, it is thought that the methods applied here 

can be expanded temporally and spatially to provide a robust and detailed source of data for 

transit planning and operations analysis. With high temporal resolution, low initial investment, 

and near real-time monitoring, it is clear that wireless sensing has a number of potential 

advantages over conventional data collection methods. Additional advantages include: 

 Low hardware, software, and installation costs 

 Minimal maintenance of and access to hardware is required once it has been installed 

 Automated, wireless data acquisition and upload 

 Observed traveler behavior, as opposed to survey or other stated preference data 
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