UAS for Rockfall Site Monitoring

Michael J. Olsen, Ben Leshchinsky, Matt O'Banion,

Joe Wartman, Lisa Dunham, Shane Markus

Keith Cunningham

UNIVERSITY OF ALASKA

Oregon Department of Transportation

UAS in Transportation Workshop, Corvallis, OR

Motivation

- Long, isolated highways
- Safety & Mobility concerns
- Proactive Risk Assessment Performance-based Asset Management
- Identify priority locales for remediation, detailed monitoring
- Limited personnel
- Less money
- More liability, political pressure

Seismic Rockfalls\Landslides

Traditional Assessment

- E.g. Rockfall Hazard Rating System
 - Costly
 - Coarse
 - Subjective

- Detailed
 Assessments
 - Very Costly
 - Subjective
 - Unsafe

Lidar\UAS – are they a solution?

- High Detail
- High Accuracy
- Rapid acquisition, good coverage
- Challenges with GNSS in canyons
- Skill required for processing and analysis
- Where is the magic button?
- Can we make this more efficient/systematic?

Site Locations

Data Acquisition

Leica GS14 GNSS Receiver Riegl VZ-400 Laser Scanner Leica P40

Leica TS15 Total Station

Source: www.dji.com

DJI Phantom Professional 3

Source: www.sony.com

Sony DSC-RXM2 Camera

Site GG239

Magnitude Frequency Relationships

HOLES FILLED

HOLES NOT FILLED

(**d**)

Rockfall Activity Index (RAI)

Dunham, L., Wartman, J., Olsen, M.J., O'Banion, M.S*, & Cunningham, K. (2017). "Rockfall Activity Index (RAI): A Lidar-derived, morphology-based hazard assessment system," *Engineering Geology*, 221, 184-192. <u>https://doi.org/10.1016/j.enggeo.2017.03.009</u>

Surface Morphology

3D Surface Model Comparisons

How good is the pixy dust?

O'Banion, M.S.*, Olsen, M.J., Rault, C., Wartman, J., and Cunningham, K. (In Press). "Suitability of Structure from Motion for Rock Slope Assessment," submitted to the *Photogrammetric Record*.

Background

Goal: Assess and monitor unstable rock slopes along the Parks Highway (Glitter Gulch) and Glenn Highway (Long Lake) in Alaska

- Summer 2012: Mobile lidar data
- Summer 2013 & 2014: Terrestrial lidar data (TLS)
- Summer 2015: TLS, unmanned aircraft system (UAS) imagery
- Summer 2017: TLS, unmanned aircraft system (UAS) imagery

Introduction

Introduction

Suitability of SfM for rock-slope assessment

Accuracy Assessment (Total Accuracy)

Quality Evaluation

- Completeness
- Point Density
- Surficial Properties
- Rock-slope Morphology Classification

Accuracy Assessment

Two Independent References

- 1. TLS-derived 5 cm Surface Models
- 2. Total Station Cliff Points

Structure From Motion (SfM) Image Reconstructions

- Combo: Both UAS and ground-based images
- UAS: Only UAS-based images
- Ground: Only ground-based images

RS3 ~1,680 m²

TLS and SfM Surface Comparison - Results

TLS and SfM Surface Comparison - Results

SfM Model	Туре	Mean Diff. (m)	σ (m)	RMSE (m)	Error 95% Conf. (m)	% of SfM in Front of TLS
	Ground SfM	-0.003	<u>+</u> 0.029	<u>+</u> 0.029	<u>+</u> 0.047	55.4
RS1	UAS SfM	-0.051	<u>+</u> 0.046	<u>+</u> 0.069	<u>+</u> 0.112	94.1
	Combo SfM	-0.006	<u>+</u> 0.029	<u>+</u> 0.030	<u>+</u> 0.048	60.5
	Ground SfM	-0.002	<u>+</u> 0.027	<u>+</u> 0.027	<u>+</u> 0.044	58.3
RS2	UAS SfM	-0.010	<u>+</u> 0.028	<u>+</u> 0.030	<u>+</u> 0.048	65.3
	Combo SfM	-0.010	<u>+</u> 0.023	<u>+</u> 0.025	<u>+</u> 0.041	72.9
RS3	Ground SfM	0.000	<u>+</u> 0.030	<u>+</u> 0.030	<u>+</u> 0.048	56.9
	UAS SfM	0.020	<u>+</u> 0.036	<u>+</u> 0.041	<u>+</u> 0.066	23.0
	Combo SfM	0.003	<u>+</u> 0.026	<u>+</u> 0.027	<u>+</u> 0.043	43.8

Total Station Cliff Point Comparison

Site	Туре	Mean Diff. (m)	σ (m)	RMSE (m)	Error 95% Conf. (m)	% of Surface in Front of TS Points
RS1	Ground SfM	-0.001	<u>+</u> 0.015	<u>+</u> 0.015	<u>+</u> 0.025	57.14
	UAS SfM	-0.032	<u>+</u> 0.041	<u>+</u> 0.052	<u>+</u> 0.084	82.69
	Combo SfM	-0.006	<u>+</u> 0.020	<u>+</u> 0.021	<u>+</u> 0.033	56.19
	TLS	0.002	<u>+</u> 0.009	<u>+</u> 0.010	<u>+</u> 0.015	41.90
RS2	Ground SfM	0.002	<u>+</u> 0.024	<u>+</u> 0.025	<u>+</u> 0.040	48.98
	UAS SfM	0.006	<u>+</u> 0.029	<u>+</u> 0.029	<u>+</u> 0.047	36.73
	Combo SfM	-0.001	<u>+</u> 0.024	<u>+</u> 0.024	<u>+</u> 0.039	57.14
	TLS	0.003	<u>+</u> 0.009	<u>+</u> 0.009	+0.015	31.25
RS3	Ground SfM	-0.001	± 0.008	± 0.008	<u>+</u> 0.013	63.86
	UAS SfM	0.013	<u>+</u> 0.025	<u>+</u> 0.028	<u>+</u> 0.046	22.89
	Combo SfM	-0.001	<u>+</u> 0.011	<u>+</u> 0.011	<u>+ 0.017</u>	53.01
	TLS	0.001	<u>+</u> 0.009	<u>+</u> 0.009	+0.014	55.42

Completeness

 $Completeness = \left(\frac{Surf.Area of Model with out Holes Filled}{Surf.Area of Combo SfM Model with Holes Filled}\right) \times 100$

RS1				
Model	Completeness (%)			
Combo SfM	99.05			
UAS SfM	99.46			
Ground SfM	89.43			
Lidar	92.38			

RS2				
Model	Completeness (%)			
Combo SfM	99.74			
UAS SfM	99.77			
Ground SfM	96.92			
Lidar	99.61			

RS3				
Model	Completeness (%)			
Combo SfM	99.54			
UAS SfM	99.54			
Ground SfM	94.41			
Lidar	98.61			

Point Density – Results

Surface Morphology – Slope

Surface Morphology – Roughness

Small Window Roughness (35x35 cm)

Large Window Roughness (85x85 cm)

Rock-Slope Morphology Classification

34

Rock-Slope Morphology Classification

Rock Activity Index (RAI) Classifications

- 0: Unclassified
- 1: Talus
- 2: Stable Intact Rock
- 3: Small Active Discontinuities
- 4: Medium Active Discontinuities
- 5: Large Active Discontinuities
- 6: Shallow Overhang
- 7: Cantilever Overhang

Conclusion

Rock-Slope Assessment:

SfM Pixy dust is not as accurate as TLS, but is an appropriate tool for rock-slope assessment, assuming the images are tied to a survey control network.

Rock-Slope Monitoring:

Concerns such as over-smoothing and inconsistencies stemming from differences in image acquisition, have potential to introduce error into the detection of small changes (\geq 5 cm).

Advantageous to use both together.

Climate Change Effects

Transportation Asset Lifecycle

NCHRP Synthesis #446

Acknowledgements

