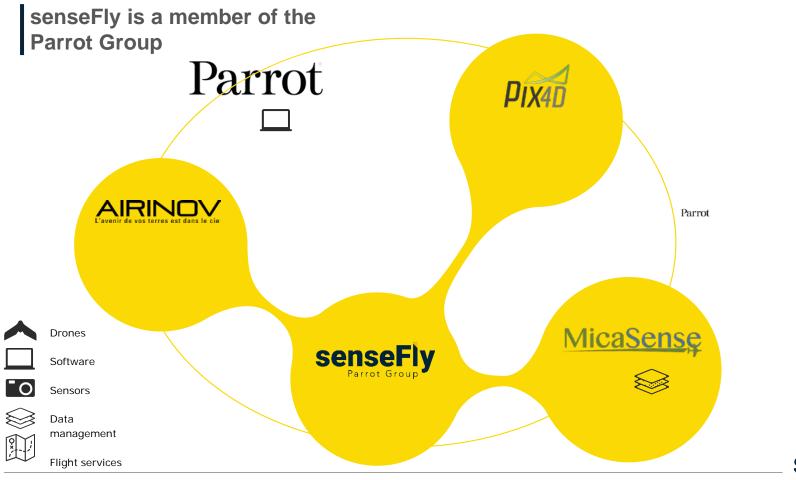
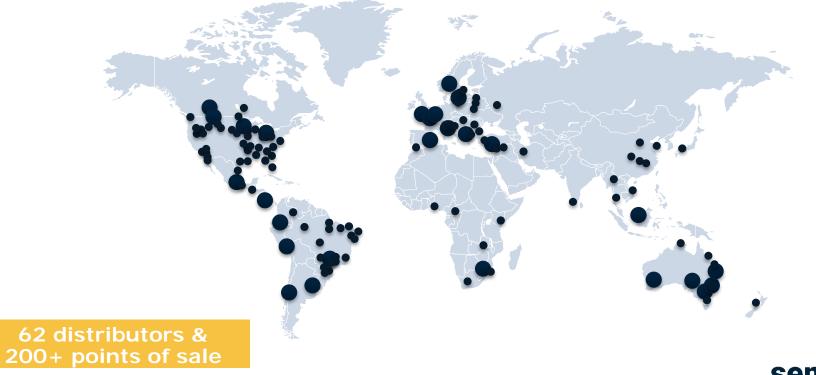
Up and Under -On Using Drones for Bridge Inspection

July 30, 2018 Gary Licquia



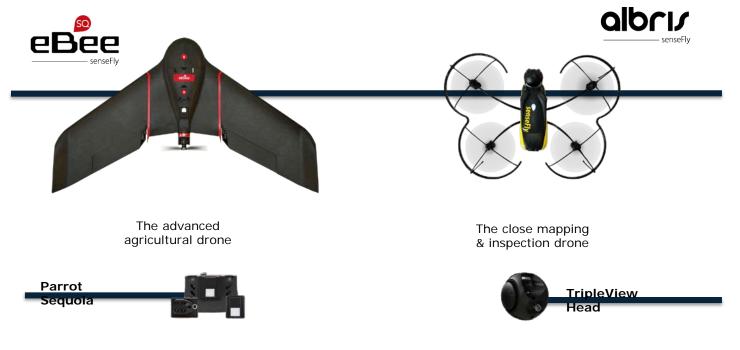
A Little About Me...

- 3+ years with senseFly products
- Background in GIS, Mapping, LiDAR
- BS Florida State, MS South Florida, MBA Georgia State
- Sales Manager-US Central for Parrot Business Solutions


At senseFly...

we believe in using technology to make work safer and more efficient.

We have global presence through our distribution and service network

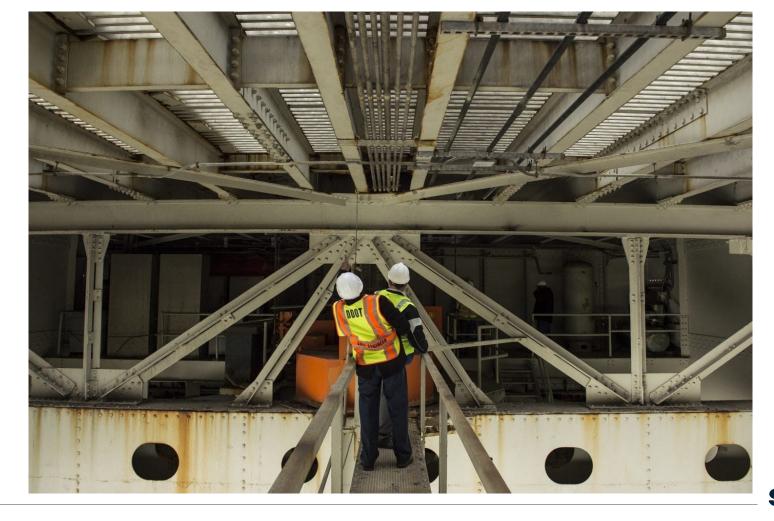


Our fixed and rotary wing drones are adapted to the needs of multiple industries

Our fixed and rotary wing drones are adapted to the needs of multiple industries

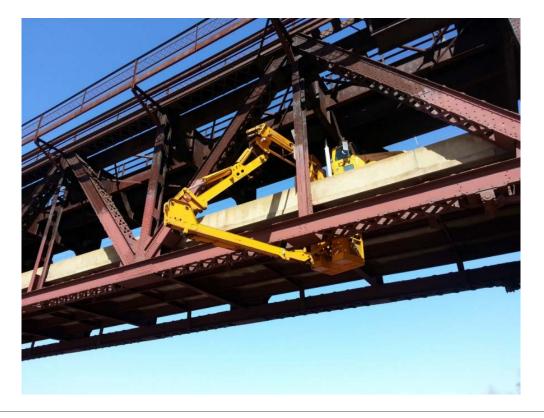
Aging Infrastructure

- The U.S. has 614,387 bridges.
 - 40% are over 50 years old
- On average there were 188 million trips across a structurally deficient bridge each day in 2017.



*Infrastructurereportcard.org

Aging Infrastructure



Traditional Inspection Methods

Traditional Inspection Methods

Challenges from Traditional Methods

- Dangerous
- Costly
- Disruptive
- Time-Consuming

Practicality of UAV Inspection

- Comparatively low cost
- Fast
- Safe
- Low-Impact on traffic

Specifications for UAV Inspection Platforms

- Capable of looking up
- Operate without GPS
- Proximity detection
- Multiple sensors

With the albris we offer a professional grade inspection drone

awareness

imagery

& thermal

MnDOT Project Scope

- Develop a field demonstration of UAVs for bridge inspection
- Evaluate the technology's effectiveness and safety implications for routine bridge inspections and interim or special inspections.

MnDOT Project Scope

Bridge Selection Criteria

- Rural vs. Urban
- Variety of Bridge Sizes
- Variety of Bridge Types
- Bridge Location
- Bridge Owner
 Cooperation
- Limit Public Contact

•

Evaluating the safety and effectiveness of UAV technology to produce an initial research report.

Bridge 49553 – Morrison County Pedestrian Bridge

- Large Steel Truss
- Difficult to access with UBIV
- Great detail in images
- Pack rust visible
- Concrete deterioration visible

Bridge Element Comparison

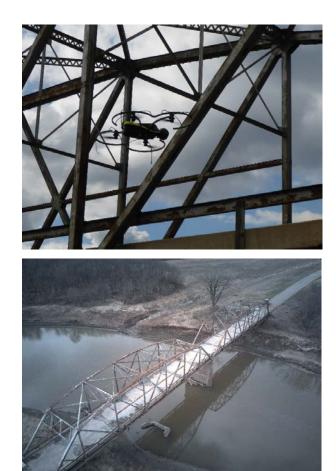
Table 5-5 Bridge 49555 Inspection Element Table				
Bridge Element	Condition State	Previous Inspection Note	Discernable from UAV Video/Photo/IR Image	
31 Timber Deck	8450 FT^2 CS 2	Constructed 13' wide x 4" thick x 650' treated timber deck and replaced 33 RR ties. Also placed 2" treated timber wear course.	Yes	
407 Bituminous Approach	2 EA CS 1	Paved 2" bituminous in November, 2006. 8/28/13 - West approach failure repaired by MCHD. Good condition. Erosion on East approach repaired w/ quarry run riprap.	Yes	
334 Metal Rail Coated	1299 FT CS 1	Placed 1,300' of coated chain link fence in November, 2006. 8/27/12 - Missing (1) end cap on East end.	Yes	
117 Timber Stringer	3251 FT CS 1	Constructed 5- 4"x 8" treated timber stringers.	Yes, partially	
131 Painted Stl Deck Truss	351 FT CS 2 299 FT CS 2	10/4/04 - All steel corroding & in need of rehab.	Yes	
311 Expansion Bearing	1 EA CS 1 8 EA CS 2 1 EA CS 3	10/11/05 - Bearings show movement is possible. Significant corrosion is present, but bearings appear functional. 8/27/12 - Extensive crack in lower portion of bearing on South bearing on East abutment. 8/28/13 - Changed quantity to	Yes	

Arcola Railroad Bridge

- Large Complex Bridge
- Normally inspected using rope access
- National Park Service Permission
- Difficult to access

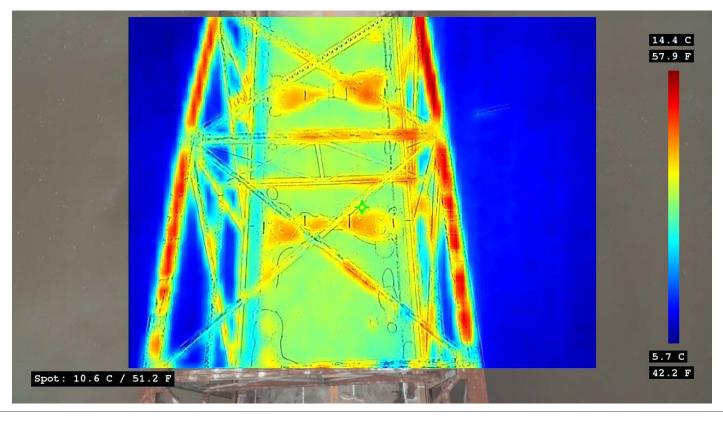
- Cost comparison with UBIVs, traffic control
- Explore inspection specific technology including the senseFly albris
- Compile a best practices document
- Deck surveys with zoom camera
- Culvert and Box Girder Inspection
- IR Deck Delamination Assessment at Dawr
- Paint Assessment

Blatnik Bridge Inspection

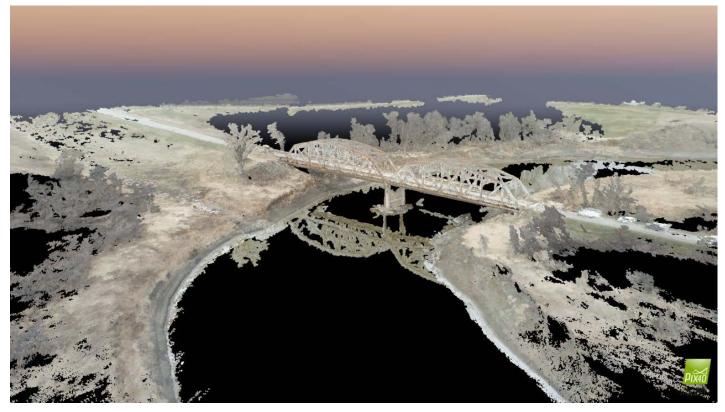

- Largest Bridge in Minnesota
- Crosses Duluth Harbor adjacent to Lake Superior
- Challenging wind and weather

Nielsville Bridge 5767

- Infrared Imaging
- Thermal Camera results were similar to high end FLIR cameras
- Drone has the ability to map chain drag markings for quantities in CAD



Minnesota Department of Transportation Project



Nielsville Bridge – Thermal Infrared Imagery

Nielsville Bridge – 3D Point Cloud

MnDOT Project – Best Practices

The National Bridge Inspection Standard (NBIS) requires that a properly trained and certified inspector be present and lead the inspection in order to ensure the safety of the traveling public.

MnDOT Project – Best Practices

To meet standards, live video feed and photos were streamed to a TV and reviewed immediately by a certified inspector.

Inspection is about doing it live, being involved, rather than later in the office. The more interactive, the better quality the inspection.

Jennifer Zink, State Bridge Inspection Engineer, MnDOT

MnDOT Project – Benefits of UAS Inspection

- Both infrared and 3D modeling detail of bridges
- Effectively identify concrete delamination
- Gather topographic mapping detail and efficiently map riverbank conditions upstream and downstream, from the bridge site.

MnDOT Project – Benefits of UAS Inspection

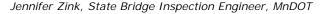
Blatnik Bridge Inspection

Snooper Truck

Days On Site	Cost	Safety and Convenience
8	\$59,000	X

UAV

Days On Site	Cost	Safety and Convenience
5	\$20,000	\checkmark


66% Savings!

The inspection detail that UAS provide effectively replicates some of the detail learned through the use of snoopers, without the traffic control requirements, and at significantly lower cost in terms of equipment and traffic control needs

"

<complex-block>

Gary Licquia Sales Manager | senseFly **10107 Division Drive** Raleigh, NC 27603 P: 919.917.9602 gary.licquia@sensefly.com www.sensefly.com

SenseFiy Parrot Group