

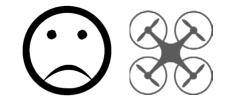
COLLEGE OF ENGINEERING

School of Civil and Construction Engineering

UAS Basics for Transportation

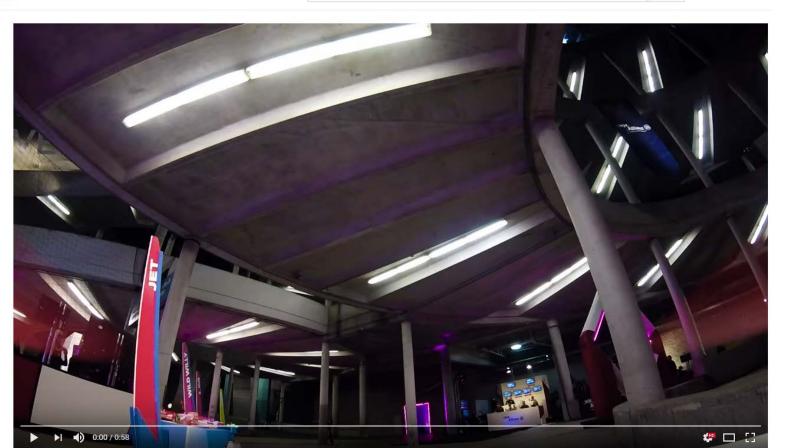
Chris Parrish

UAS in Transportation Workshop July 30-31, 2018



Good Reason

- -Documented data needs
 - Benefit from camera, lidar or other sensor that can maneuver in 3D space and obtain data from difficultto-access locations
- Bad Reason


-Drones are cool/exciting/fun!

Drone Racing!*

https://www.youtube.com/watch?v=GTifvVZBNWs

Search

Q

* NOT what we do...

UAS Uses in Transportation

Top 7 (?)

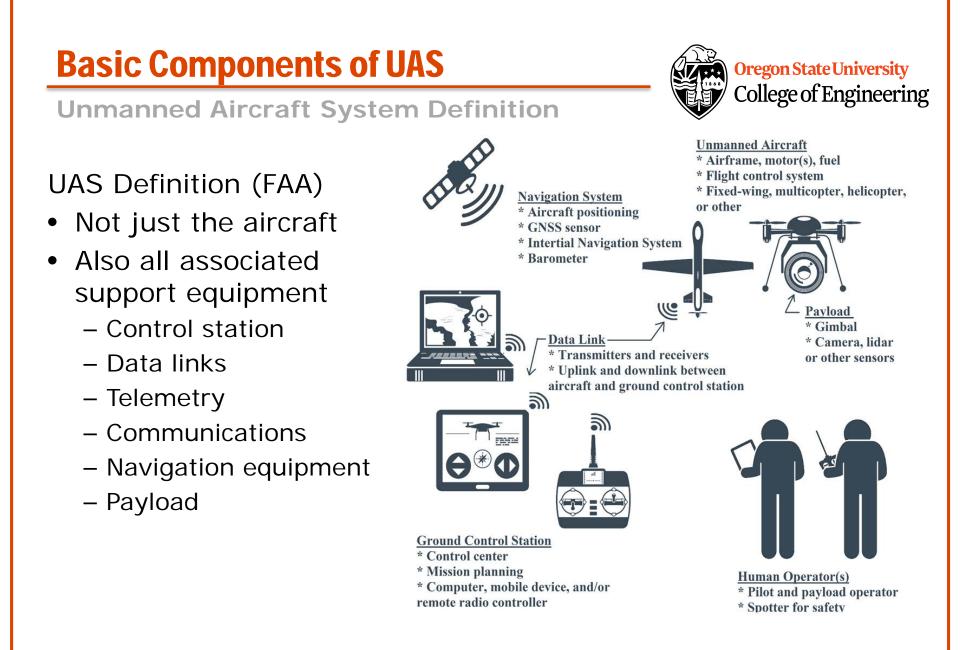
- 1. Bridge inspection
- 2. Rockfall site monitoring
- 3. Communication tower inspection
- 4. Construction site monitoring
- 5. Transportation network monitoring
- 6. Geotechnical engineering analysis
- 7. Effective messaging/outreach/storytelling

Applications found in literature review

Oregon State University College of Engineering

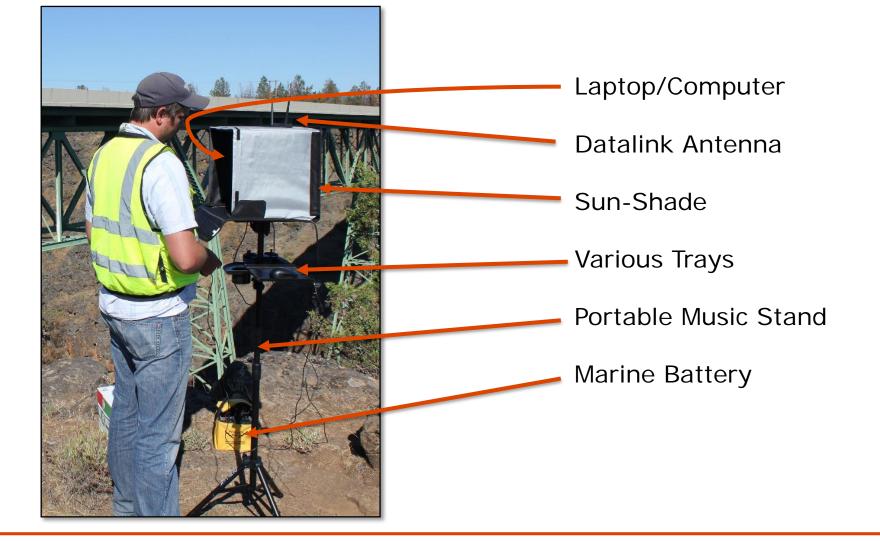
Current Use of UAS in U.S. DOTs

DOT	Traffic Monitoring	Structural Inspection	Construction Site Inspection	Other Applications
Arkansas	Х			
California				Х
Connecticut		Х		
Florida ¹		Х		
Georgia	Х			
Kansas		Х	Х	Х
Michigan	Х	Х		Х
Minnesota ²		Х		
Missouri		Х		
North Carolina				Х
Ohio		Х		Х
Texas				Х
Utah			Х	
Washington	Х			Х
West Virginia	Х		Х	

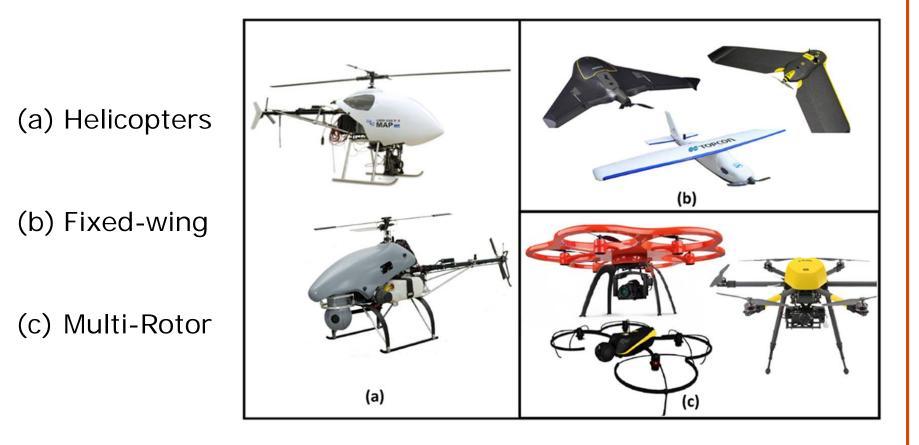

 Otero, L.D., N. Gagliardo, D. Dalli, W. H. Huang, and P. Cosentino. Proof of Concept for Using Unmanned Aerial Vehicles for High Mast Pole and Bridge Inspections. No. BDV28 TWO 977-02, Florida Institute of Technology, 2015.

2. Lovelace, B. Unmanned Aerial Vehicle Bridge Inspection Demonstration Project, Minnesota DOT Report No. MN/RC 2015-40, Minnesota Dept. of Transportation, 2015, 214 pp.

- New tool in bridge inspector's tool box to help:
 - Provide mechanism to remotely view bridge elements at high resolution, while keeping both feet on ground
 - Reduce lane closures, snooper crane use, and climbing in some inspections
 - Enhance safety and reduce costs in some inspections



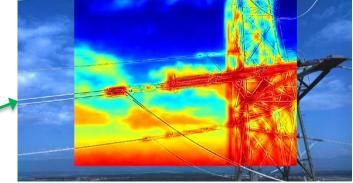
Additional UAS Components


UAS Ground Control Station (GCS)

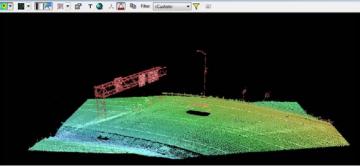
Selection of Airframe

Various Airframes

Payloads / sensors

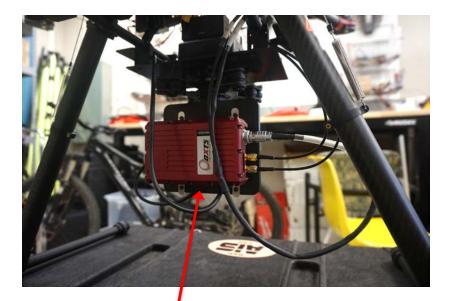

Oregon State University College of Engineering

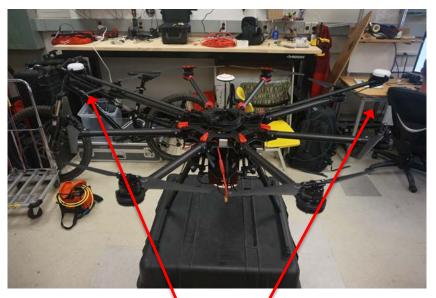
RGB still cameras


- RGB video cameras
- Multispectral cameras
- Hyperspectral cameras

- Thermal cameras
 - Lidar ———

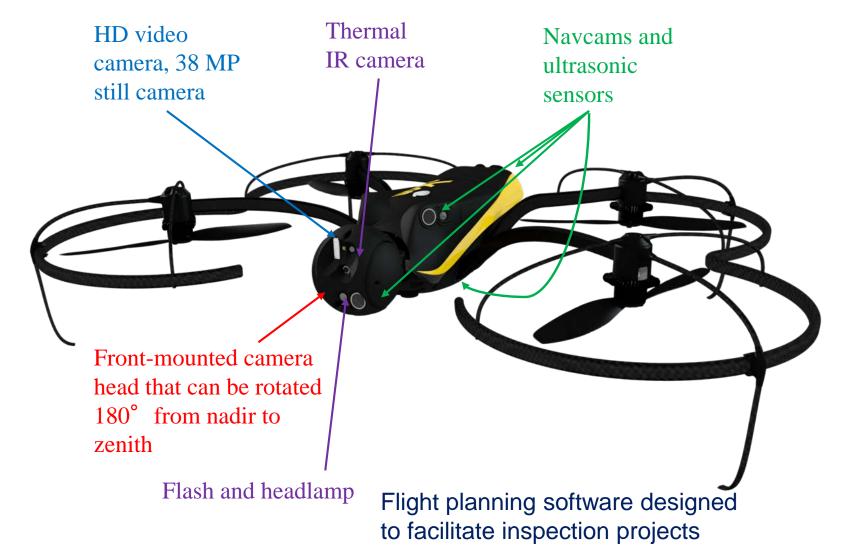
Lidar UAS





Direct Georeferencing Component

GNSS-aided INS



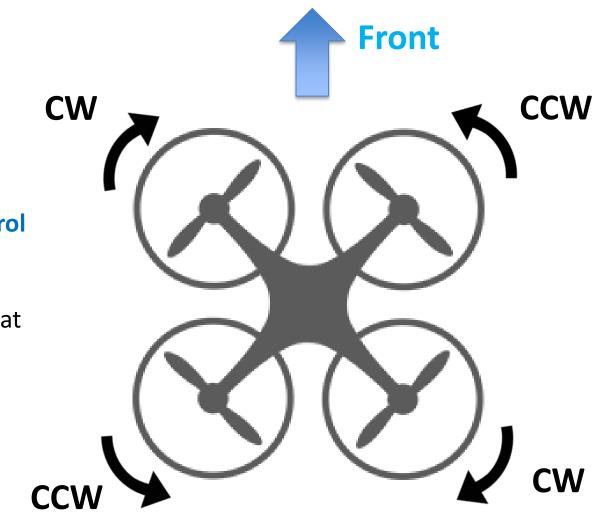
Inertial Navigation System (INS) **GNSS** antennas

Example of inspection aircraft

SenseFly Albris

Proximity/nav sensors

SenseFly Albris – Visual & Ultrasonic Sensors


Navcams

Ultrasonic sensors

Oregon State University College of Engineering

Multi-rotor sUAS 101: ESCs & Motors

Electronic Speed Control (ESC)

 ESC on each motor controls how fast that motor spins

Multi-rotor sUAS 101: Controller

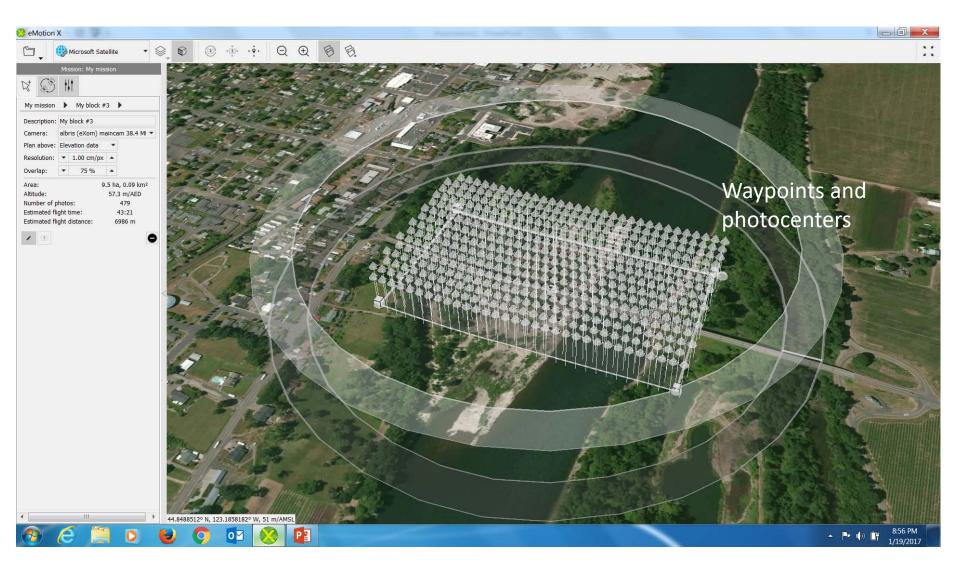
 Control: provided by transmitter (RC controller) and controller board

2.4 GHZ

Transmitter (RC controller)

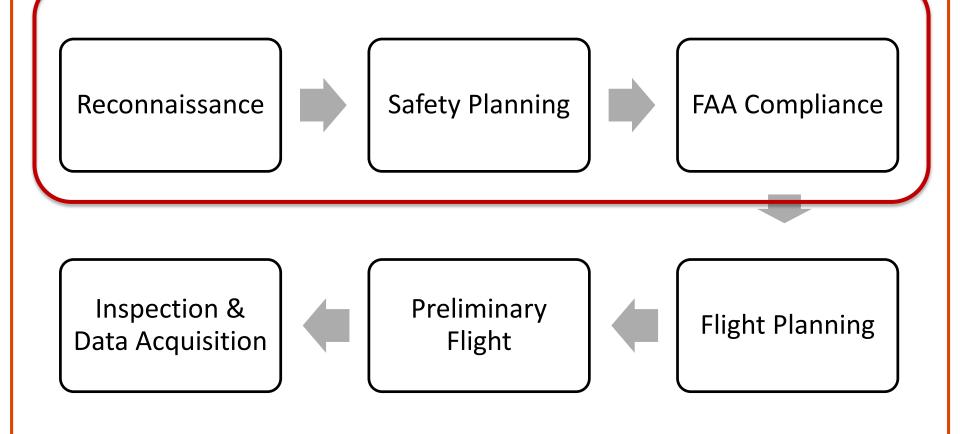
Rx

Controller board (on aircraft)


Image courtesy of DX.com

Flight control

- Controller Mode 2
 - -Left stick
 - up: aircraft increases altitude
 - down: aircraft decreases altitude
 - left: aircraft yaws left
 - right: aircraft yaws right
 - -Right stick
 - up: aircraft pitches nose down and moves forward
 - down: aircraft pitches nose up and moves backward
 - left: aircraft rolls and moves sideways left
 - right: aircraft rolls and moves sideways right


Alternative to manual flight mode: Waypoint-based flight: pre-plan flightlines & photocenters

Workflow for UAS Inspection

Overview Steps

Reconnaissance, Safety, FAA Compliance

Oregon State University College of Engineering

Reconnaissance:

- Obtain permission from owner
- Check airspace restrictions
- Visit inspection site
- Set ground control points

Safety:

- Inventory safety hazards
- Fill out safety plan form
- Review form with field team

Regulatory Compliance

- Bring operational documents (COA or Part 107)
- Meet provisions in documents
- Designate Pilot In Command (PIC) and other required crew members

Background on FAA Regulations

Certificate of Authorization (COA)

Oregon State University College of Engineering

- COA provides authorization to a public operator for a specific UAS activity
- Only method for legally operating UAS during Project SPR 787
- All flights in this project conducted under FAA COA 2016-WSA-101-COA

FAA FORM 7711-1 UAS COA Attachment Blanket Area Public Agency COA 2016-WSA-101-COA

Page 1 of 14

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION CERTIFICATE OF WAIVER OR AUTHORIZATION

Oregon State University

This certificate is issued for the operations specifically described hereinafter. No person shall conduct any operation pursuant to the authority of this certificate except in accordance with the standard and special provisions contained in this certificate, and such other requirements of the Federal Aviation Regulations not specifically waived by this certificate.

Operation of small Unmanned Aircraft System(s) weighting less than 55 lbs., in Class G airspace at or below 400 feet Above Ground Level (AGL) under the provisions of this authorization. See Special Provisions.

LIST OF WAIVED REGULATIONS BY SECTION AND TITLE

N/A STANDARD PROVISIONS

ISSUED TO

A copy of the application made for this certificate shall be attached and become a part hereof.

2. This certificate shall be presented for inspection upon the request of any authorized representative of the Federal Aviation Administration, or of any State or municipal official charged with the duty of enforcing local laws or regulations.

3. The holder of this certificate shall be responsible for the strict observance of the terms and provisions contained herein.

4. This certificate is nontransferable.

Note-This certificate constitutes a waiver of those Federal rules or regulations specifically referred to above. It does not constitute a waiver of any State law or local ordinance. SPECIAL PROVISIONS

SPECIAL PROVISIONS

Special Provisions are set forth and attached.

This certificate, 2016-WSA-101-COA, is effective from May 12, 2016 through May 11, 2018 and is subject to cancellation at any time upon notice by the Administrator or his/her authorized representative. Should a renewal become necessary, the Proponent shall advise the Federal Aviation Administration (FAA), in writing, no later than 45 business days prior to the requested effective date.

BY DIRECTION OF THE ADMINISTRATOR

Background on FAA Regulations

FAA Part 107

- Went into effect August 29, 2016
- New FAA Small UAS Rule (Part 107)
 - "First operational rules for routine commercial use of small unmanned aircraft systems (UAS or "drones")" (FAA)
 - Goal to open operation of sUAS in the National Airspace System (NAS) to commercial use
- Background:
 - FAA Modernization and Reform Act of 2012 (PL 112-95). PL 112-95, Section 333 directed Secretary of Transportation to determine whether UAS operations ...could safely be operated in the NAS
 - Before Part 107, private sector firms had to obtain Section 333 exemption and obtain a COA
 - Time consuming and expensive => prohibitive for commercial firms to enter into UAS operations

FAA Part 107

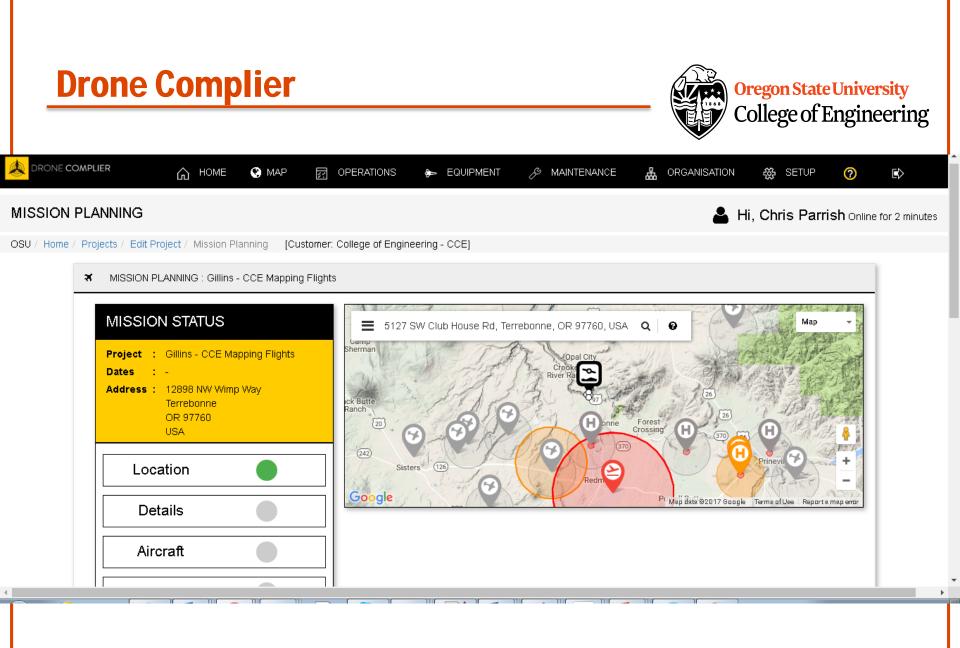
High-Level Summary

Easier/Less Restrictive

- Pilot license replaced with remote pilot certificate
- Airworthiness certification not required
- NOTAM not required practice
- Visual observer not required
- Coordination with airports in Class G uncontrolled airspace not required
- Use of UAS educational purposes allowed

Requirements

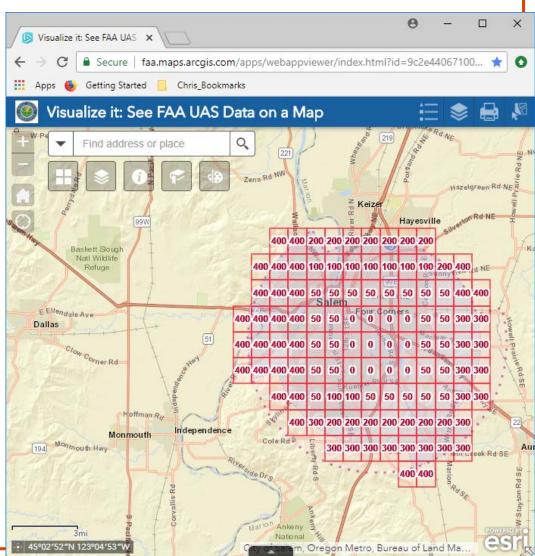
- Aircraft must be registered
- VLOS
- Daylight and civil twilight only
- May not operate over nonparticipants
- < 400ft AGL (or within 400ft of a structure)
- Class G airspace only without waiver
- Min wx visibility of 3 miles


Oregon State University College of Engineering

Safety Plan

Oregon State University College of Engineering

Date	of Ass	Assessment: 04/25/2016 Personnel: Pilot in C		Pilot in Comma	nd:	Tom I	Normandy			U	U	U			
Structure Type: Communi		inicatio	on Tower		Primary Observer:		Matt Gillins								
Location of 44°26'10.8"		0.8" N	J 122°.	<u>, , , , , , , , , , , , , , , , , , , </u>			Farid Javadnejad								
Struc	cture:						-		Dan C	Fillins					
Own	er of S	Structure:	ODOT						Chris	Parrish					
Owner's Contact 555 13th St				COA Number:		2015-AHQ-105-									
info:			NE Salem, OR 97301-6867				COA-								
		Phone (503) 986-2700			Team 's Emergency Contact		(818)-	497-8576 F	-						
									ſ	K		_			
							Number:			-	A C	L		Λ 47	77
Airport within 5 nm?			Yes: X			Airport Manager:		Jacob Kropf		2	00	est Plac	e Tower 1	52)	
If Yes Which:		J & J airport		Manger Contact		(541)-766-6783		COF	VALCI	SAVY	o Towar 1	-			
							info:				N R	6.			100
Distance from 3.2 nm				Radio Frequenc	;y	N/A		ALLIS_(CV	0)			6.74			
Airpo	ort:						Air Traffic		UNIC	ОМ 123.0	-3-135-7	75			0.00
C P	4 T	4 14	1		C	.1 6 11 .	Controller:				and the second second second	5		- 5/	GRE
	-	-	_	no 11 a		the following	hazards are poter	ntial to	- T		59 123.0	0.4		E	12!
YE	N	Equipmen						Environn	1 1 1	2	+1 4	110			
S	0	Hazards			0	T : .:	1. / A 1		0	1 Hazards					
X Vehici		Nearby	arby nicular Traffic				ending/Awkwar		Х	Falling D	E		14	2-08	10
						d Positions/	Heavy Lifting				10	3	VEN	ELL (PV	
	X	Nearby H Equipment			X	Working O	Working Over water		X	Confined	15				")m
Operatio			0		working O	wei water		Λ	Space 5			1 24	6 - 23	Cal	
		Transport							+						2-0
х	X			Loose unsta	ose unstable footing X			Weather 🗖							
11		Boat/AT					20000 011000		Related						
									Live						
X		Boat/Wat		Х		Slip/Trip/Fa	all Hazard X			Stock/Wild	dlif				
		Operation	18						e						
X ATV Op		arations		X		adders/Elevated			Transients						
	Λ	_	auons	Platforms			X X								
Х	1	Other			Х	Other			Х	Other					



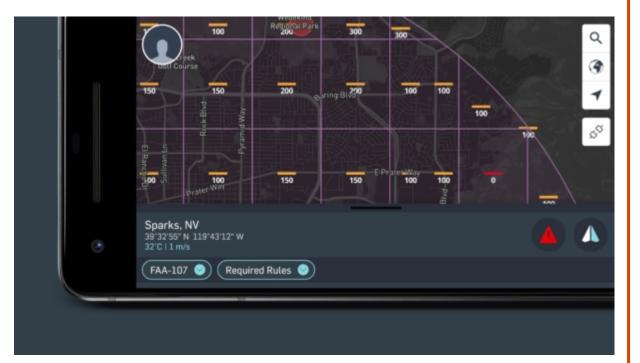
FAA UAS Facility Maps

https://www.faa.gov/uas/request_waiver

<u>/uas_facility_maps/</u>

- Show max altitudes around airports where the FAA may authorize part 107 UAS operations without additional analysis
- Must still apply to operate in controlled airspace (Class B, C, D, or surface area E)

Oregon State University


College of Engineering

FAA Low Altitude Authorization and Notification Capability (LAANC)

- Automates application & approval process for airspace authorizations
- "Near real-time processing of airspace authorizations below approved altitudes in controlled airspace."

Beyond Safety Planning

Additional considerations:

- Privacy
 - Voluntary Best Practices for UAS Privacy, Transparency, and Accountability
- Annoyance factor

• Property ownership and right of entry

Beyond Safety Planning

Contingency Planning:

- Contingency Plans for
 - Flyaway event
 - Lost link
 - Auto return home at fixed radius or virtual fence
 - Secondary controller
 - Battery fire
 - Emergency landing on private property
 - "Landing" in tree
 - Crewmember medical emergency

Christopher.Parrish@oregonstate.edu

