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ABSTRACT 
Bicycling simulation allows for the low-risk experimental study of human factors within 
transportation environments. A cyclist pedals on a stationary bike trainer, which is instrumented 
to detect the speed of the wheel and the steering angle of the bicycle. This paper proposes a 
speed calibration procedure to increase the validity of the simulator results, by using an 
independent bicycle computer for comparing the simulator speed. The speed ratio, defined as the 
simulator speed divided by the bike computer speed, approaches one when the simulator is 
properly calibrated. The effect of tire pressure was analyzed by examining the speed ratio for 
various tire pressures. The optimal tire pressure was selected as the one that provided a speed 
ratio closest to one when all other factors were held constant. In the final calibration, a gain 
factor was used to modify the simulator speed calculation that was embedded in the simulator’s 
bicycle dynamics model. Following calibration, the final simulation speed was within 99.5% of 
the bicycle computer speed, indicating that the physical speed of the wheel was accurately 
modeled in the simulation environment. The calibration procedure uses general equations and 
techniques that can be applied to other bicycling simulators to calibrate speed measurements and 
improve the consistency of experimental data worldwide.  
 
In the field of driving and bicycling simulation, simulator sickness has been shown to have a 
negative impact on driver performance. High latency, where the amount of time between 
operator input and the response of the visual field are mismatched, is correlated with higher rates 
of simulator sickness. The Oregon State University Bicycling Simulator was used to develop a 
framework for evaluating visual latency experienced in a bicycling simulator. A cyclist biked 
along a bike lane, sharply steered away from an obstacle, then countersteered to return to the 
bike lane. A relative measure of the steering angle was estimated with video data and was 
compared to the absolute measurement provided by the simulator. A cross-correlation technique 
identified a consistent 6 time step lag between the two measurements that represents the 
sampling rate of the steering cradle. During steady state steering, the delta steering angle 
approaches zero. Finally, the mean steering latency was found to be 115 milliseconds, with a 
median around 69 ms. The study provides framework for transportation researchers to measure 
steering latency which could be used to minimize the mismatch between the user’s control of the 
system and the response of the visual simulation. 
 
 
 
Keywords: Bicycling Simulator, Calibration, Speed  
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INTRODUCTION  
Bicycling simulation allows for the careful examination of bicyclist behaviors and interactions 
with various elements in the built environment in a controlled experimental setting. Novel or 
existing infrastructure can be analyzed to determine the effectiveness of traffic control devices. 
Interactions between conflicting modes of travel can be evaluated with surrogate safety measures 
to understand crash risk. The controlled and repeatable nature of human-in-the-loop simulator 
experimentation provides a means to develop explanatory mechanisms for transportation user 
behavior, which is difficult to extract from naturalistic experiments (1). The virtual reality 
environment significantly reduces the risk for participants, who can be exposed to risky scenarios 
while avoiding potential harm (2). 
 Our ability to extrapolate conclusions from simulation studies to real-world practice 
requires that the simulation and real-world performances be matched. Thus, calibration, 
measurement accuracy, and validation must be given careful attention. Simulated environments 
may not yet be able to emulate every nuance of real-world experiences, but they are sufficient to 
create environments where users respond in similar ways as they do in the real world (1). Thus, 
these simulations include relative validity – meaning that users respond in the same direction as 
in the real world – but do not include absolute validity – meaning that the simulation response is 
not yet identical to the real-world response in both magnitude and direction (2). In fact, reducing 
some of the variability that is experienced in the real world contributes to the power of 
simulation in controlled experiments, as almost all environmental factors are administered. 
However, due to the limited number of bicycle simulators worldwide, results from such 
simulators have been considered less rigorous than similar results from the comparatively more 
mature field of driving simulation (3).   

Latency is the amount of time between a stimuli and its corresponding response in a 
system. In the field of driving simulation, latency or transport delay measures the amount of time 
between the operators input and the response of the visual field (7). Figure 1A demonstrates the 
steering stimulus and simulator response relationship or steering latency described here. Latency 
is often measured in milliseconds (ms), and is dependent on the system’s hardware and software 
configuration (7). Functionally the visual latency should be low enough that the operator is 
unable to notice the delay, otherwise they will have to use corrective maneuvers to settle on their 
desired heading (7).  
 

  
FIGURE 1 A) Visual latency in respect to a bicycle simulator, B) the Oregon State bicycling simulator 

 
 
 

A) B) 
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Previous studies have shown that high latency is correlated with higher rates of simulator 
sickness (7, 5). Simulator sickness is a type of motion sickness, commonly associated with queue 
conflict theory (5). During simulation the visual and vestibular (the inner ear that contributes to 
balance and orientation) systems are mismatched, resulting in dysphoria (5). For example, during 
a simulated turning movement, the visual system perceives that the body is moving through the 
curve, but the vestibular system perceives that the body is stationary. With high latency, the 
mismatch between the user’s control of the system and the response of the simulation increases, 
resulting in higher simulation sickness rates (5). 

The use of head mounted displays (HMD) can allow for a more immersive simulation 
experience, as the user can look in any direction and see a virtual environment, but also increases 
the perception of latency and in turn simulation sickness (5). With HMD, the visual field that is 
displayed is based on the movement of the users head, resulting in another level of computational 
complexity which increases latency. Predictive compensation methods use neural networks to 
estimate head movements, allowing the system to pre-calculate future visual fields, decreasing 
latency. A previous study found latency values for HMD’s between 40 ms and 280 ms did not 
result in significant increases simulator sickness (5).  

National Advanced Driving Simulator (NADS-1) researchers at the University of Iowa 
developed a method for evaluating the latency between an operators input and the response of 
the visual field (7). Their method used an image generator to display either an all-white or all 
black screen based on an input signal in the vehicle dynamics package, and used a photo-diode to 
measure the frame by frame changes between the white and black screen. The mean system 
latency was found to be 57ms, with a variance of 16ms. This was an improvement from a 
previous evaluation of the latency at 80ms, after a series of upgrades to LED projects and image 
generator software. 
 The Oregon State University bicycling simulator was the simulator evaluated in this 
calibration effort as shown in Figure 1B. The system uses a projection screen to display the 
simulated environment, surround sound speakers, a stationary bike trainer to convert the pedal 
energy into an input velocity that has been calibrated (Horne et al., 2018), and a front wheel 
steering cradle to generate the steering angle. The bicycling simulator software uses SimCreator 
(Realtime Technologies Inc.) to generate the virtual environment, and SimObserver to record 
data from the simulation simultaneously with three video feeds. The platform is adjustable, so 
bicycles of various sizes can be used with the simulator. The following sections evaluate the 
visual latency of this bicycling simulator. 
 The simulator uses SimCreator (Realtime Technologies Inc.) as the simulation software 
package, which manages the vehicle dynamics and visual field. For the bicycle simulation, the 
vehicle dynamics are modified to create a vehicle that has the characteristics of a bicycle. The 
user’s vehicle has a narrower, shorter wheelbase and reduced speed to emulate the performance 
of a bicycle. The simulator has two input devices: a cradle for the front wheel to capture the 
steering angle, and an instrumented stationary bike trainer to capture the speed of the bicycle as 
shown in Figure 2. The visual field is projected on a screen in front of the cyclist, and a surround 
sound system provides audio. The platform is adjustable for various bicycle sizes, including a 
children’s bike.  



Hurwitz, Horne, Jashami, Abadi  5 
 

 
FIGURE 2 Bicycle computer used to collect the physical speed of the wheel. 

 
 
METHODOLOGY 
Speed Calibration 
Calibrating the wheel speed input between real-world and virtual bicycling will increase the 
validity of the bicycling simulator. Wheel speed was calibrated through an independent bike 
computer as shown in Figure 2, which calculated the physical speed of the wheel based on the 
wheel size and a spinning magnet attached to a spoke (Figure 3). The physical speed of the wheel 
was transferred through the bike trainer onto a rotational sensor, which the bicycle simulator 
used to calculate the simulation speed. 

 
FIGURE 3 Wheel speed calibration diagram. 
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Speed data from the bike computer were exported and compared to the speed data recorded by 
the simulation computer (Figure 4). Two factors, gain and tire pressure, were investigated to 
understand the operational interface between the bicycle and the simulator. The gain factor, 
embedded in the vehicle dynamics package in the simulation software, was used to calculate the 
wheel speed based on the angular speed from the rotation sensor input. The gain factor can be 
defined by the operator and used to calibrate the simulated speed measurement. 

  

 
FIGURE 4 Flowchart of the comparison of two speed measurements. 

 
The interface between the tire and the bike trainer effected the transfer of motion from 

the wheel and the input device to the computer. The tire pressure and tightness of the bike trainer 
on the tire are related to the amount of friction or rolling resistance. If the rolling resistance is too 
low, the tire will slip past the trainer, especially if the cyclist is exerting high torque. Previous 
research on bicycle tire pressure has found an inconsistent relationship between tire pressure and 
rolling resistance, with tire diameter being a better indicator of rolling resistance (4).  

Various tire pressures between 40 and 60 pounds per square inch (psi) were tested with 
one cyclist using consistent gearing to determine the effect of tire pressure on speed 
measurements. The manufacturer’s recommended tire pressure for the bicycle was 50–60 psi. 
Higher pressure was expected to reduce slip, decreasing the variance of the simulation 
measurement. Equation 1 shows how the tire pressure factor and gain factor influence the 
simulated speed measurement.  

 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝑇𝑇𝑇𝑇𝑇𝑇𝑆𝑆 𝑃𝑃𝑇𝑇𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑆𝑆 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 ∗ 𝐺𝐺𝐹𝐹𝑇𝑇𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇    (1) 
 
 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆is the observed wheel speed calculated from the simulation; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 is the 
actual speed of the physical wheel; Tire Pressure Factor accounts for losses due to the tire/bike 
trainer interface; and Gain Factor is a variable in the simulation for speed calibration.  
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Equation 2 shows the relationship between the bike computer and the wheel speed, where 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝑒𝑒 𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶 is the speed recorded by the bike computer. 

 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝑒𝑒 𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶 ≈ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒        (2) 
 
 
The goal was to minimize the difference between speed observations. Speed 

measurements of the bike computer and the simulator were converted to common units (mph), 
and the delta speed was calculated as the difference between the simulation speed and the bike 
computer measured speed, as shown in Equation 3.  

 
 

∆ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝑒𝑒 𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝐶𝐶      (3) 
 
 

 To account for variations in the magnitudes of speed measurements, a ratio of the two 
speed measurements was used (Equation 4). The bike computer speed, which directly represents 
the wheel speed, was used as the denominator. Ratio values greater than one indicate 
overestimates of bike speed, whereas values less than one indicate underestimates. Calibration 
occurs as the speed ratio approaches one. 
 
 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹 =  𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑆𝑆𝐵𝐵𝑆𝑆𝐵𝐵𝐵𝐵 𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝐶𝐶
        (4) 

 
 
The simulation computer collects data during the whole simulation, but the bike 

computer only collects data while the rear bicycle wheel is moving. At the startup and 
termination of the simulation, several seconds of data are collected that do not have 
corresponding bike computer data. The time series for the simulation was trimmed to make it 
equal to the time series of the bike computer (Equation 5). A similar process was used to trim the 
end of simulation data by removing all zero-speed data recorded during simulation shut down. 

 
 

𝑆𝑆𝑇𝑇𝑆𝑆 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑀𝑀𝐶𝐶𝑆𝑆𝑆𝑆𝑀𝑀𝑆𝑆𝑒𝑒𝑆𝑆 = 𝑆𝑆𝑇𝑇𝑆𝑆 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑂𝑂𝐶𝐶𝑆𝑆𝑂𝑂𝑆𝑆𝑂𝑂𝑂𝑂𝑒𝑒 − 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆 𝐹𝐹𝑜𝑜 𝐹𝐹𝑇𝑇𝑇𝑇𝑃𝑃𝐹𝐹 𝑁𝑁𝐹𝐹𝐺𝐺 𝑍𝑍𝑆𝑆𝑇𝑇𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  (5) 
 
 

The time intervals must be set to the same frequency. Instead of aggregating the higher-
frequency simulation data, the bike computer data were disaggregated to match the higher 
frequency of the simulation computer. Each of the time intervals was rounded to the tenths place, 
and then the corresponding bike computer speed was matched to each time step. Under this 
framework, each bike computer speed corresponded to around 850 simulation speed 
measurements. This disparity in data resolution resulted in error, especially following large 
changes in speed. For example, when a participant stopped for a traffic signal in the simulation, 
the bike computer data were slow to respond to the change in speed, and then again slow to 
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respond to the acceleration on the green indication. A potential improvement would be to use a 
geometric estimate of the higher resolution speeds based on the current and next bicycle 
computer speed measurements, as shown in Equation 6. 

 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐶𝐶 = 𝑆𝑆(𝑥𝑥 − 𝑥𝑥0) + 𝑦𝑦0 = 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑆𝑆𝑛𝑛+1−𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑆𝑆𝑛𝑛
𝑇𝑇𝑆𝑆𝑆𝑆𝑒𝑒𝑛𝑛+1−𝑇𝑇𝑆𝑆𝑆𝑆𝑒𝑒𝑛𝑛

∗ (𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐶𝐶 − 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑂𝑂) + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂  (6) 
 
 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐶𝐶 is the estimated speed in the high-resolution interval; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂 is the previous 
speed measurement (from the bike computer); 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑂𝑂+1 is the next speed measurement; 
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝐸𝐸𝐸𝐸𝐶𝐶 is the high-resolution interval; 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑂𝑂 is the previously measured interval (from the bike 
computer); and 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑂𝑂+1 is the next measured interval.  

Inversely, the simulation data could be aggregated by using a moving average or a 
Kalman filter, to remove much of the noise and decrease the computational effort. These 
methods create a local average based on nearby data points, reducing data variability due to 
short-term fluctuations, while maintaining the general trend of the data. A moving average 
formula is shown in Equation 7. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀������������ = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆��������𝑃𝑃𝐶𝐶𝑒𝑒𝑃𝑃𝑆𝑆𝐶𝐶𝐶𝐶𝐸𝐸 𝑀𝑀𝑀𝑀 + 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐵𝐵𝑛𝑛𝐶𝐶 𝐼𝐼𝑛𝑛𝐶𝐶𝐵𝐵𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼

𝑂𝑂
− 𝑆𝑆𝐶𝐶𝑒𝑒𝑒𝑒𝑆𝑆𝑃𝑃𝐶𝐶𝐵𝐵𝐼𝐼𝑆𝑆𝐶𝐶𝐶𝐶𝑃𝑃 𝐼𝐼𝑛𝑛𝐶𝐶𝐵𝐵𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼

𝑂𝑂
           (7) 

 
 
where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀������������ is the simple moving average speed estimate; 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑂𝑂𝐶𝐶 𝐼𝐼𝑂𝑂𝐶𝐶𝑒𝑒𝐶𝐶𝑃𝑃𝑂𝑂𝑒𝑒 is the 
simulation speed measurement at current time; and 𝐺𝐺 is the number of intervals included in the 
average. 
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Visual Latency 
This method for observing and benchmarking the visual latency of a bicycling simulator is based 
on a comparison between video data and exported simulator data. Three cameras were installed 
in the bicycling simulator room capturing the displayed visual field, the handlebar angle, and the 
user. Figure 5 shows the A) visual field and B) handlebar angle video. This video feed was 
simultaneously recorded with output data from the simulator. The simulator input variable of 
interest is the steering angle. This measure is in degrees and shown in the top right of Figure 5A, 
with the red label Angle. Negative values correspond to steering left, and positive to right. 
 

 
FIGURE 5 A) the visual field, simulator steering angle B) the relative steering angle  

 
For this experiment, angles were marked on the simulator platform with tape at 0, 22.5, 

45 and 90 degrees. These marks can be seen in Figure 5B, on the left side of the front wheel in 
the handlebar angle camera. A cyclist first pedaled the bicycle with the front wheel centered (0 
degrees) in the steering cradle maintaining a steady trajectory along the bike lane in the 
simulator. Avoiding a car door, the cyclist sharply turned the handlebars to the left 
(counterclockwise) to the first angle (22.5 degrees) and held that heading into the travel lane. 
The cyclist then counter-steered the bicycle back to the bike lane by turning right (clockwise). 
Upon returning to the bike lane, the cyclist returned to a steady 0-degree turn.  

A relative measure of the steering angle was produced using the video data from Sim 
Observer. The individual frames of the steering movement were extracted to Powerpoint. A line 
shape was superimposed on the front wheel to establish a datum as shown in Figure 5. The slide 
was duplicated, and the next video frame was pasted into the slide, replacing the original frame, 
leaving the datum in place. The line shape was rotated to align to the current direction of the 
front wheel. The rotation angle was used as a relative measure of the steering angle, based on the 
video data. This process was repeated for each frame throughout the duration of the steering 
event. 

The relative measure was compared to the absolute measurement provided by the 
simulator. A consistent delay or lag was expected between the measurements based on system 
computational time. The relative measure is rather simplistic, but is consistent throughout the 
experiment. The angle represented was not exactly the steering angle, as the camera was 
positioned in a way that causes some foreshortening. Also the extraction of this angle using 
Powerpoint superimposed of captured images has limited precision. Nonetheless, the relative 
measure allows for a comparison of the steering angle, which was necessary to understand the 
calibration the steering and its relationship to latency. 

 

A) B) 
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The time latency for a time series can be estimated for each steering angle as the 
difference in time between the relative measure and the simulation measure as shown in equation 
8. This is shown in Figure 6 as dx: Time. This represents the amount of time for the simulator to 
match the observed relative steering angle. Calculating this for the whole steering angle range 
was difficult however, as the data was not continuous, and has large gaps between measurements 
(especially for the simulation measurement). The total area between the relative measure and 
simulation measure was the same whether it was calculated in respect to the x or y direction. A 
similar difference could also be calculated in respect to the steering angle shown in Figure 6 as 
dy: Steering Angle. The time series data makes this calculation much simpler, as a relative and 
simulation measurement were recorded for every time step. To address the positive and negative 
direction, the absolute value of this difference will be used. This value can then be related to the 
length of a time step, to determine a distribution of visual latency as shown in equation 9. These 
mathematical procedures could be applied to other bicycling simulators. 
 
𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆 𝐿𝐿𝐹𝐹𝐹𝐹𝑆𝑆𝐺𝐺𝐹𝐹𝑦𝑦 =  𝑅𝑅𝑆𝑆𝑃𝑃𝑆𝑆𝐹𝐹𝐺𝐺𝑃𝑃𝑆𝑆 𝐹𝐹𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝐹𝐹𝑆𝑆𝑆𝑆 − 𝑆𝑆𝐹𝐹𝑇𝑇𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑃𝑃 𝐹𝐹𝑇𝑇𝑆𝑆𝑆𝑆 𝑃𝑃𝐹𝐹𝑆𝑆𝑆𝑆    (8) 

 

𝑆𝑆𝐹𝐹𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺𝑆𝑆 𝐿𝐿𝐹𝐹𝐹𝐹𝑆𝑆𝐺𝐺𝐹𝐹𝑦𝑦 = (𝑅𝑅𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝑇𝑇𝑅𝑅𝑆𝑆 − 𝑆𝑆𝑇𝑇𝑆𝑆𝑃𝑃𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝑇𝑇 𝑃𝑃𝐹𝐹𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝐺𝐺𝑆𝑆 𝐹𝐹𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆) ∗ 𝑇𝑇𝑇𝑇𝑆𝑆𝑆𝑆𝑃𝑃𝐹𝐹𝑆𝑆𝑆𝑆  (9) 

 

 
FIGURE 6 calculating the latency in respect to time or steering angle. 
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RESULTS 
A graphical comparison of the two speed measurements was used to check the initial alignment 
of the data, as shown in Figure 7. Large variance between speeds followed large changes of 
speed due to the large difference in sampling rate, as evident around the 16,000th step when the 
participant stopped the bicycle. The much higher data resolution for the simulation contributed to 
some of the noise in the simulator speed. However, in general, the speeds followed the same 
trends. In Figure 7, the noise in the simulation speeds indicate that the system does occasionally 
over- or underestimate the speed for short durations. These events are typically very short, as the 
simulator records data at 85 Hertz. 
 

FIGURE 7 Comparison of speed data from typical participant 
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Tire Pressure 
One participant rode the bicycle simulator while data on tire pressure were collected. In general, 
the ride was at least 5 minutes long using the same gearing for each run. The tire pressure of the 
rear tire was set at 40 psi and increased by 5 psi increments up to 60 psi. A digital tire pressure 
gauge was used to ensure accurate pressure measurements, as shown in Figure 8. 
 

 
FIGURE 8 Digital tire pressure gauge during tire pressure analysis 

 
Figure 9 shows the distribution of speed ratios for each tire pressure. A speed ratio of one 

indicates that the bike computer speed and the simulator speed were perfectly calibrated. The 
high variance for the 40 and 55 psi data was due to the low bike computer speeds during the 
startup and termination portions of the run. During these 10-second intervals, the bike computer 
speed was much lower than the simulation speed, resulting in large speed ratios. While the speed 
ratio means were similar, an ANOVA test indicated that they were statistically different (F value 
1165.75, P < 0.000). A Tukey HSD test was used for multiple comparisons of the tire pressure, 
with all pairs except 45 and 50 psi (P = 0.711) being statistically different. This result indicates 
that tire pressure had a statistically significant influence on the speed ratio. 

 

 
FIGURE 9 Distribution of speed ratios for each tire pressure 
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Descriptive statistics for the various tire pressure speed ratios are shown in Table 1. The speed 
ratios indicate the relative difference in measured speeds. For example, with a tire pressure of 40 
psi and a bike computer speed of 10 miles per hour (mph), the simulator speed mean would be 
13.49 mph. The lowest speed ratio corresponded to 40 psi, indicating that the simulator and bike 
computer were most calibrated at this tire pressure. 

 
TABLE 1 Descriptive Statistics for Various Tire Pressure Speed Ratios 
 
Tire 
Pressure N 

Speed Ratio 
Mean SD SE 

95%CI 
Min Max Lower  Upper  

40 35,375 1.349 0.0869 0.000462 1.349 1.350 0.1233 2.757 
45 47,882 1.368 0.0990 0.000452 1.367 1.369 0.0975 1.998 
50 39,332 1.369 0.0772 0.000389 1.368 1.370 0.0841 1.567 
55 32,220 1.420 0.2854 0.001590 1.417 1.424 0.1846 3.626 
60 34,964 1.380 0.0831 0.000444 1.379 1.381 0.0914 1.549 
Total 189,773 1.376 0.1439 0.000330 1.375 1.376 0.0841 3.626 
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Gain Factor 
Various gain factor settings were tested to analyze the effect of the gain factor on simulator 
speed. A single participant rode for 300 seconds at each setting, using the same gearing and tire 
pressure for all runs. The participant pedaled the bike to a steady-state speed before the 
simulation began to minimize variance during the startup period. The steady-state speed was 
maintained through the end of the simulation to reduce variance further.  

Tire pressure was set to 60 psi during the gain factor analysis. This tire pressure is not the 
optimal tire pressure determined in the tire pressure experiment. Both data sets were collected 
before the data were analyzed, and it was incorrectly assumed that the higher tire pressure would 
reduce the slip the most. The factors were tested independently, however, and it is not expected 
that a significant interaction between the factors exist, as one is a physical relationship and the 
other is a software setting. The final calibration using 40 psi should be even more accurate than 
described here. 

Table 2 shows the various gain factor levels and descriptive statistics for each of the runs. 
An ANOVA analysis indicated that the differences between gain factors was statistically 
significant (F value = 115845, P < 0.000). A Tukey HSD test indicated that each of the factors 
was significantly different except for the two 0.1 runs. The slightly different speed ratios with the 
same gain factor of 0.1 were evidence of random system variability. Setting the gain factor to 
zero reduced the simulation speed of the bicycle to zero, and setting the gain factor to one 
dramatically increased the simulation speed of the bike (8.19 times faster than real speed of the 
wheel). With a gain factor of one, the simulated bike would reach speeds of 65 mph, and then 
become unstable and crash with any steering input. Setting the gain factor to 0.1 produced the 
most calibrated results, with the simulated speed within 97.5% to 99.5% of the bike computer 
speed.  

 
TABLE 2 Gain Factor Settings and Speed Ratio Descriptive Statistics for Each Simulation Run 

        

Gain 
Factor N 

Speed 
Ratio 
Mean SD SE 

95% CI   
Lower Upper Min Max 

0 23,487 -3.1E-7 3.44E-5 2.25E-7 -7.5E-7 1.29E-7 -0.003 0.002 
0.1 22,556 0.995 0.140 0.00093 0.993 0.996 -6.88E-7 1.275 
0.1 22,837 0.975 0.126 0.00084 0.973 0.976 -2.43E-8 1.252 
Default* 22,147 1.585 0.194 0.00130 1.582 1.587 -8.12E-9 1.894 
0.2 21,651 2.070 0.244 0.00166 2.066 2.073 -2.26E-8 2.391 
1 23,487 8.190 3.191 0.02082 8.149 8.230 -9.454 11.792 
Total 136,165 2.328 3.056 0.00828 2.311 2.344 -9.454 11.792 

* Default gain factor is 0.15707963267949 
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Figure 10 graphically shows how the gain factor relates to the speed ratio from the data in Table 
2. The X-axis shows the values that were tested during the sensitivity experiment, which should 
be interpreted as categorical variables. Theoretically, any speed ratio could be achieved by 
adjusting the gain factor; hence, a solid line was used between the data points. The target value 
was a speed ratio of one, as this was our indicator of good calibration. During the experiment, the 
gain factor was adjusted following the principles of Newton’s Method, adjusting the value in an 
iterative fashion to approach our goal of a speed ratio of one. Additional steps could have been 
performed (0.095 or 0.15), but 99.5% was determined to be acceptable for demonstration 
purposes. 

 

 
FIGURE 10 Speed ratios for each gain factor (speed ratio of one corresponds to proper 

calibration). 
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Visual Latency 
The steering angle was observed for 283 time steps with or 6.4 seconds during a steering 
movement. The user rode in the bike lane with a steady state forward (0 degree) position, then 
sharply turned to the first marked 22.5 degree indication to avoid an obstacle. This position was 
held into the travel lane, then the user began a counter steering movement to return to the 
original position in the bike lane. Figure 11 shows the simulation reported steering angle 
measurement as well as the video relative measurement. In this graph, negative values represent 
turning to the left, and positive values are turning to the right. The steering latency can be 
interrupted as the difference between the two time series data sets (y axis). The relative measure 
has a slightly higher magnitude, compared to the simulation measurement, but this is likely due 
to the simplistic nature of the measurement. The steering latency difference is the largest during 
sharp steering movements (0 to 0.45 seconds). However, the difference between the 
measurements is minimized during steady state steering (0.92 to 1.38 seconds). The steering 
angle sampling rate can be observed in the stepwise behavior of the simulation measurement. 
The video data was recorded at 30 hz. From observing the time series data, the simulator records 
a steering angle every 6 time steps, or 67 ms. This sampling rate lag consistently contributes to 
the measured latency. 
 

  
FIGURE 11 Comparison of simulation and relative steering angles 
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These values are then multiplied by the length of the time step (16.6 ms) to create a distribution 
of latency for the steering movement, as shown in Figure 12. This represents the steering latency 
in respect to steering angle, as shown in Equation 9. The mean latency is 115 ms, with the 
median around 69 ms.  

 

 
FIGURE 12 Box Plot of the distribution of steering latency values 

 
A linear regression model was developed for the sharp steering section to evaluate the 

rate of steering. The based on the slope of the regression, each additional ms decreases the delta 
steering angle by an average of 0.7 degrees, or 11.6 degrees per time step (P-value < 0.001). 
Considering all 283 time steps, the average steering angles of the two measurements were not 
statistically different from each other using a T-test (P-value = 0.415) with 95% confidence 
interval (-4.66 to 1.92). The mean difference was very small (1.37 degree). This indicates that the 
simulator eventually records all steering movements despite the delay. 
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To better understand the relationship between simulation and relative measurements of steering 
angle, a Cross-Correlation Analysis (CCA) was conducted. Cross-correlation captures the 
similarities between two time series whether they related or not (6). Thus, it is helpful for 
identifying lag in output. Data were analyzed and visualized using Minitab software for 
Windows (version 18.1). As shown in Figure 13A, there is a highly positive autocorrelation 
between the two measurements during sharp steering phase (0 to 0.45 seconds). At twelve time 
steps the cross-correlation (0.59) is the greatest and is statistically significant. To transition from 
steady state to the sharp steering movement, the simulator needed 12 time steps to respond, and 
then it started updating. This suggests that the largest time latency is 12 time steps (12*16.6 ms). 
This is shown in Figure 13A as initial lag. However, on average, the simulation lag was 6 time 
steps (6*16.6 ms) to match the steering angle movement, as shown in Figure 13A. The 6 time 
steps interval is also is cross-correlated to multiples of 6 (time steps 6, 12, 18 and 24). This 
makes sense as the simulator samples the steering angle every 6 time steps, which contributes to 
the overall delay consistently. Finally, the autocorrelation graph shows that when the steering 
movement is steady for more than 6 time steps, the simulator output approaches the observed 
relative values. This indicates that steady steering allows the simulator to catch up on its 
sampling and settle into a consistent steering angle. 

  
FIGURE 13 A) Cross-Correlation values for each time step B) time series delta Steering Angle values 

 
The absolute value of the difference between the simulation measure and the relative 

measure is shown in Figure 13B for the sharp and steady steering. During sharp steering events 
the delta steering angle is large, and during steady state steering the delta steering angle 
approaches zero.  
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CONCLUSIONS 
Bicycle simulator studies provide an experimental framework to evaluate novel and existing 
infrastructure and human factors while controlling for environmental factors and reducing risk to 
participants. Calibrating the inputs of the bicycle simulator improves the authenticity of the user 
experience. The calculated speed of the rear wheel was compared to an independent speed 
observation from a bike computer to minimize the difference between measurements. Calibrating 
the observed simulator speed and the actual speed of the bicycle wheel should make the 
simulation more representative of real cycling, thereby improving the user’s experience and the 
applicability of the results.  

The speed ratio, or the simulated speed divided by the bike computer speed, was used to 
evaluate the influences of tire pressure and gain factor. Various tire pressures were tested based 
on the manufacturer’s recommended tire pressure range, with 40 psi having the most accurate 
and statistically significant speed ratio measurement. A gain factor of 0.1 brought the simulation 
to within 99.5% of the bike computer speed, indicating good calibration. The calibration could 
be further improved by additional refinement after testing tire pressures outside of the 
manufacturer’s recommendations and additional gain factor settings.  

The general procedures describe here can be applied to other bicycling simulators around 
the world. The use of a commercially available bike computer allows for the comparison of 
simulator speeds against an independent speed measurement. The calibration of speed 
measurements could increase the repeatability of experimental data across different simulators. 
The speed ratio framework enables discussion of the difference between the real speed of the 
bike and the simulated speed, which is especially important when validating simulator results to 
real-world experiences.  

Latency is the amount of time between a stimulus and response in a system. For the OSU 
bicycling simulator, steering angle was used to develop a procedure for calculating steering 
latency. The difference between an observed relative measure and the simulation output of the 
steering angle is the foundation of the procedure. The mean steering latency was found to be 115 
ms, with the median around 69 ms. These values are of a similar magnitude to other driving 
simulators based on existing literature (7, 5). It was expected that the steering latency would be 
relatively consistent throughout, but the results suggest that sharp large turning movements 
create more latency as compared to steady state operations. A consistent lag of 6 time steps was 
identified throughout the time series data using a cross-correlation method, which corresponds to 
the sampling rate of the steering cradle. During steady state steering the delta steering latency 
approaches zero. This methodology can be used to benchmark bicycle simulator steering latency, 
providing a performance measure for system upgrades, software improvements, or identifying 
high latency simulator sickness boundaries.  
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FUTURE RESEARCH 
The experiment as described only explored the steady-state speed, to minimize speed variance. 
Evaluating acceleration or deceleration would be difficult using the current bike computer due to 
data resolution, as the system only records data every 10 seconds. Acceleration events are likely 
to be much shorter than this interval. Deceleration events are a potential performance measure 
during experimentation, as they reflect braking as a response to simulated conflicts. These events 
could be used as a measure of reaction time, specifically involving stopping situations. The 
calibration effort only focused on speed, but speed is a fundamental property of any human-in-
the-loop simulator.  

This research creates a standard procedure for bicycle simulator speed calibration. 
Applying this methodology to other bicycle simulations will help to improve fidelity of bicycling 
simulation in general, as speed measurements will have a common calibration procedure. The 
future of this research thread includes applying this procedure to other bicycle simulators, 
developing a procedure to analyze the calibration of steering input through observation of visual 
latency, and validation studies to match simulator performance to field experiments. 

Future research for validation of the simulator will help to answer questions about the 
human perception of the simulation. The focus of this research was to calibrate the calculated 
speed of the simulator to a physical measurement of the speed of the wheel, rather than to 
calibrate the human perception of speed. The implication is that a calibrated simulator will better 
emulate the real-world experience. However, due to the relative validity of simulation research, 
the participant’s perception of the simulation speed is arguably at least as important, if not more 
so. Due to the limits of what sensor information can be presented in a simulator environment, the 
simulator may seem much faster or slower to participants than the real-world experience. 
Therefore, a study of user perceptions of bicycling simulation should be performed with the 
research question, “Does the bicycle simulator match user expectations from riding a real 
bicycle?” This feedback mechanism should be used to validate the simulator to match user 
expectations. 

This paper addressed the visual latency of a bicycling simulator based on the steering 
angle, but does not calibrate the steering angle. The bicycling simulator allows for only one 
degree of freedom for steering, rotating the handle bar. The actual steering of a real world 
bicycle is considerably more complicated however, as the bicycle and rider lean in the direction 
of steering. The real world steering relationship is nonlinear, with high steering angles 
potentially causing crashes.  

To calibrate the steering angle the following procedure is proposed. Using an 
instrumented bicycle that can track the steering angle and the position of the bicycle, test a 
variety of riders at various speeds to determine the minimum turning radius of the bicycle. In an 
open environment, riders would attempt to minimize the radius of the bicycle turning 180 
degrees. An average value of the minimum turning radius could be calculated for different 
speeds groups. A similar experiment could be developed in the bicycling simulator to test the 
minimum turning radius of the simulator. The maximum steering angle, and steering angle gain 
(both factors accounted for within the vehicle dynamics package) could be adjusted to match the 
bicycling simulator minimum turning radius to the observed experimental minimum for the 
instrumented bicycle. 
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