UTC Project Information	
Project Title	Connected Vehicle Safety Applications using V2X Under Consideration of Bicycles, Pedestrians and Persons with Special Needs
University	University of Idaho
Principal Investigator	Axel Krings
PI Contact Information	krings@uidaho.edu
Funding Source(s) and Amounts Provided (by each agency or organization)	University of Washington PacTrans \$30,000 University of Idaho \$ 30,000
Total Project Cost	\$60,000
Agency ID or Contract Number	69A3551747110
Start and End Dates	August 16, 2019-August 15, 2021
Brief Description of Research Project	This research first investigates bicycle safety applications that use the same basic communication capabilities as vehicles, thus allowing vehicle-to-bicycle communication. We simply assume that bicycles have comparable communication capabilities as motor-vehicles and are therefore capable of V2V and V2I communication. Second, Safety Applications for slow moving traffic participants are considered, specifically wheelchair users or visually impaired people who intend to cross a street. Both have one property in common in that they may change their heading over very short distances, e.g., a person may turn on the spot. This is very different from motorized vehicles, which have a much larger turning radius.
Describe Implementation of Research Outcomes (or why not implemented) Place Any Photos Here	The research resulted in several solutions. For bicycles, a Basic Safety Application (BSA) was derived and implemented, to address the so- called right-hook-conflict, a common collision scenario where a right- turning vehicle (a truck) causes a crash with an adjacent bicycle. Decision Area Treact RHC Zone Positions before RHC The accuracy of the communication was tested in open spaces and in a more challenging scenarios, as shown below.

The truck (in our case substituted by a car) and a bicycle were equipped with OBUs, identified by red circles.

For slow moving participants the scenarios considered a visually impaired person crossing a street,

and a wheelchair operator attempting a crossing, while out of sight of an approaching vehicle. Safety applications for both were derived and implemented to address multiple challenges related to changes in heading over small distances.

Impacts/Benefits of	As a first contribution, a bicycle safety application was introduced that
Implementation (actual, or	uses Basic Safety Messages emitted by every VANET node. The bicycle
anticipated)	safety application extracts information from BSMs such as speed and
	geographic locations to alert vehicle driver of possible right hook
	collision scenarios. The bicycle safety application has different
	algorithms for vehicles and bicycles, yet, both issue alerts when the
	minimum stopping sight distance of the bicycle is greater than or equal to
	provided periodically by BSMs, but it can be affected by GPS
	inaccuracies. During extensive field experiments we could observe that in
	the absence of large buildings the safety application could issue a reliable
	right hook alert. Whereas in a constricted area, e.g., between two large
	buildings, the safety application will be affected by the GPS inaccuracy,
	and as a result the effectiveness of the safety application was reduced.
	As a second contribution, an algorithm for a bicycle safety application
	was introduced to address the right hook conflicts that can overcome the
	impact of BSM omissions as the result of natural phenomena or malicious
	attack. The algorithm uses dead reckoning during the time spanned by the
	experiments conducted in open space. The results showed that sub-meter
	GPS accuracy could be achieved, even during jamming attacks. This
	suggests that the algorithm can mitigate the impact of jamming attacks
	and avoid possible crash scenarios.
	1
	As a third and final contribution, safety applications for VANET
	participants that have different mobility models were investigated.
	Specifically, micro-mobility models such as applicable for visually
	impaired persons and wheelchair users were considered. First, the ability
	of OBUs to calculate accurate distances for vehicles at larger separation
	was investigated. The findings showed that distances were accurately
	computed with only small GPS errors, mostly ranging from sub-meter
	accuracy to a maximum of 2.5 meters. Second, the OBOS capability of recognizing trajectory changes over very short distances, such as turning
	on the spot was investigated. In the absence of gyros, hearing had to be
	calculated from OBU data which required an examination of how much
	travel an OBU required to provide reliable bearing information. Field
	tests showed that the OBUs needed at least 3 feet to be able to produce an
	accurate heading.
Web Links	The results of the research were so far included in:
Reports	https://www.lib.uidaho.edu/digital/etd/items/baqer_idaho_0089e_11809.html
Project Website	