Climate Change and Insects and Pathogens

Karen Ripley, Forest Health Program Manager Washington Department of Natural Resources

Pathogen

Disease or Damage

Environment

Mountain Pine Beetle

- Prefers mature hosts
- hot, dry summer
 creates host stress
- killed at less than 30°F below zero for 5 days
- heat accumulation that synchronizes 1 yr life
 cycle

Annual "Aerial Survey"

Aerial observer: Jeff Moore

Pine Bark Beetle Avoidance

- Develop a mosiac of lodgepole pine stands
- Thin overcrowded stands
- Remove the weakest trees
- Avoid injuring trees
- Preventive pesticides, innovative pheromone manipulation, selective breeding (whitebark pine) may be options

Other Aerial Survey Results (Cascadia, 31 years, acres): 3.95 mil. acres Western Spruce Budworm Mountain pine beetle (lodgepole) 1.7 mil. acres Fir Engraver /Western Balsam Bark Beetle 753,000 **Mountain pine beetle (western white)** 431,000 280,000 Western black-headed budworm 260,000 **Spruce Beetle** 229,000 **Balsam woolly adelgid Douglas-fir beetle** 213,000 204,000 **Mountain pine beetle (whitebark)**

- Western Spruce Budworm Choristoneura occidentalis
- Hosts: Douglas-fir and grand fir
- Eats just the new foliage each year
- Becomes serious after many years of activity
- Spring phenology (timing) is important

Forest Changes:

- Structure
- Species Composition
- Tree Density
- Tree Vigor

Minic the structure natural fire would have produced: more pine, less fir, fewer layers

Abies

- Bark Beetles

- Balsam woolly adelgid

- Defoliators

Balsam Woolly Adelgid

- Exotic, Aphid-like insect
- Hosts: True Firs "Abies"
- Twig Infection:
 - "Wool" covered insects
 - Foliage loss
 - Gouting

Symptoms/Signs:

- Stem Infection:
 - "Wool" covered insects
 - Crown decline
 - Tree mortality rapid or delayed

Western hemlock looper

Western black-headed budworm

Heat or drought stress:

Alaska Yellow Cedar

- *Phleosinu*s bark beetles - secondary; "hasten the death" or infest injured trees and tree parts
- Drought weakened western juniper 1920's - 30's.
- *Phleosinus sequoiae* is "more aggressive" than other species

Cool, damp spring

Foliage diseases: - Swiss needle cast disease (DF) - Larch needle casts

Adverse Weather

Blow down: Douglas-fir beetle, Spruce beetle

Wind throw Population increase triggered by blowdown. Outbreaks are extended if hosts are stressed. Spruce beetle can shift from 2 to 1year life cycle.

Heat and Drought:

Red Alder

- Western Tent Caterpillar: more damage on wettest sites during drought period

Alder bark beetles:defoliated or stressed trees

- Exotic sawflies:

Pathogen

Disease or Damage

Environment

Conclusions:

- Vigorous trees are good. Increase vigor!
- Reduce overcrowding
- Favor drought tolerant species
- Avoid wounding residual trees and roots
- Plan (and plant) for variable condition
- Thinning creates growing space for natural migrations